Skip to main content

Advertisement

Log in

Characterization of two new strains of Lactococcus lactis for their probiotic efficacy over commercial synbiotics consortia

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Lactococcus spp. are industrially crucial lactic acid bacteria (LAB) used to manufacture lactic acid, pickled vegetables, buttermilk, cheese, and many kinds of delicious dairy foods and drinks. In addition to these, they are also being used as probiotics in specific formulations. However, their uses as probiotics are comparatively less than the other LAB genera. The present communication hypothesizes to validate the probiotic potentiality of two new Lactococcus lactis subsp. lactis strains for their future uses. These native food fermenting strains were characterized for in vitro acid tolerance, tolerance to simulated gastric and pancreatic juices, autoaggregation and co-aggregation, hydrophobicity, haemolytic activity, bile salt deconjugation, cholesterol removal, antimicrobial spectrum, and antibiotic sensitivity. The in vivo live bacterial feeding of these strains for 30 days was done in Swiss albino mice either singly or in combination with prebiotic inulin and evaluated for hypocholesterolemic activity, immune enhancement, and gut colonization efficiency and compared with the commercial probiotic consortia. The study revealed that the strains could survive in human gut bile concentration, gastric pH conditions at pH 2.0, 3.0, and 8.0 for 6 h, had a broad antibacterial spectrum, and cholesterol binding efficacy. The strains could survive with higher colony-forming units (CFU/mL) when amended with sodium caseinate. The strains had autoaggregation ranges from 15 to 25% over 24 h and had a significant co-aggregation with both lactic acid and Gram-positive and Gram-negative bacterial strains related to human illness. The strains also showed solvent and media-specific hydrophobicity against n-hexane and xylene. The live bacterial feeding either singly or in combination with prebiotic inulin resulted in a significant reduction of LDL (low-density lipoprotein), VLDL (very low-density lipoprotein) cholesterol and triglyceride (TG), and a significant increase in HDL (high-density lipoprotein) cholesterol level, and improved gut colonization and gut immunomodulation. The results prove that these non-haemolytic, non-toxic strains had significant health benefits than the commercial probiotics consortium with the recommended prebiotics mix. Thus, these new Lactococcus lactis subsp. lactis strains could be trialled as a new probiotic combination for human and animal feeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data has been submitted as a supplementary compressed file along with this article.

Code availability

Not applicable.

References

  1. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Le’otoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(Suppl. 2):S1–S63

    Article  CAS  PubMed  Google Scholar 

  2. Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, Krakoff J (2011) Energy balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94:58–65. https://doi.org/10.3945/ajcn.110.010132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Wilson Tang WH, Didonato JA, Lusia AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63. https://doi.org/10.1038/nature09922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goldsmith JR, Sartor RB (2014) The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol 49:785–798. https://doi.org/10.1007/s00535-014-0953-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci 109:594–599. https://doi.org/10.1073/pnas.1116053109

    Article  PubMed  Google Scholar 

  6. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso G, Lozupone CA, Lauber C, Clemente JC, Knights D, Knights R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227. https://doi.org/10.1038/nature11053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Treuren WV, Knight R, Bell JT, Spector TD, Clark AG, Ley RE (2014) Human genetics shape the gut microbiome. Cell 159(4):789–799. https://doi.org/10.1016/j.cell.2014.09.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Teuber M (1995) The genus Lactococcus. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria, the lactic acid bacteria (vol 2), Springer, Boston. https://doi.org/10.1007/978-1-4615-5817-0_6

  9. Axelsson L (1998) Lactic acid bacteria: classification and physiology. In: Salminen S, Wright V, Dekker AM (eds) Lactic Acid Bacteria Edition 2nd. INC, New York, pp 1–73

    Google Scholar 

  10. Gänzle MG (2009) From gene to function: metabolic traits of starter cultures for improved quality of cereal foods. Int J Food Microbiol 134:29–36. https://doi.org/10.1016/j.ijfoodmicro.2009.05.018

    Article  CAS  PubMed  Google Scholar 

  11. Yamaguchi P (2003) FOSHU approval-is it worth the price? NPIcenter. http://www.npicenter.com/anm/templates/newsATemp.aspx

  12. Kimoto H, Mizumachi K, Masaru N, Miho K, Yasuhito F, Okamoto T, Ichirou S, Noriko MT, Kurisaki J, Sadahiro O (2007) Lactococcus sp. as potential probiotic lactic acid bacteria. Jpn Agric Res Q 41:181–189. https://doi.org/10.6090/jarq.41.181

