Skip to main content

Microbial Biofactories: A Promising Approach Towards Sustainable Omega-3 Fatty Acid Production

  • Chapter
  • First Online:
Food Microbial Sustainability

Abstract

Omega-3 fatty acids or polyunsaturated fatty acids known as are indispensable to human health and are more commonly referred to as “healthy fats.” These include improving neuronal functioning and promoting cardiac health by decreasing triglycerides, as well as controlling blood pressure, reducing hypertension, improving mental health, and checking microbial proliferation in the body. Only meals rich in n-3 FA can provide us with these essential FA as the human body is unable to generate them. Plants are a rich source of ALA, while seafood is known for containing significant levels of DHA and EPA. These food sources have their own drawbacks, such as the potential for heavy metal contamination with mercury, disagreeable taste and odor, and difficulties in being accepted by vegans and vegetarians. Plants are not thought to be a trustworthy supply of these fatty acids due to their slow growth, inconsistent synthesis, and complicated enzyme system. Consequently, research has been done on microbial sources as prospective sources of the crucial omega-3 fatty acids. Commercially produced n-3FAs from cultivated microorganisms under controlled conditions have shown improved FA synthesis and quick development. Moreover, modifications can be done in microorganisms by genetic engineering much more easily than higher organisms. In this context, the significance of microalgae has also been investigated and confirmed. This paper talks about the significance of n-3 FA and the possibility for bacteria to produce them in greater and more widespread amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedi, E., & Sahari, M. A. (2014). Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Science & Nutrition, 28(36), 49833–49851.

    Google Scholar 

  • Adarme-Vega, T. C., Lim, D. K., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11(1), 1.

    Article  Google Scholar 

  • Amjad Khan, W., Chun-Mei, H., Khan, N., Iqbal, A., Lyu, S. W., & Shah, F. (2017). Bioengineered plants can be a useful source of omega-3 fatty acids. BioMed Research International, 2017, 7348919.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrade, D. S., Amaral, H. F., Gavilanes, F. Z., Morioka, L.R., Nassar, J. M., de Melo, J. M., Silva, H.R., Telles, T.S. (2021) Microalgae: Cultivation, biotechnological, environmental, and agricultural applications. In Advances in the Domain of Environmental Biotechnology. Maddela, N. R., Garcia Cruzatty, L.C., Charaborty, S.Spinger. pp 635-701. https://doi.org/10.1007/978-981-15-8999-7_23

  • Bailey, R. B., DiMasi, D., Hansen, J. M., Mirrasoul, P. J., & Ruecker, C. M. (2003). Enhanced production of lipids containing polyenoic fatty acid by very high density cultures of eukaryotic microbes in fermentors. Patent NumberUS Patent: 6607900.

    Google Scholar 

  • Bajpai, P., & Bajpai, P. K. (1993). Eicosapentaenoic acid (EPA) production from microorganisms: A review. Journal of Biotechnology, 30(2), 161–183.

    Article  CAS  PubMed  Google Scholar 

  • Barclay, W. R., Meager, K. M., & Abril, J. R. (1994). Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. Journal of Applied Phycology, 6(2), 123–129.

    Article  CAS  Google Scholar 

  • Brindhadevi, K., Mathimani, T., Rene, E. R., Shanmugam, S., Chi, N. T., & Pugazhendhi, A. (2021). Impact of cultivation conditions on the biomass and lipid in microalgae with an emphasis on biodiesel. Fuel, 284, 119058.

    Article  CAS  Google Scholar 

  • Brown, M. R. (2002). Nutritional value and use of microalgae in aquaculture. In: Cruz-Suárez, L. E., Ricque-Marie, D., Tapia-Salazar, M., Gaxiola-Cortés, M. G., Simoes, N. (Eds.). Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. 3 al 6 de Septiembre del 2002. Cancún, Quintana Roo, México.

    Google Scholar 

  • Brunner, E. (2006). Oily fish and omega 3 fat supplements. BMJ, 332(7544), 739–740. https://doi.org/10.1136/bmj.38798.680185.47. Epub 2006 Mar 24. PMID: 16565094; PMCID: PMC1420720.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burja, A. M., Radianingtyas, H., Windust, A., & Barrow, C. J. (2006). Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: Screening of strains and optimization of omega-3 production. Applied Microbiology and Biotechnology, 72(6), 1161–1169.

