Skip to main content
Log in

Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

We have previously reported that live Bifidobacterium longum SPM1207, a strain isolated from healthy adult Koreans, significantly reduced serum cholesterol in broth and rat. We here examined the effect of oral administration of sonication-killed B. longum SPM1207 on serum cholesterol in rats in order to investigate whether this killed strain could be utilized as a potent probiotics for human and animals. Dietary treatments consisted of 3 treatment groups of 24 rats each randomly assigned to either normal diet, high cholesterol diet and saline (HCS), or high cholesterol diet and sonication-killed B. longum SPM1207 (HCKB) for 3 weeks. Although HDL-cholesterol levels in the serum were not significantly (p > 0.05) different between HCKB rats and HCS rats, total and LDL-cholesterol levels in the serum were significantly (p < 0.05) less increased in HCKB (total: 177.71 mg/dL, LDL-: 60.50 mg/dL) rats when compared to HCS (total: 237.17 mg/dL, LDL-: 71.50 mg/dL) rats. AI was significantly (p < 0.05) lower in HCKB (4.95 mg/dL) rats when compared to HCS (9.22 mg/dL) rats. Body weight increase and relative liver weight were significantly (p < 0.05) lower in HCKB rats when compared to HCS rats. Over the time, high cholesterol diet caused dry feces accompanied by decreased fecal water content (66.00 to 61.94%) but sonication-killed B. longum SPM1207 administration increased fecal water content (71.58 to 74.25%). The results in the current study provide evidence that the sonication-killed cells of B. logum SPM1207 isolated from healthy adult Koreans have a greater potential to be used as a cholesterol-lowering agent. Furthermore, the current study suggest that this killed specific strain may play role in part in blocking the body weight increase and relieving or eliminating constipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abot, R. D., Wilson, P. W. B., and Castelli, W. P., HDL-cholesterol, total cholesterol screening and myocardial infarction. Arteriosclerosis, 8, 207–211 (1988).

    Google Scholar 

  • Ahn, J. B., Isolation and characterization of Bifidobacterium producing exopolysaccharide. Food Eng. Prog., 9, 291–296 (2005).

    Google Scholar 

  • Anderson, J. W. and Gilliland, S. E., Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J. Am. Coll. Nutr., 18, 43–50 (1999).

    CAS  PubMed  Google Scholar 

  • Bevilacqua, L., Ovidi, M., Di Mattia, E., Trovatelli, L. D., and Canganella, F., Screening of Bifidobacterium strains isolated from human faeces for antagonistic activities against potentially bacterial pathogens. Microbiol. Res., 158, 179–185 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Chandan, R. C., Enhancing market value of milk by adding cultures. J. Dairy Sci., 82, 2245–2256 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Danielson, A. D., Peo, E. R. Jr., Shahani, K. M., Lewis, A. J., Whalen, P. J., and Amer, M. A., Anticholesteremic property of Lactobacillus acidophilus yogurt fed to mature boars. J. Anim. Sci., 67, 966–974 (1989).

    CAS  PubMed  Google Scholar 

  • Gilliland, S. E., Nelson, C. R., and Maxwell, C., Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol., 49, 377–381 (1985).

    CAS  PubMed  Google Scholar 

  • Harrison, V. C. and Peat, G., Serum cholesterol and bowel flora in the newborn. Am. J. Clin. Nutr., 28, 1351–1355 (1975).

    CAS  PubMed  Google Scholar 

  • Hepner, G., Fried, R., St. Jeor, S., Fusetti, L., and Morin, R., Hypocholesterolemic effect of yogurt and milk. Am. J. Clin. Nutr., 32, 19–24 (1979).

    CAS  PubMed  Google Scholar 

  • Kim, D. W., Yang, D. H., Kim, S. Y., Kim, K. S., Chung, M. G., and Kang, S. M., Hypocholesterolemic effects of lyophilized, heat-killed Lactobacillus rhamnosus and Lactobacillus plantarum. Kor. J. Microbiol. Biotechnol., 37, 69–74 (2009).

    CAS  Google Scholar 

  • Klaver, F. A. M. and Van der meer, R., The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol., 59, 1120–1124 (1993).

    CAS  PubMed  Google Scholar 

  • Klein, G., Pack, A., Bonaparte, C., and Reuter, G., Taxonomy and physiology of probiotic lactic acid bacteria. Int. J. Food Microbiol., 41, 103–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Law, M. R., Wald, N. J., Wu, T., Hackshaw, A., and Bailey, A., Systematic underestimation of association between serum cholesterol concentration and ischaemic heart disease in observational studies: data from BUPA study. Br. Med. J., 308, 363–366 (1994).