    Article  Google Scholar 

  13. Shahi N, Mallik SK (2020) Emerging bacterial fish pathogen Lactococcus garvieae RTCLI04, isolated from rainbow trout (Oncorhynchus mykiss): genomic features and comparative genomics. Microb Pathog 4:104368. https://doi.org/10.1016/j.micpath.2020.104368

    Article  CAS  Google Scholar 

  14. Li TT, Tian WL, Gu CT (2021) Elevation of Lactococcus lactis subsp. cremoris to the species level as Lactococcus cremoris sp. nov. and transfer of Lactococcus lactis subsp. tructae to Lactococcus cremoris as Lactococcus cremoris subsp. tructae comb. nov. Int J Syst Evol Microbiol 71(3):004727. https://doi.org/10.1099/ijsem.0.004727

    Article  CAS  Google Scholar 

  15. Malesevic M, Stanisavljevic N, Miljkovic M, Jovcic B, Filipic B, Studholme DJ, Kojic M (2021) The large plasmidome of Lactococcus lactis subsp. lactis bv. diacetylactis S50 confers its biotechnological properties. Int J Food Microbiol 16(337):108935

    Article  Google Scholar 

  16. Tanous C, Kieronczyk A, Helinck S et al (2002) Glutamate dehydrogenase activity: a major criterion for the selection of flavour-producing lactic acid bacteria strains. Antonie Van Leeuwenhoek 82:271–278. https://doi.org/10.1023/A:1020616506703

    Article  CAS  PubMed  Google Scholar 

  17. Cruz AG, Cadena RS, Walter EHM, Mortazavian AM, Granato D, Faria JAF, Bolini HMA (2010) Sensory analysis: relevance for prebiotic, probiotic, and synbiotic product development. Compr Rev Food Sci Food Saf 9:358–373. https://doi.org/10.1111/j.1541-4337.2010.00115.x

    Article  PubMed  Google Scholar 

  18. Peralta GH, Bergamini CV, Hynes ER (2016) Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci. Braz J Microbiol 47(3):741–748. https://doi.org/10.1016/j.bjm.2016.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen T, Wang L, Li Q et al (2020) Functional probiotics of lactic acid bacteria from Hu sheep milk. BMC Microbiol 20(1):228. https://doi.org/10.1186/s12866-020-01920-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A (2016) Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int J Mol Sci 17:928

    Article  PubMed Central  Google Scholar 

  21. Gomes AC, de Sousa RGM, Botelho PB, Gomes TLN (2017) The additional effects of a probiotic mix on abdominal adiposity and antioxidant status: a double-blind, randomized trial. Obesity 25(1):30–38. https://doi.org/10.1002/oby.21671

    Article  CAS  PubMed  Google Scholar 

  22. Ardeshirlarijani E, Tabatabaei-Malazy O, Mohseni S, Qorbani M, Larijani B, Jalili RB (2019) Effect of probiotics supplementation on glucose and oxidative stress in type 2 diabetes mellitus: a meta-analysis of randomized trials. DARU J Pharmaceu Sci. https://doi.org/10.1007/s40199-019-00302-2

    Article  Google Scholar 

  23. Devi SM, Halami PM (2019) Genetic variation of pln loci among probiotic Lactobacillus plantarum group strains with antioxidant and cholesterol-lowering ability. Probiotics Antimicrob Prot 11(1):11–22. https://doi.org/10.1007/s12602-017-9336-0

    Article  CAS  Google Scholar 

  24. Heshmati J, Farsi F, Yosaee S et al (2019) The effects of probiotics or synbiotics supplementation in women with polycystic ovarian syndrome: a systematic review and meta-analysis of randomized clinical trials. Probiotics Antimicrob Prot 11:1236–1247. https://doi.org/10.1007/s12602-018-9493-9

    Article  CAS  Google Scholar 

  25. Pereira ÁMdS, de Farias DRB, de Queiroz BB et al (2019) Influence of a co-culture of Streptococcus thermophilus and Lactobacillus casei on the proteolysis and ACE-inhibitory activity of a beverage based on reconstituted goat whey powder. Probiotics Antimicrob Prot 11:273–282. https://doi.org/10.1007/s12602-017-9362-y

    Article  CAS  Google Scholar 

  26. Bandyopadhyay B, Mandal V, Mandal NC (2020) Bile salt hydrolyzing activities of two lactic acid bacteria from traditional fermented vegetable Kinema of Darjeeling Hills for potential hypocholesterolemic probiotic use. J Bot Soc Bengal 74(1):79–85

