Skip to main content

Advertisement

Log in

Microalgae and Thraustochytrids are Sustainable Sources of Vegan EPA and DHA with Commercial Feasibility

  • SCIENTIFIC CORRESPONDENCE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Vegan diets preclude the availability of some of the essential fatty acids supplied by foods of animal origin. Significantly, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are long-chain (LC)-omega − 3 (n − 3) polyunsaturated fatty acids (PUFAs), widely known for preventing a variety of metabolic diseases. In addition to vegan-food supplements, there is increasing demand for infant foods and health foods from dietary sources of EPA and DHA from plant origin. Their demands are being met industrially by utilizing thraustochytrids (marine protists) and microalgae-based platforms. The importance of these organisms is highlighted for the sustainable production of biotechnologically derived specialty lipids for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saini RK, Keum YS (2018) Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance—a review. Life Sci 203:255–267. https://doi.org/10.1016/j.lfs.2018.04.049

    Article  CAS  PubMed  Google Scholar 

  2. Saini RK, Prasad P, Sreedhar RV, Akhilender Naidu K, Shang X, Keum Y-S (2021) Omega−3 polyunsaturated fatty acids (PUFAs): emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits—a review. Antioxidants 10:1627. https://doi.org/10.3390/antiox10101627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) (2010) Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J 8:1461. https://doi.org/10.2903/j.efsa.2010.1461

    Article  CAS  Google Scholar 

  4. Del Gobbo LC, Imamura F, Aslibekyan S, Marklund M, Virtanen JK, Wennberg M, Yakoob MY, Chiuve SE, Dela Cruz L, Frazier-Wood AC et al (2016) ω-3 polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies. JAMA Intern Med 176:1155–1166. https://doi.org/10.1001/jamainternmed.2016.2925

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grosso G, Pajak A, Marventano S, Castellano S, Galvano F, Bucolo C, Drago F, Caraci F (2014) Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS ONE 9:e96905. https://doi.org/10.1371/journal.pone.0096905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Swanson D, Block R, Mousa SA (2012) Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr 3:1–7. https://doi.org/10.3945/an.111.000893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, Guarda G, Tian Z, Tschopp J, Zhou R (2013) Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38:1154–1163. https://doi.org/10.1016/j.immuni.2013.05.015

    Article  CAS  PubMed  Google Scholar 

  8. Simopoulos A (2016) An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8:128. https://doi.org/10.3390/nu8030128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yates CM, Calder PC, Ed Rainger G (2014) Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther 141:272–282. https://doi.org/10.1016/j.pharmthera.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  10. Ryan AS, Astwood JD, Gautier S, Kuratko CN, Nelson EB, Salem N (2010) Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: a review of human studies. Prostaglandins. Leukotrienes Essential Fatty Acids (PLEFA) 82:305–314. https://doi.org/10.1016/j.plefa.2010.02.007

    Article  CAS  Google Scholar 

  11. Xiang H, Sun-Waterhouse D, Waterhouse GIN, Cui C, Ruan Z (2019) Fermentation-enabled wellness foods: a fresh perspective. Food Sci Human Wellness 8:203–243. https://doi.org/10.1016/j.fshw.2019.08.003

    Article  Google Scholar 

  12. Ryan L, Symington AM (2015) Algal-oil supplements are a viable alternative to fish-oil supplements in terms of docosahexaenoic acid (22:6n–3; DHA). J Funct Foods 19:852–858. https://doi.org/10.1016/j.jff.2014.06.023

    Article  CAS  Google Scholar 

  13. Patel A, Karageorgou D, Katapodis P, Sharma A, Rova U, Christakopoulos P, Matsakas L (2021) Bioprospecting of thraustochytrids for omega-3 fatty acids: a sustainable approach to reduce dependency on animal sources. Trends Food Sci Tech 115:433–444. https://doi.org/10.1016/j.tifs.2021.06.044

    Article  CAS  Google Scholar 

  14. Nethravathy MU, Mehar JG, Mudliar SN, Shekh AY (2019) Recent advances in microalgal bioactives for food, feed, and healthcare products: commercial potential, market space, and sustainability. Compr Rev Food Sci Food Saf 18:1882–1897. https://doi.org/10.1111/1541-4337.12500

    Article  CAS  Google Scholar 

  15. Adarme-Vega T, Lim DKY, Timmins M, Vernen F, Li Y, Schenk PM (2012) Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact 11:96. https://doi.org/10.1186/1475-2859-11-96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma X-N, Chen T-P, Yang B, Liu J, Chen F (2016) Lipid production from nannochloropsis. Mar Drugs 14:61. https://doi.org/10.3390/md14040061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zanella L, Vianello F (2020) Microalgae of the genus nannochloropsis: chemical composition and functional implications for human nutrition. J Funct Foods 68:103919. https://doi.org/10.1016/j.jff.2020.103919

    Article  CAS  Google Scholar 

  18. Paliwal C, Mitra M, Bhayani K, Bharadwaj SVV, Ghosh T, Dubey S, Mishra S (2017) Abiotic stresses as tools for metabolites in microalgae. Biores Technol 244:1216–1226. https://doi.org/10.1016/j.biortech.2017.05.058