    Article  CAS  PubMed  Google Scholar 

  • Charles, C. N., Msagati, T., Swai, H., & Chacha, M. (2019). Microalgae: An alternative natural source of bioavailable omega-3 DHA for promotion of mental health in East Africa. Scientific African, 6, e00187.

    Article  Google Scholar 

  • Constantopoulos, G. (1970). Lipid metabolism of manganese-deficient algae: Effect of manganese deficiency on the greening and the lipid composition of Euglena gracilis Z. Plant Physiology, 45(1), 76–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damude, H. G., & Kinney, A. J. (2008). Enhancing plant seed oils for human nutrition. Plant Physiology, 147(3), 962–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das, U. N. (2010). Essential fatty acids and their metabolites in the context of hypertension. Hypertension Research, 33, 782–785.

    Article  PubMed  Google Scholar 

  • Deeba, F., Pruthi, V., & Negi, Y. S. (2016). Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production. Bioresource Technology, 213, 96–102.

    Article  CAS  PubMed  Google Scholar 

  • Domenichiello, A. F., Kitson, A. P., & Bazinet, R. P. (2014). Is docosahexaenoic acid synthesis from a-linolenic acid sufficient to supply the adult brain. Progress in Lipid Research, 59, 54–66.

    Article  Google Scholar 

  • Du, H., Liao, X., Gao, Z., Li, Y., Lei, Y., Chen, W., Chen, L., Fan, X., Zhang, K., & Chen, S. (2019). Effects of methanol on carotenoids as well as biomass and fatty acid biosynthesis in Schizochytrium limacinum B4D1. Applied and Environmental Microbiology, 85, e01243–e01219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyerberg, J., Leaf, A., & Galli, C. (1995). ISSFAL board statement: Recommendations for the essential fatty acid requirement for infant formulas. Journal of the American College of Nutrition, 14, 21314.

    Google Scholar 

  • Fernandez, F., Reis, A., Wijffels, R. H., Barbosa, M., Verdelho, V., & Llams, B. (2021). The role of microalgae in the bioeconomy. New Biotechnology, 61, 99–107.

    Article  CAS  PubMed  Google Scholar 

  • Furlan, V., Maus, V., Batista, I., & Bandarra, N. M. (2017). Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276. Brazilian Journal of Microbiology, 48, 359–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng, L., Chen, S., Sun, X., Hu, X., Ji, X., Huang, H., & Ren, L. (2019). Fermentation performance and metabolomic analysis of an engineered high-yield PUFA-producing strain of Schizochytrium sp. Bioprocess and biosystems engineering, 42, 71–81.

    Google Scholar 

  • Gong, Y., Wan, X., Jiang, M., Hu, C., Hu, H., & Huang, F. (2014). Metabolic engineering of microorganisms to produce omega-3 very long-chain polyunsaturated fatty acids. Progress in Lipid Research, 56, 19–35.

    Article  CAS  PubMed  Google Scholar 

  • Guiheneuf, F., Mimouni, V., Ulmann, L., & Tremblin, G. (2009). Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. Journal of Experimental Marine Biology and Ecology, 369(2), 136–143.

    Article  CAS  Google Scholar 

  • Hamilton, M. L., Warwick, J., Terry, A., Allen, M. J., Napier, J. A., & Sayanova, O. (2015). Towards the industrial production of omega-3 long chain polyunsaturated fatty acids from a genetically modified diatom Phaeodactylum tricornutum. PLoS One, 10, e0144054.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton, M. L., Powers, S., Napier, J. A., & Sayanova, O. (2016). Heterotrophic production of omega-3 long-chain polyunsaturated fatty acids by trophically converted marine diatom Phaeodactylum tricornutum. Marine Drugs, 14(3), 53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hibbelna, J. R., & Gowb, R. V. (2015). Omega-3 fatty acid and nutrient deficits in adverse neurodevelopment and childhood behaviors. Child and Adolescent Psychiatric Clinics of North America, 23, 555–590.

    Google Scholar 

  • Higashiyama, K., Fujikawa, S., Park, E. Y., & Shimizu, S. (2002). Production of arachidonic acid by Mortierella fungi. Biotechnology and Bioprocess Engineering, 7(5), 252–262.

