Skip to main content
Log in

The Impact of Microalgae in Food Science and Technology

  • Review
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Microalgae (including cyanobacteria) are promising organisms for sustainable products for use as feedstocks for food, feed, fine chemicals, and biofuels. They can synthesize a broad range of products with medium- to high-value market price such as β-1,3-glucan polysaccharide, single-cell-protein, carotenoids and phycobilin pigments, and long-chain polyunsaturated fatty acids that are commercialized in the food industry as dietary supplements and functional foods, in the pharmaceutical and chemical industries as cosmaceuticals and flavorants, and in the therapeutic field as nutraceutical compounds. These microorganisms are also exceptional producers of omega-3 and omega-6 fatty acids such as eicosapentaenoic, docosahexaenoic, and arachidonic acids that have been linked to several human health benefits. The aim of this paper is to review the main existing high-value products that can be derived from microalgae with a particular focus on food science and technology applications. It also describes the gross and fine chemical composition of various algal species and details the nutritive importance of selected constituents. Finally, nutritional quality standards and legislative provisions to ensure food safety in the use of algal biomass are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Modified [9]

Fig. 2
Fig. 3

Source: [9]

Similar content being viewed by others

References

  1. Smithers GW (2016) Food science—yesterday, today, and tomorrow. Ref Modul Food Sci:1–11

  2. Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, Bai FW, Chang JS (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10

    Article  CAS  Google Scholar 

  3. Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2015) Extremophilic microalgae and their potential contribution in biotechnology. Bioresour Technol 184:363–372

    Article  CAS  Google Scholar 

  4. Tibbetts SM, Whitney CG, MacPherson MJ, Bhatti S, Banskota AH, Stefanova R, McGinn PJ (2015) Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Res 11:435–447

    Article  Google Scholar 

  5. Draaisma RB, Wijffels RH, Slegers (Ellen) PM, Brentner LB, Roy A, Barbosa MJ (2013) Food commodities from microalgae. Curr Opin Biotech 24:169–177

    Article  CAS  Google Scholar 

  6. Borowitzka MA (2013) High-value products from microalgae – their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  7. Matos AP, Feller R, Moecke EHS, Sant’Anna ES (2015) Biomass, lipid productivity and fatty acids composition of marine Nannochloropsis gaditana cultured in desalination concentrate. Bioresour Technol 197:48–55

    Article  CAS  Google Scholar 

  8. Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotech 24:405–413

    Article  CAS  Google Scholar 

  9. Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63

    Article  Google Scholar 

  10. Henrikson R (2009) Earth food spirulina. Ronore Enterprises, Hawaii

    Google Scholar 

  11. Armenta RE, Valentine MC (2013) Single-cell oils as a source of omega-3 fatty acids: an overview of recent advances. J Am Oil Chem Soc 90:167–182

    Article  CAS  Google Scholar 

  12. Gunerken E, D’Hondt E, Eppink MHM, Garcia-Gonzalez L, Elst K, Wijffels RH (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33:243–260

    Article  CAS  Google Scholar 

  13. Becker EW (2013) In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, vol 25, 2nd edn. Wiley, UK, pp 461–503

    Chapter  Google Scholar 

  14. Pulz O, Gross W (2004) Valuable products from biotechnology of algae. Appl Microbial Biotechnol 65:635–648

    Article  CAS  Google Scholar 

  15. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  16. Oilgae (2016) Emerging algae product and business opportunities. Comprehensive report on attractive algae product opportunities. www.oilgae.com/ref/report/non-fuel-algae-products.html. Accessed 07 Mar 2017

  17. Algae Industry Magazine (2016) $1.1B global algae market projected by 2024. www.algaeindustrymagazine.com. Accessed 12 Mar 2017

  18. Voort MPJ, Vulstake E, Visser CLM (2015) Macro-economics of algae products. Public output report WP2A7.02 of the EnAlgae project, Swansea, June, p 47. http://www.enalgae.eu/public-deliverables.htm

  19. Lu YM, Xiang WZ, Wen YH (2011) Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol 23:256–269

    Google Scholar 

  20. Rito-Polamares M, Nunez L, Amador D (2001) Practical application of aqueous two-phase systems for the development of a prototype process for c-phycocyanin recovery from Spirulina maxima. J Chem Technol Biotechnol 76:1273–1280

    Article  Google Scholar 

  21. Shanahan C, Frost & Sullivan. Algae Industry Magazine (2014) The global algae oil omega-3 market in 2014. http://www.algaeindustrymagazine.com. Accessed 10 Feb 2017

  22. Franz AK, Danielewicz MA, Wong DM, Anderson LA, Boothe JR (2013) Phenotypic screening with oleaginous microalgae reveals modulators of lipid productivity. ACS Chem Biol 8:1053–1062

    Article  CAS  Google Scholar 

  23. Panis G, Carreon JR (2016) Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Res 18:175–190

    Article  Google Scholar 

  24. Matos AP, Feller R, Moecke EHS, Oliveira JV, Junior AF, Derner RB, Sant’Anna ES (2016) Chemical characterization of six microalgae with potential utility for food application. J Am Oil Chem Soc 93:963–972

