Skip to main content
Log in

Invitro and Invivo Analysis of Human Milk Lactic Acid Bacteria Isolates for Their Anti-hypercholesterolemia Actions

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the cholesterol lowering ability of Lactic Acid Bacteria (LAB) isolated from human breast milk under in vitro and in vivo conditions. Six LAB isolates namely Lacticaseibacillus casei 1A, Lactobacillus gasseri 5A, Enterococcus faecium 2C, Limosilactobacillus fermentum 3D, Pediococcus acidilactici 1C, and Lactiplantibacillus plantarum 7A, were examined for their bile resistance, bile salt hydrolase activity, cholesterol assimilation and viability in cholesterol rich; DeMan Rogosa and Sharpe broth, simulated gastric, small and upper intestinal conditions. During in vivo experiments, two putative LAB isolates were orally gavage to BALB/c mice, fed with normal basal and cholesterol rich (HCD) diets, daily for a period of 4 weeks. Blood serum analysis including total serum cholesterol, triglycerides, high-density and low-density lipoprotein (LDL) cholesterol levels and total fecal LAB counts of the animals were determined. The isolates in study showed bile resistance and bile salt hydrolysis activity, while significant differences (P < 0.05) were seen in their cholesterol assimilation ability. L. gasseri 5A (195.67%) and L. plantarum 7A (193.78%) displayed highest cholesterol removal percentages, respectively. Animals in HCD, fed with L. gasseri 5A and L. plantarum 7A showed decreased levels of total cholesterol and LDL, compared to the control groups. In HCD group liver weight was increased, while fecal LAB counts were decreased. No changes were observed in behavior or body weight in all experimental groups. In conclusion, L. gasseri 5A and L. plantarum 7A isolated from human breast milk demonstrates significant hypocholesterolaemic actions in vitro and in vivo and might be considered a promising candidates for preventing hypercholesterolemia in man and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jung E, Kong SY, Ro YS et al (2022) Serum cholesterol levels and risk of cardiovascular death: a systematic review and a dose-response meta-analysis of prospective cohort studies. Int J Environ Res Public Health 19:8272. https://doi.org/10.3390/ijerph19148272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vaduganathan M, Mensah G, Turco J et al (2022) The global burden of cardiovascular diseases and risk. J Am Coll Cardiol 80:2361–2371. https://doi.org/10.1016/j.jacc.2022.11.005

    Article  PubMed  Google Scholar 

  3. Sivamaruthi BS, Bharathi M, Kesika P et al (2021) The administration of probiotics against hypercholesterolemia: a systematic review. J Appl Sci 11:6913. https://doi.org/10.3390/app11156913

    Article  CAS  Google Scholar 

  4. Selva-O’Callaghan A, Alvarado-Cardenas M, Pinal-Fernández I et al (2018) Statin-induced myalgia and myositis: an update on pathogenesis and clinical recommendations. Expert Rev Clin Immunol 14:215–224

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gerards MC, Terlou RJ, Yu H et al (2015) Traditional Chinese lipid-lowering agent red yeast rice results in significant LDL reduction but safety is uncertain–a systematic review and meta-analysis. Atherosclerosis 240:415–423

    Article  CAS  PubMed  Google Scholar 

  6. Shahidi F (2012) Nutraceuticals, functional foods and dietary supplements in health and disease. J Food Drug Anal 20:226–230

    CAS  Google Scholar 

  7. Shin HS, Park SY, Lee DK et al (2010) Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats. Arch Pharm Res 33:1425–1431. https://doi.org/10.1007/s12272-010-0917-7