    Article  CAS  Google Scholar 

  19. Mitra M, Patidar SK, Mishra S (2015) Integrated process of two stage cultivation of Nannochloropsis sp. for nutraceutically valuable eicosapentaenoic acid along with biodiesel. Biores Technol 193:363–369. https://doi.org/10.1016/j.biortech.2015.06.033

    Article  CAS  Google Scholar 

  20. Cui Y, Thomas-Hall SR, Chua ET, Schenk PM (2021) Development of high-level omega-3 eicosapentaenoic acid (EPA) production from phaeodactylum tricornutum. J Phycol 57:258–268. https://doi.org/10.1111/jpy.13082

    Article  CAS  PubMed  Google Scholar 

  21. Pocha CKR, Chia WY, Chew KW, Munawaroh HSH, Show PL (2022) Current advances in recovery and biorefinery of fucoxanthin from Phaeodactylum tricornutum. Algal Res 65:102735. https://doi.org/10.1016/j.algal.2022.102735

    Article  Google Scholar 

  22. Gu W, Kavanagh JM, McClure DD (2022) Towards a sustainable supply of omega-3 fatty acids: screening microalgae for scalable production of eicosapentaenoic acid (EPA). Algal Res 61:102564. https://doi.org/10.1016/j.algal.2021.102564

    Article  Google Scholar 

  23. Chi G, Xu Y, Ca, X, L, Z, Ca, M, Chist, Y, H, N (2022) Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnology Advances 55, 107897, https://doi.org/10.1016/j.biotechadv.2021.107897.

  24. Sun X-M, Xu Y-S, Huang H (2021) Thraustochytrid cell factories for producing lipid compounds. Trends Biotechnol 39:648–650. https://doi.org/10.1016/j.tibtech.2020.10.008

    Article  CAS  PubMed  Google Scholar 

  25. Huang TY, Lu WC, Chu IM (2012) A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Biores Technol 123:8–14. https://doi.org/10.1016/j.biortech.2012.07.068

    Article  CAS  Google Scholar 

  26. Gray RJ (2017) Application for the authorization of DHA and EPA-rich algal oil from Schizochytrium sp. Martek Biosciences Corporation, Columbia, Maryland, USA. https://acnfp.food.gov.uk/sites/default/files/mnt/drupal_data/sources/files/multimedia/pdfs/dhaoapplicdossier.pdf

  27. Li J, Liu R, Chang G, Li X, ChangM LY, Jin Q, Wang X (2015) A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Biores Technol 177:51–57. https://doi.org/10.1016/j.biortech.2014.11.046

    Article  CAS  Google Scholar 

  28. Kiy T, Luy M, Zeumer O (2010) Production of omega-3 fatty acids in microflora of thraustochytriales using modified media. EP2084290B1.

  29. Food Standards Australia New Zealand (FSANZ) (2003). DHASCO and ARASCO oils as sources of long-chain polyunsaturated fatty acids in infant formula; Food Standards Australia New Zealand: Canberra BC, Australia. https://www.foodstandards.govt.nz/publications/Documents/FSANZ_AR_05.pdf

  30. Scott SD, Armenta RE, Berryman KT, Norman AW (2011) Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid. Enzyme Microb Technol 48:267–272. https://doi.org/10.1016/j.enzmictec.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  31. Gupta A, Barrow CJ, Puri M (2022) Multiproduct biorefinery from marine thraustochytrids towards a circular bioeconomy. Trends Biotechnol 40:448–462. https://doi.org/10.1016/j.tibtech.2021.09.003

    Article  CAS  PubMed  Google Scholar 

  32. Park H, Kwak M, Seo J, Ju J, Heo S, Park S, Hong W (2018) Enhanced production of carotenoids using a Thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil. Bioprocess Biosyst Eng 41:1355–1370. https://doi.org/10.1007/s00449-018-1963-7

    Article  CAS  PubMed  Google Scholar 

  33. Yeiser M, Harris CL, Kirchoff AL, Patterson AC, Wampler JL, Zissman EN, Berseth CL (2016) Growth and tolerance of infants fed formula with a new algal source of docosahexaenoic acid: double-blind, randomized, controlled trial. Prostaglandins Leukot Essent Fatty Acids 115:89–96. https://doi.org/10.1016/j.plefa.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  34. Hamilton HA, Newton R, Müller ANA, DB, (2020) Systems approach to quantify the global omega-3 fatty acid cycle. Nature Food 1:59–62. https://doi.org/10.1038/s43016-019-0006-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper was supported by the KU research professor program of Konkuk University, Seoul, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Kumar Saini.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, R.K., Ravishankar, G.A. & Keum, Y. Microalgae and Thraustochytrids are Sustainable Sources of Vegan EPA and DHA with Commercial Feasibility. Indian J Microbiol 63, 155–158 (2023). https://doi.org/10.1007/s12088-023-01059-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-023-01059-8

Keywords

Navigation