    Article  CAS  Google Scholar 

  25. Tibbetts SM, Milley JE, Lall SP (2014) Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol 27:1109–1119

    Article  Google Scholar 

  26. Tibbetts SM, Melanson RJ, Park KC, Banskota AH (2015) Nutritional evaluation of whole and lipid-extracted biomass of the microalga Scenedesmus sp. AMDD isolated in Saskatchewan, Canada for animal feeds: proximate, amino acid, fatty acid, carotenoid and elemental composition. Curr Biotechnol 4:530–546

    Article  CAS  Google Scholar 

  27. Lourenço SO, Barbarino E, Lavín PL, Marquez UML, Aidar E (2004) Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol 39:17–32

    Article  Google Scholar 

  28. Anupama Ravindra P (2000) Value-added food: single cell protein. Biotechnol Adv 18:459–479

    Article  CAS  Google Scholar 

  29. Algae Industry Magazine (2017) TerraVia’s whole algal protein gets Canadian approval. http://www.algaeindsutrymagazine.com. Accessed 14 Mar 2017

  30. Enzing C, Ploeg M, Barbosa M, Sijtsma L (2014) Microalgae-based products for the food and feed sector: an outlook for Europe. Joint Research Centre Scientific and Policy Reports, European Commission. Publications Office of the European Union, Luxembourg, p 82. doi:10.2791/3339

    Google Scholar 

  31. Shibakani M, Tsubouchi G, Sohma M, Hayashi M (2016) Synthesis of nanofiber-formable carboxymethylated Euglena-derived β-1,3-glucan. Carbohyd Polym 152:468–478

    Article  Google Scholar 

  32. Sadovskaya I, Souissi A, Souissi S, Grard T, Lencel P, Greene CM, Duin S, Dmitrenok PS, Chizhov AO, Shashkov AS, Usov AI (2014) Chemical structure and biological activity of a highly branched (1 → 3,1 → 6)-β-d-glucan from Isochrysis galbana. Carbohyd Polym 111:139–148

    Article  CAS  Google Scholar 

  33. Turu IC, Kayhan CT, Kazan A, Ozturk EY, Akgol S, Celiktas OY (2016) Synthesis and characterization of cryogel structures for isolation of EPS from Botryococcus braunii. Carbohyd Polym 150:378–384

    Article  CAS  Google Scholar 

  34. Arad SM, Moppes DV (2013) In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, vol 21, 2nd edn. Wiley, UK, pp 406–416

    Chapter  Google Scholar 

  35. Atobe S, Saga K, Hasegawa F, Furuhashi K, Tashiro Y, Suzuki T, Okada S, Imou K (2015) Effect of amphiphilic polysaccharides released from Botryococcus braunii Showa on hydrocarbon recovery. Algal Res 10:172–176

    Article  Google Scholar 

  36. Tasic MB, Pinto LFR, Klein BC, Velikovic VB, Filho RM (2016) Botryococcus braunii for biodiesel production. Renew Sustain Energ Rev 64:260–270

    Article  CAS  Google Scholar 

  37. Keng PS, Basri M, Zakaria MRS, Rahman MBA, Ariff AB, Rahman RNZA, Salleh AB (2009) Newly synthesized palm esters for cosmetic industry. Ind Crop Prod 29:37–44

    Article  CAS  Google Scholar 

  38. Algae Industry Magazine (2015) Bunge, Solazyme expand JV for healthier foods. http://www.algaeindustrymagazine.com. Accessed 14 Mar 2017

  39. Martin CA, Almeida VV, Ruiz MR, Visentainer JEL, Matshushita M, Souza NE, Visentainer JV (2006) Ácidos graxos poliinsaturados ômega-3 e ômega-6: importância e ocorrência em alimentos. Rev Nutr 19:761–770

    Article  CAS  Google Scholar 

  40. Kleiner AC, Cladis DP, Santerre CR (2014) A comparison of actual versus stated label amounts of EPA and DHA in commercial omega-3 dietary supplements in the US. J Sci Food Agric 95:1260–1267

    Article  Google Scholar 

  41. FAO/WHO (2008). Fats and fatty acids in human nutrition—report of an expert consultation. Food and Agriculture Organization of the United Nations—FAO

  42. Lemahieu C, Bruneel C, Termote-Verhalle R, Muylaert K, Buyse J, Foubert I (2013) Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens. Food Chem 141:4051–4059

    Article  CAS  Google Scholar 

  43. Algae Industry Magazine (2014) Omega-3: A global market overview. http://www.algaeindustrymagazine.com. Accessed 16 Jan 2017

  44. Nelson JR, Wani O, May HT, Budoff (2017) Potential benefits of eicosapentaenoic acid on atherosclerotic plaques. Vasc Pharmacol 91:1–9

    Article  CAS  Google Scholar 

  45. Carlson SE, Colombo J (2016) Docosahexaenoic acid and arachidonic acid nutrition in early development. Adv Pediatr 63:453–471