    Article  CAS  PubMed  Google Scholar 

  8. Gibson GR, Hutkins R, Sanders ME et al (2017) Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:491–502

    Article  PubMed  Google Scholar 

  9. Lye HS, Kato T, Low WY et al (2017) Lactobacillus fermentum FTDC 8312 combats hypercholesterolemia via alteration of gut microbiota. J Biotechnol 262:75–83. https://doi.org/10.1016/j.jbiotec.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  10. Marras L, Caputo M, Bisicchia S et al (2021) The role of bifidobacteria in predictive and preventive medicine: a focus on eczema and hypercholesterolemia. Microorganisms 9:836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Castorena-Alba MM, Vázquez-Rodríguez JA, López-Cabanillas Lomelí M et al (2018) Cholesterol assimilation, acid and bile survival of probiotic bacteria isolated from food and reference strains. CYTA J Food 16:36–41

    Article  CAS  Google Scholar 

  12. Walker DK, Gilliland SE (1993) Relationships among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. J Dairy Sci 76:956–961

    Article  CAS  PubMed  Google Scholar 

  13. Pereira DI, Gibson GR (2002) Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol 68:4689–4693

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Khare A, Gaur S (2020) Cholesterol-Lowering Effects of Lactobacillus Species. Curr Microbiol 77:638–644

    Article  CAS  PubMed  Google Scholar 

  15. Khalkhali S, Mojgani N (2017) Characterization of candidate probionts isolated from human breast milk. Cell Mol Biol 63:82–88

    Article  CAS  PubMed  Google Scholar 

  16. Boix-Amorós A, Collado MC, Mira A (2016) Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol 7:492

    Article  PubMed  PubMed Central  Google Scholar 

  17. Argyri AA, Zoumpopoulou G, Karatzas KAG et al (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33:282–291. https://doi.org/10.1007/s13213-017-1254-6

    Article  CAS  PubMed  Google Scholar 

  18. Hernández-Gómez JG, López-Bonilla A, Trejo-Tapia G et al (2021) In vitro bile salt hydrolase (BSH) activity screening of different probiotic microorganisms. Foods 10:674. https://doi.org/10.3390/foods10030674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tomaro-Duchesneau C, Jones ML, Shah D et al (2014) Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation. Biomed Res Int. https://doi.org/10.1155/2014/380316

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chelliah R, Ramakrishnan SR, Prabhu PR et al (2016) Evaluation of antimicrobial activity and probiotic properties of wild-strain Pichia kudriavzevii isolated from frozen idli batter. Yeast 33:385–401

    Article  CAS  PubMed  Google Scholar 

  21. Kathade SA, Aswani MA, Anand PK et al (2020) Isolation of Lactobacillus from donkey dung and its probiotic characterization. Kor J Microbiol 56:160

    Google Scholar 

  22. Charteris C, Kelly K, Morelli M et al (1998) Development and application of an in vivo methodology to determine the transit tolerance of potentially probiotic lactobacillus and bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84:759–768. https://doi.org/10.1046/j.1365-2672.1998.00407.x

    Article  CAS  PubMed  Google Scholar 

  23. Nallala VS, Jeevaratnam K (2019) Hypocholesterolaemic action of Lactobacillus plantarum VJC38 in rats fed a cholesterol-enriched diet. Ann Microbiol 69:369–376. https://doi.org/10.1007/s13213-018-1427-y

    Article  CAS  Google Scholar 

  24. Damodharan K, Palaniyandi SA, Yang SH et al (2015) In vitro probiotic characterization of Lactobacillus strains from fermented radish and their anti-adherence activity against enteric pathogens. Can J Microbiol 61:837–850. https://doi.org/10.1139/cjm-2015-0311

    Article  CAS  PubMed  Google Scholar 

  25. Lee DK, Jang S, Baek EH et al (2009) Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content. Lipids Health Dis 8:21. https://doi.org/10.1186/1476-511X-8-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Long SL, Gahan CGM, Joyce SA (2017) Interactions between gut bacteria and bile in health and disease. Mol Asp Med 5:1–12

    Google Scholar 

  27. Humphries SE, Cooper JA, Seed M et al (2018) Simon broome familial hyperlipidaemia register group. Coronary heart disease mortality in treated familial hypercholesterolaemia: update of the UK Simon Broome FH register. Atherosclerosis 274:41–46. https://doi.org/10.1016/j.atherosclerosis.2018.04.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lawrence RA, Lawrence RM, Breastfeeding. A guide for the medical profession. 8th Edition. Philadelphia: Elsevier, 2016