    Article  CAS  Google Scholar 

  • Horrocks, L. A., & Yeo, Y. K. (1999). Health benefits of docosahexaenoic acid (DHA). Pharmacological Research, 40(3), 211–225.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, N., & Mahlia, T. M. (2019). Progress in physicochemical parameters of microalgae cultivation for biofuel production. Critical Reviews in Biotechnology, 39, 835–859.

    Article  PubMed  Google Scholar 

  • Hu, H., & Gao, K. (2003). Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnology Letters, 25(5), 421–425.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y. S., Pereira, S. L., & Leonard, A. E. (2004). Enzymes for transgenic biosynthesis of long-chain polyunsaturated fatty acids. Biochimie, 86(11), 793–798.

    Article  CAS  PubMed  Google Scholar 

  • Jareonkitmongkol, S., Shimizu, S., & Yamada, H. (1993). Production of an eicosapentaenoic acid-containing oil by a Δ12 desaturase-defective mutant of Mortierella alpina 1S-4. Journal of the American Oil Chemists’ Society, 70(2), 119–123.

    Article  CAS  Google Scholar 

  • Jiang, Y., & Chen, F. (2000a). Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochemistry, 35(10), 1205–1209.

    Article  CAS  Google Scholar 

  • Jiang, Y., & Chen, F. (2000b). Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii. Journal of the American Oil Chemists’ Society, 77(6), 613–617.

    Article  CAS  Google Scholar 

  • Khoo, K. S., Chew, K. W., Yew, G. Y., Leong, W. H., Chai, Y. H., Show, P. L., & Chen, W. H. (2020). Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresource Technology, 304, 122996.

    Article  CAS  PubMed  Google Scholar 

  • Kiy, T. (2005). Production of docosahexaenoic acid by the marine microalga, Ulkenia sp. In Single cell oil. AOCS Press (pp. 36–52).

    Google Scholar 

  • Kobayashi, T., Sakaguchi, K., Matsuda, T., Abe, E., Hama, Y., Hayashi, M., & Ito, M. (2011). Increase of eicosapentaenoic acid in thraustochytrids through thraustochytrid ubiquitin promoter-driven expression of a fatty acid Δ5 desaturase gene. Applied and Environmental Microbiology, 77(11), 3870–3876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kralovec, J. A., Zhang, S., Zhang, W., & Barrow, J. C. (2011). A review of the process in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources. Food Chemistry, 131, 639–644.

    Article  Google Scholar 

  • Kyle, D. J., Reeb, S. E., & Sicotte, V. J. (1995). U.S. patent no. 5,407,957. U.S. Patent and Trademark Office.

    Google Scholar 

  • Larsson, G. (2011). Cultivation technology Compendium.

    Google Scholar 

  • Li, Y., Qin, J. G., Ball, A. S., & Moore, R. B. (2009). Perspectives on marine phytoplankton as sources of nutrition and bioenergy 187-203. Marine phytoplankton. Nova Science Pub Inc, New York.

    Google Scholar 

  • Lima, R. A., Andrade, R. F., Ribeaux, D. R., Santos, P. N., Albuquerque, C. D., & Campos-Takaki, G. M. (2015). Production of very long chain polyunsaturated omega 3 and omega 6 fatty acids by Candida glabrata strains. International Journal of Current Microbiology and Applied Sciences, 4(8), 244–252.

    CAS  Google Scholar 

  • Liu, Y., Koh, C. M., & Ji, L. (2018). US patent no. 10,081,821. US Patent and Trademark Office.

    Google Scholar 

  • Mendes, A., Lopes da Silva, T., & Reis, A. (2007). DHA concentration and purification from the marine heterotrophic microalga Crypthecodinium cohnii CCMP 316 by winterization and urea complexation. Food Technology and Biotechnology, 45(1), 38–44.

    CAS  Google Scholar 

  • Mendes, A., Reis, A., Vasconcelos, R., Guerra, P., & Lopes da Silva, T. (2009). Crypthecodinium cohnii with emphasis on DHA production: A review. Journal of Applied Phycology, 21(2), 199–214.