    Google Scholar 

  27. Ko SH, Ahn C (2000) Bacteriocin production by Lactococcus lactis KCA236 isolated from white kimchi. Food Sci Biotech 9:263–269

    Google Scholar 

  28. Mandal V, Sen SK, Mandal NC (2008) Optimized culture conditions for bacteriocin production by Pediococcus acidilactici LAB 5 and its characterization. Indian J Biochem Biophys 45:106–110. http://nopr.niscair.res.in/handle/123456789/1481

  29. Mandal V, Sen SK, Mandal NC (2007) Detection, isolation and partial characterization of antifungal compound(s) produced by Pediococcus acidilactici LAB 5. Nat Prod Commun 2(6):671–674. https://doi.org/10.1177/2F1934578X0700200610

    Article  CAS  Google Scholar 

  30. Mandal V, Sen SK, Mandal NC (2011) Isolation and characterization of Pediocin NV 5 producing Pediococcus acidilactici LAB 5 from vacuum-packed fermented meat product. Indian J Microbiol 51(1):22–29. https://doi.org/10.1007/s12088-011-0070-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rivas R, Velázquez E, Valverde A, Mateos PF, Martínez-Molina E (2001) A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22(6):1086–1089. https://doi.org/10.1002/1522-2683()22:6%3c1086::aid-elps1086%3e3.0.co;2-6

    Article  CAS  PubMed  Google Scholar 

  32. Turpin W, Humblot C, Noordine M-L, Thomas M, Guyot J-P (2012) Lactobacillaceae and cell adhesion: genomic and functional screening. PLoS ONE 7(5):e38034. https://doi.org/10.1371/journal.pone.0038034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pu ZY, Dobos M, Limsowtin GK, Powell IB (2002) Integrated polymerase chain reaction-based procedures for the detection and identification of species and subspecies of the Gram-positive bacterial genus Lactococcus. J Appl Microbiol 93(2):353–361. https://doi.org/10.1046/j.1365-2672.2002.01688.x

    Article  CAS  PubMed  Google Scholar 

  34. de Freitas Martins MC, Fusieger A, de Freitas R, Valence F, Nero LA, Carvalho AF (2020) Novel sequence types of Lactococcus lactis subsp. lactis obtained from Brazilian dairy production environments. LWT. 124:109146. https://doi.org/10.1016/j.lwt.2020.109146

    Article  CAS  Google Scholar 

  35. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62(2):625–630. https://doi.org/10.1128/aem.62.2.625-630.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brashears MM, Jaroni D, Trimble J (2003) Isolation, selection, and characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle. J Food Prot 66:355–363

    Article  CAS  PubMed  Google Scholar 

  38. Huang Y, Adams MC (2004) In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int J Food Microbiol 91:253–260

    Article  PubMed  Google Scholar 

  39. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an in vivo methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84:759–768. https://doi.org/10.1046/j.1365-2672.1998.00407.x

    Article  CAS  PubMed  Google Scholar 

  40. Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Internat 36(9–10):895–904. https://doi.org/10.1016/S0963-9969(03)00098-X

    Article  CAS  Google Scholar 

  41. Rudel LL, Morris MD (1973) Determination of cholesterol using o-phthalaldehyde. J Lipid Res 14:364–366

    Article  CAS  PubMed  Google Scholar 

  42. Mandal V, Sen SK, Mandal NC (2009) Effect of prebiotics on bacteriocin production and cholesterol-lowering activity of Pediococcus acidilactici LAB 5. World J Microb Biot 25(10):1837–1841

    Article  CAS  Google Scholar 

  43. Bandyopadhyay B, Mandal V, Mandal NC (2021) Partial characterization of novel inulin-like prebiotic fructooligosaccharides of Sechium edule (Jacq.) Sw.(Cucurbitaceae) tuberous roots. J Food Biochem 1:e13764. https://doi.org/10.1111/jfbc.13764

    Article  CAS  Google Scholar 

  44. Bandyopadhyay B, Mitra PK, Mandal V, Mandal NC (2021) Novel fructooligosaccharides of Dioscorea alata L. tuber have prebiotic potentialities. Euro Food Res Technol 247:3099–3112. https://doi.org/10.1007/s00217-021-03872-1