    CAS  Google Scholar 

  • Lee, D. K., Jang, S., Baek, E. H., Kim, M. J., Lee, K. S., Shin, H. S., Chung, M. J., Kim, J. E., Lee, K. H., and Ha, N. J., Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme fecal activity, and fecal water content. Lipids Health Dis., 8, 21 (2009).

    Article  PubMed  Google Scholar 

  • Lee, Y. W., Roh, W. S., and Kim, J. G., Benefits of fermented milk in rats fed by hypercholesterolemic diet (II). Kor. J. Food Hyg., 7, 123–135 (1992).

    Google Scholar 

  • Lora, K. R., Morse, K. L., Gonzalez-Kruger, G. E., and Driskell, J. A., High saturated fat and cholesterol intakes and abnormal plasma lipid concentrations observed in a group of 4- to 8-year-old children of Latino immigrants in rural Nebraska. Nutr. Res., 27, 483–491 (2007).

    Article  CAS  Google Scholar 

  • Mann, G. V. and Spoerry, A., Studies of a surfactant and cholesterolemia in the Massai. Am. J. Clin. Nutr., 27, 464–469 (1974).

    CAS  PubMed  Google Scholar 

  • Mann, G. V., A factor in yogurt which lowers cholesteremia in man. Atherosclerosis, 26, 335–340 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Manson, J. E., Tosteson, H., Ridker, P. M., Satterfield, S., Hebert, P., and O’Connor, G. T., The primary prevention of myocardial infarction. N. Engl. J. Med., 326, 1406–1416 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Park, O. J., Plasma lipids and fecal excretion of lipids in rats fed a high fat diet, a high cholesterol diet or a low fat/high sucrose diet. Kor. J. Nutr., 27, 785–794 (1994).

    Google Scholar 

  • Prasad, J., Gill, H., Smart, J., and Gopal, P. K., Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. Int. Dairy J., 8, 993–1002 (1998).

    Article  Google Scholar 

  • Roos, M. N. and Martin, K. B., Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review or papers published between 1988 and 1998. Am. J. Clin. Nutr., 71, 405–411 (2000).

    PubMed  Google Scholar 

  • Ross, R., The pathogenesis of atherosclerosis: a perspective for 1990s. Nature, 362, 801–809 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Scardovi, V., Genus Bifidobacterium. In N.R. Krieg and J. G. Holt (Eds.). Bergey’s Manual of Systemic Bacteriology, Vol. 2, Williams & Willikins, MD, pp. 1418–1434, (1986).

    Google Scholar 

  • Schaafsma, G., Meuling, W. J., van Dokkum, W., and Bouley, C., Effects of a milk product, fermented by Lactobacillus acidophilus and with fructo-oligosaccharides added, on blood lipids in male volunteers. Eur. J. Clin. Nutr., 52, 436–440 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Segawa, S., Wakita, Y., Hiroshi, H., and Watari, J., Oral administration of heat-killed Lactobacillus brevis SBC8803 ameliorates alcoholic liver disease in ethanol-containing diet-fed C57BL/6N mice. Int. J. Food Microbiol., 128, 371–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Tahri, K, Grill, J. P., and Schneider, F., Bifidobacteria strain behavior toward cholesterol: Coprecipitation with bile salts and assimilation. Curr. Microbiol., 33, 187–193 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Tannock, G. W., Analysis of the intestinal microflora: a renaissance. Antonie Van Leeuwenhoek, 76, 265–278 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Theuwissen, E. and Mensink, R. P., Water-soluble dietary fibers and cardiovascular disease. Physiol. Behav., 94, 285–292 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Vetvicka, V., Vashishta, A., Saraswat-Ohri, S., and Vetvivkova, J., Immunological effects of yeasts- and mushroom-derived β-glucans. J. Med. Food, 11, 615–622 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Xiao, J. Z., Kondo, S., Takahashi, N., Miyaji, K., Oshida, K., Hiramatsu, A., Iwatsuki, K., Kokubo, S., and Hosono, A., Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. J. Dairy Sci., 86, 2452–2461 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Joo Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, H.S., Park, S.Y., Lee, D.K. et al. Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats. Arch. Pharm. Res. 33, 1425–1431 (2010). https://doi.org/10.1007/s12272-010-0917-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0917-7

Key words

Navigation