    Article  Google Scholar 

  • Mironov, A. A., Nemashkalov, V. A., Stepanova, N. N., Kamzolova, S. V., Rymowicz, W., & Morgunov, I. G. (2018). The effect of pH and temperature on arachidonic acid production by glycerol-grown Mortierella alpina NRRL-A-10995. Fermentation, 4(1), 17.

    Article  Google Scholar 

  • Nagy, K., & Tiuca, I. (2017). Importance of fatty acids in physiopathology of human body. Corpus ID: 54513514.

    Google Scholar 

  • Ochsenreither, K., Gluck, C., Stressler, T., Fischer, L., & Syldatk, C. (2016). Production strategies and applications of microbial single cell oils. Frontiers in Microbiology, 7, 1539.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, A., Arora, N., Sartaj, K., Pruthi, V., & Pruthi, P. A. (2016). Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renewable and Sustainable Energy Reviews, 62, 836–855.

    Article  CAS  Google Scholar 

  • Patil, V., Kallqvist, T., Olsen, E., Vogt, G., & Gislerod, H. R. (2007). Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International, 15(1), 1–9.

    Article  CAS  Google Scholar 

  • Pleissner, D., & Eriksen, N. T. (2012). Effects of phosphorous, nitrogen, and carbon limitation on biomass composition in batch and continuous flow cultures of the heterotrophic dinoflagellate Crypthecodinium cohnii. Biotechnology and Bioengineering, 109(8), 2005–2016.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, X., Hong, H., & MacKenzie, S. L. (2001). Identification of a Δ4 fatty acid desaturase from Thraustochytrium sp. involved in the biosynthesis of docosahexanoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. Journal of Biological Chemistry, 276(34), 31561–31566.

    Article  CAS  PubMed  Google Scholar 

  • Rathod, R., Kale, A., & Joshi, S. (2016). Novel insights into the effect of vitamin B12 and omega-3 fatty acids on brain function. Journal of Biomedical Science, 23(1), 1–7.

    Article  Google Scholar 

  • Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86(11), 807–815.

    Article  CAS  PubMed  Google Scholar 

  • Ratledge, C., Bowater, MDV., Taylor, PN. (1997). Correlation of ATP: Citrate lyase activity with lipid accumulation in developing seeds of Brassica napus L. Lipids, 32, 7–12.

    Google Scholar 

  • Ren, L. J., Ji, X. J., Huang, H., Qu, L., Feng, Y., Tong, Q. Q., & Ouyang, P. K. (2010). Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Applied Microbiology and Biotechnology, 87(5), 1649–1656.

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Rodriguez, N., Beltran, S., Jaime, I., Sara, M., Sanz, M. T., & Carballido, J. R. (2010). Production of omega-3 polyunsaturated fatty acid concentrates: A review. Innovative Food Science & Emerging Technologies, 11(1), 1–12.

    Article  CAS  Google Scholar 

  • Saenge, C., Cheirsilp, B., Suksaroge, T. T., & Bourtoom, T. (2011). Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochemistry, 46, 210–218.

    Article  CAS  Google Scholar 

  • Sajjadi, B., Chen, W. Y., Raman, A., & Ibrahim, S. (2018). Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renewable and Sustainable Energy Reviews, 97, 200–232.

    Article  CAS  Google Scholar 

  • Sengmee, D., Cheirsilp, B., Suksaroge, T. T., & Prasertsan, P. (2017). Biophotolysis-based hydrogen and lipid production by oleaginous microalgae using crude glycerol as exogenous carbon source. International Journal of Hydrogen Energy, 42, 1970–1976.

    Article  CAS  Google Scholar 

  • Seto, A., Wang, H. L., & Hesseltine, C. W. (1984). Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. Journal of the American Oil Chemists’ Society, 61(5), 892–894.

    Article  CAS  Google Scholar 

  • Shene, C., Leyton, A., Esparza, Y., Flores, L., Quilodran, B., Hinzpeter, I., & Rubilar, M. (2010). Microbial oils and fatty acids: Effect of carbon source on docosahexaenoic acid (c22: 6 n3, DHA) production by thraustochytrid strains. Journal of Soil Science and Plant Nutrition, 10, 207–216.

    Article  Google Scholar 

  • Shimiziu, S., Kawashima, H., Shinmen, Y., Akimoto, K., & Yamada, H. (1988). Production of eicosapentaenoic acid by Mortierella fungi. Journal of the American Oil Chemists’ Society, 65(9), 1455–1459.