  45. Suzuki H, Ohshio K, Fujiwara D (2015) Lactococcus lactis subsp. lactis JCM 5805 activates natural killer cells via dendritic cells. Biosci Biotech Bioch 80(4):798–800. https://doi.org/10.1080/09168451.2015.1116922

    Article  CAS  Google Scholar 

  46. Howard TE (1989) Clinical Chemistry. New York, John Wiley and Sons 4:58–62

    Google Scholar 

  47. Al-Hamz MA, Assaggaf AI, Al-Sayed GNE, Bin-Naser YS (2004) Effect of acute and subchronic administration of nutmeg seeds extract on mice behaviour, histological structure and biochemical functions. Saudi J Biol Sci 11:177–187

    Google Scholar 

  48. Ouwehand AC, Kirjavainien PV, Shortt C, Salminen S (1999) Probiotics: mechanisms and established effects. Int Dairy J 9:43–52

    Article  Google Scholar 

  49. Kumar J, Sharma N, Kaushal G et al (2019) Metagenomic insights into the taxonomic and functional features of kinema, a traditional fermented soybean product of Sikkim Himalaya. Front Microbiol 10:1744. https://doi.org/10.3389/fmicb.2019.01744

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chettri R, Bhutia MO, Tamang JP (2016) Poly-γ-Glutamic Acid (PGA)-producing Bacillus species isolated from Kinema. Indian fermented soybean food Front Microbiol 7:971. https://doi.org/10.3389/fmicb.2016.00971

    Article  PubMed  Google Scholar 

  51. Chaurasia LK, Tamang B, Tirwa RK, Lepcha PL (2020) Influence of biosurfactant producing Bacillus tequilensis LK54 isolate of Kinema, a fermented soybean, on seed germination and growth of maize (Zea mays L.). 3 Biotech 10(7):297. https://doi.org/10.1007/s13205-020-02281-7

  52. Goel A, Halami PM, Tamang JP (2020) Genome analysis of Lactobacillus plantarum isolated from some Indian fermented foods for bacteriocin production and probiotic marker genes. Front Microbiol 11:40. https://doi.org/10.3389/fmicb.2020.00040

    Article  PubMed  PubMed Central  Google Scholar 

  53. Plupjeen SN, Chawjiraphan W, Charoensiddhi S, Nitisinprasert S, Nakphaichit M (2020) Lactococcus lactis KA-FF 1–4 reduces vancomycin-resistant enterococci and impacts the human gut microbiome. 3 Biotech 10(7):295. https://doi.org/10.1007/s13205-020-02282-6

  54. Dowdell P, Chankhamhaengdecha S, Panbangred W et al (2020) Probiotic activity of Enterococcus faecium and Lactococcus lactis isolated from Thai fermented sausages and their protective effect against Clostridium difficile. Probiotics Antimicrob Prot 12:641–648. https://doi.org/10.1007/s12602-019-09536-7

    Article  CAS  Google Scholar 

  55. Zhang JS, Corredig M, Morales-Rayas R et al (2020) Downregulation of Salmonella virulence gene expression during the invasion of epithelial cells treated with Lactococcus lactis subsp. cremoris JFR1 requires OppA. Probiotics Antimicrob Proteins 12:577–588. https://doi.org/10.1007/s12602-019-09574-1

    Article  CAS  PubMed  Google Scholar 

  56. Zhu Z, Yang J, Yang P, Wu Z, Zhang J, Du G (2019) Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters. Microb Cell Fact 18(1):136. https://doi.org/10.1186/s12934-019-1188-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tian K, Li Y, Wang B, et al. (2019) The genome and transcriptome of Lactococcus lactis ssp. lactis F44 and G423: Insights into adaptation to the acidic environment. J Dairy Sci 102(2):1044–1058. https://doi.org/10.3168/jds.2018-14882

  58. Jain S, Yadav H, Sinha PR (2009) Antioxidant and cholesterol assimilation activities of selected lactobacilli and lactococci cultures. J Dairy Res 76(4):385–391. https://doi.org/10.1017/S0022029909990094

    Article  CAS  PubMed  Google Scholar 

  59. Reis SA, Conceição LL, Rosa DD, Siqueira NP, Peluzio MCG (2017) Mechanisms responsible for the hypocholesterolemic effect of regular consumption of probiotics. Nutr Res Rev 30(1):36–49. https://doi.org/10.1017/S0954422416000226