  29. Asan-Ozusaglam M, Gunyakti A (2018) Lactobacillus fermentum strains from human breast milk with probiotic properties and cholesterol-lowering effects. Food Sci Biotechnol 28:501–509. https://doi.org/10.1007/s10068-018-0494-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sivamaruthi BS, Fern LA, Hj DS et al (2020) The influence of probiotics on bile acids in diseases and aging. Biomed Pharmacother 128:110310

    Article  CAS  PubMed  Google Scholar 

  31. Prete R, Long SL, Gallardo AL et al (2020) Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Sci Rep 10:1165. https://doi.org/10.1038/s41598-020-58069-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Shehata MG, Sohaimy SE, El-Sahn MA et al (2016) Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Ann Agric Sci 61:65–75. https://doi.org/10.1016/j.aoas.2016.03.001

    Article  Google Scholar 

  33. Song Z, Cai Y, Lao X et al (2019) Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome 7:9. https://doi.org/10.1186/s40168-019-0628-3

    Article  PubMed  PubMed Central  Google Scholar 

  34. Albano C (2018) Lactic acid bacteria with cholesterol-lowering properties for dairy applications: In vitro and in situ activity. Int J Dairy Sci 101:10807–10818

    Article  CAS  Google Scholar 

  35. Wang J, Zhang H, Chen X et al (2012) Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet. J Dairy Sci 95:1645–1654. https://doi.org/10.3168/jds.2011-4768

    Article  CAS  PubMed  Google Scholar 

  36. Zanotti I, Turroni F, Piemontese A et al (2015) Evidence for cholesterol-lowering activity by Bifidobacterium bifidum PRL2010 through gut microbiota modulation. Appl Microbiol Biotechnol 99:6813–6829. https://doi.org/10.1007/s00253-015-6564-7

    Article  CAS  PubMed  Google Scholar 

  37. Madani G, Mirlohi M, Yahay M et al (2013) How much in vitro cholesterol reducing activity of lactobacilli predicts their in vivo cholesterol function? Int J Prev Med 4:404–413

    PubMed  PubMed Central  Google Scholar 

  38. Liu H (2013) Ability of lactic acid bacteria isolated from mink to remove cholesterol: in vitro and in vivo studies. Can J Microbiol 59:563–569

    Article  CAS  PubMed  Google Scholar 

  39. Pigeon RM, Cuesta EP, Gilliland SE (2002) Binding of free bile acids by cells acids by cells of yogurt starter culture bacteria. J Dairy Sci 85:2705–2710

    Article  CAS  PubMed  Google Scholar 

  40. Palaniyandi SA, Damodharan K, Suh JW et al (2020) Probiotic characterization of cholesterol-lowering lactobacillus fermentum MJM60397. Probiotics Antimicrob Proteins 12:1161–1172. https://doi.org/10.1007/s12602-019-09585-y

    Article  CAS  PubMed  Google Scholar 

  41. Yamasaki M, Minesaki M, Iwakiri A et al (2020) Lactobacillus plantarum 06CC2 reduces hepatic cholesterol levels and modulates bile acid deconjugation in BALB/c mice fed a high-cholesterol diet. Food Sci Nutr 8:6164–6173. https://doi.org/10.1002/fsn3.1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naheed Mojgani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Participants

All applied procedures related to animals were approved by the Animal Ethic Committee, Razi vaccine and Serum Research Institute, and the experiments were performed according to the animal care and welfare regulations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojgani, N., Bagheri, M. & Vaseji, N. Invitro and Invivo Analysis of Human Milk Lactic Acid Bacteria Isolates for Their Anti-hypercholesterolemia Actions. Indian J Microbiol 64, 175–185 (2024). https://doi.org/10.1007/s12088-023-01150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-023-01150-0

Keywords

Navigation