    Article  Google Scholar 

  • Sijtsma, L., & De Swaaf, M. E. (2004). Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid. Applied Microbiology and Biotechnology, 64(2), 146–153.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., & Ward, O. P. (1996). Production of high yields of docosahex-aenoc acid by Thraustochytrium roseau ATCC 28210. J Ind Microbiol Biotechnol, 16, 370–373.

    CAS  Google Scholar 

  • Swaaf, D., De Rijk, T. C., Eggink, G., & Sijtsma, L. (1999). Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. Progress in Industrial Microbiology, 35, 185–192.

    Article  Google Scholar 

  • Swaaf, D., Sijtsma, L., & Pronk, J. T. (2003). High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnology and Bioengineering, 81(6), 666–672.

    Article  PubMed  Google Scholar 

  • Tuttle, R. C., & Loeblich, A. R. (1975). An optimal growth medium for the dinoflagellate Crypthecodinium cohnii. Phycologia, 14(1), 1–8.

    Article  Google Scholar 

  • Vadivelan, G., & Venkateswaran, G. (2014). Production and enhancement of omega-3 fatty acid from Mortierella alpina CFR-GV15: Its food and therapeutic application. BioMed Research International, 2014, 1–9.

    Article  Google Scholar 

  • Van Wagenen, J., Miller, T. W., Hobbs, S., Hook, P., Crowe, B., & Huesemann, M. (2012). Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies, 5(3), 731–740.

    Article  Google Scholar 

  • Wang, K., Sun, T., Cui, J., Liu, L., Bi, Y., Pei, G., Chen, L., & Zhang, W. (2018). Screening of chemical modulators for lipid accumulation in Schizochytrium sp. S31. Bioresource Technology, 260, 124–129.

    Article  PubMed  Google Scholar 

  • Ward, O. P., & Singh, A. (2005). Omega-3/6 fatty acids: Alternative sources of production. Process Biochemistry, 40(12), 3627–3652.

    Article  CAS  Google Scholar 

  • Wen, Z., & Chen, F. (2010). Production of eicosapentaenoic acid using heterotrophically grown microalgae. In Single cell oils (pp. 151–177).

    Chapter  Google Scholar 

  • Wynn, J. P., Behrens, P., Sundararajan, H., & Apt, K. (2005). Single Cell Oils. AOCS Publishing.

    Google Scholar 

  • Xue, Z., Sharpe, P. L., Hong, S. P., Yadav, N. S., Xie, D., Short, D. R., & Zhu, Q. (2013). Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nature Biotechnology, 31(8), 734–740.

    Article  CAS  PubMed  Google Scholar 

  • Yazawa, K. (1996). Production of eicosapentaenoic acid from marine bacteria. Lipids, 31, S297–S300.

    Article  CAS  PubMed  Google Scholar 

  • Yazawa, Z., Araki, K., Okazaki, N., Watanabe, K., Ishikawa, C., Inoue, A., & Kondo, K. (1988). Production of eicosapentaenoic acid by marine bacteria. The Journal of Biochemistry, 103(1), 5–7.

    Article  CAS  PubMed  Google Scholar 

  • Yongmanitchai, W., & Ward, O. P. (1991). Screening of algae for potential alternative sources of eicosapentaenoic acid. Phytochemistry, 30(9), 2963–2967.

    Article  CAS  Google Scholar 

  • Yuan, S. F., & Alper, H. S. (2019). Metabolic engineering of microbial cell factories for production of nutraceuticals. Microbial Cell Factories, 18(1), 1–11.

    Article  CAS  Google Scholar 

  • Zhang, K., Chen, L., Liu, J., Gao, F., He, R., Chen, W., Guo, W., Chen, S., & Li, D. (2017). Effects of butanol on high value product production in Schizochytrium limacinum B4D1. Enzyme and Microbial Technology, 102, 9–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu Pant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawat, M., Mundepi, S., Pant, M., Pant, G., Kumar, G. (2023). Microbial Biofactories: A Promising Approach Towards Sustainable Omega-3 Fatty Acid Production. In: Karnwal, A., Mohammad Said Al-Tawaha, A.R. (eds) Food Microbial Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-99-4784-3_7

Download citation

Publish with us

Policies and ethics