    Article  CAS  PubMed  Google Scholar 

  60. Kapse NG, Engineer AS, Gowdaman V, Wagh S, Dhakephalkar PK (2018) Genome profiling for health-promoting and disease-preventing traits unravelled probiotic potential of Bacillus clausii B106. Microbiol Biotechnol Lett 46(4):334–345. https://doi.org/10.4014/mbl.1804.04001

    Article  CAS  Google Scholar 

  61. Abriouel H, Pérez Montoro B, Casimiro-Soriguer CS, Pérez Pulido AJ, Knapp CW, Caballero Gómez N, Castillo-Gutiérrez S, Estudillo-Martínez MD, Gálvez A, Benomar N (2017) Insight into potential probiotic markers predicted in Lactobacillus pentosus MP-10 genome sequence. Front Microbiol 8:891. https://doi.org/10.3389/fmicb.2017.00891

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mercier-Bonin M, Chapot-Chartier MP (2017) Surface proteins of Lactococcus lactis: bacterial resources for mucoadhesion in the gastrointestinal tract. Front Microbiol 8:2247. https://doi.org/10.3389/fmicb.2017.02247

    Article  PubMed  PubMed Central  Google Scholar 

  63. Park HK, Shim SS, Kim SY et al (2005) Molecular analysis of colonized bacteria in a human newborn infant gut. J Microbiol 43(4):345–353

    CAS  PubMed  Google Scholar 

  64. Radziwill-Bienkowska JM, Robert V, Drabot K et al (2017) Contribution of plasmid-encoded peptidase S8 (PrtP) to adhesion and transit in the gut of Lactococcus lactis IBB477 strain. Appl Microbiol Biotechnol 101(14):5709–5721. https://doi.org/10.1007/s00253-017-8334-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Carvalho R, Vaz A, Pereira FL et al (2018) Gut microbiome modulation during treatment of mucositis with the dairy bacterium Lactococcus lactis and recombinant strain secreting human antimicrobial PAP. Sci Rep 8(1):15072. https://doi.org/10.1038/s41598-018-33469-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xia Y, Cao J, Wang M et al (2019) Effects of Lactococcus lactis subsp. lactis JCM5805 on colonization dynamics of gut microbiota and regulation of immunity in early ontogenetic stages of tilapia. Fish Shellfish Immunol 86:53–63. https://doi.org/10.1016/j.fsi.2018.11.022

    Article  CAS  PubMed  Google Scholar 

  67. Beck BR, Song JH, Park BS et al (2016) Distinct immune tones are established by Lactococcus lactis BFE920 and Lactobacillus plantarum FGL0001 in the gut of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 55:434–443. https://doi.org/10.1016/j.fsi.2016.06.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Surface Engineering and Tribology Division, CSIR-CMERI, Durgapur, West Bengal, India, for FESEM studies; to Ms Bratati Moitra, M. Sc., for her help in antimicrobial spectrum assay.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Biplab Bandyopadhyay and Satinath Das performed material preparation, data collection, and analysis. Biplab Bandyopadhyay wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Conceptualization and design of experimentation: Vivekananda Mandal and Narayan Chandra Mandal. Methodology: Biplab Bandyopadhyay and Satinath Das did the experimentations. Prashanta Kumar Mitra did the statistical analysis and data analysis for its presentation. Ashutosh Kundu and Vivekananda Mandal did the in vitro probiotic studies. Rajsekhar Adhikary did the detailed molecular and phylogenetic characterization of the strains. Formal analysis and investigation: Biplab Bandyopadhyay. Writing-original draft preparation: Biplab Bandyopadhyay. All authors read and approved the final manuscript. All the authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Writing-review and editing: Vivekananda Mandal and Narayan Chandra Mandal. Supervision: Vivekananda Mandal and Narayan Chandra Mandal. Funding acquisition: No direct funding received for this research work; however, the institutions have provided necessary chemicals and infrastructural facilities to do the experiments.

Corresponding authors

Correspondence to Vivekananda Mandal or Narayan Chandra Mandal.

Ethics declarations

Ethics approval

The work with the animal model has been conducted as per the Institutional guidelines of the Institutional Animal Ethics Committee hosted in the Department of Zoology, Visva-Bharati University, India (vide Ref. No.: IACE/VB/2018/6; Dated: 24–04-2018).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Luis Augusto Nero

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1965 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, B., Das, S., Mitra, P.K. et al. Characterization of two new strains of Lactococcus lactis for their probiotic efficacy over commercial synbiotics consortia. Braz J Microbiol 53, 903–920 (2022). https://doi.org/10.1007/s42770-022-00685-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00685-6

Keywords

Navigation