    Article  Google Scholar 

  46. Pangestuti R, Kim SK (2011) Biological activities and health benefits affects of natural pigments derived from marine algae. J Funct Foods 3:255–266

    Article  CAS  Google Scholar 

  47. European Commision (2002) Opinion of the scientific on animal nutrition on the use of canthaxathin in feedingstuffs for salmon and trout, laying hens, and other poultry. C2—Management of Scientific Committees; Scientific Co-Operation and Networks, p 29

  48. Coates RC, Trentacoste E, Gerwick WH (2013) In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, vol 26, 2nd edn. Wiley, UK, pp 516–543

    Google Scholar 

  49. Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34:1396–1412

    Article  CAS  Google Scholar 

  50. Business Communications Company (2015) The global market for carotenoids—FOD025E. http://www.bccresearch.com/market-research/food-and-beverage/carotenoids-global-market-report-fod025e.html Accessed 03 Mar 2017

  51. Mao X, Liu Z, Sun J, Lee SY (2017) Metabolic engineering for the microbial production of marine bioactive compounds. Biotechnol Adv. doi:10.1016/j.biotechadv.2017.03.001

    Google Scholar 

  52. Vo TS, Ngo DH, Kim SK (2012) Marine algae as a potential pharmaceutical source for anti-allergic therapeutics. Process Biochem 47:386–394

    Article  CAS  Google Scholar 

  53. Nwachukwu ID, Udenigwe CC, Aluko RE (2016) Lutein and zeaxanthin: production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends Food Sci Tech 49:74–84

    Article  CAS  Google Scholar 

  54. Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, Chan KW, Ebrahimi M (2017) Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J Biotechnol 241:175–183

    Article  CAS  Google Scholar 

  55. Tang Z, Zhao J, Ju B, Li W, Wen S, Pu Y, Qin S (2016) One-step chromatographic procedure for purification of B-phycoerythrin from Porphyridium cruentum. Protein Expres Purif 123:70–74

    Article  CAS  Google Scholar 

  56. Watanabe F, Katsura H, Takenaka S, Fujita T, Abe K, Tamura Y, Nakatsuka T, Nakano Y (1999) Pseudovitamin B12 is the predominate cobamide of an algal health food, Spirulina tablets. J Agric Food Chem 47:4736–4741

    Article  CAS  Google Scholar 

  57. Guedes AC, Amaro HM, Barbosa CR, Pereira RD, Malcata FX (2011) Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Res Int 44:2721–2729

    Article  CAS  Google Scholar 

  58. Han D, Deng Z, Lu F, Hu Z (2013) In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, vol 23, 2nd edn. Wiley, UK, pp 445–456

    Google Scholar 

  59. Englund E, Pattanaik B, Ubhayasekera SJK, Stensjo K, Bergquist J, Lindberg P (2014) Production of squalene in Synechocystis sp. PCC 6803. PLoS One 9:e90270

    Article  Google Scholar 

  60. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79

    Article  CAS  Google Scholar 

  61. Machado IMP, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50–56

    Article  CAS  Google Scholar 

  62. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180

    Article  CAS  Google Scholar 

  63. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  CAS  Google Scholar 

  64. Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13:353–363

    Article  CAS  Google Scholar 

  65. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101:209–228

    Article  CAS  Google Scholar 

  66. Kelley RE, Andersson HC (2014) Chapter 55—disorders of purine and pyrimidines. Handb Clin Neurol 120:817–838

    Google Scholar 

  67. Liu S, Perez-Ruiz F, Miner JN (2017) Patients with gout from health subjects in renal response to changes in serum uric acid. Jt Bone Spine 84:183–188

    Article  CAS  Google Scholar 

  68. Proença LAO, Fonseca RS, Pinto TO (2011) Microalgas em área de cultivo do litoral de Santa Catarina. RiMa Editora, São Carlos, p 90p

    Google Scholar 

  69. BRASIL (ANVISA) Agência Nacional de Vigilância Sanitária. Regulamento técnico sobre padrões microbiológicos para alimentos. RDC No. 12 de 02/Janeiro/2001, Brasília-DF, p 37

  70. BRASIL (ANVISA) Agência Nacional de Vigilância Sanitária. Dispõe sobre matérias estranhas macroscópicas e microscópicas em alimentos e bebidas, seus limites de tolerância e dá outras providências. RDC No. 14 de 28/Março/2014, Brasília-DF, p 9

  71. BRASIL (ANVISA) Agência Nacional de Vigilância Sanitária. Dispõe sobre o regulamento MERCOSUL sobre limites máximos de contaminantes inorgânicos em alimentos. RDC No. 42 de 29/Agosto/2013, Brasília-DF, Diário Oficial da União-Seção 1, pp 33–35 (ISSN 1677-7042)

  72. Matos AP, Ferreira WB, Torres RCO, Morioka LRI, Canella MHM, Rotta J, Silva T, Moecke EHS, Sant’Anna ES (2014) Optimization of biomass production of Chlorella vulgaris grown in desalination concentrate. J Appl Phycol 27:1473–1483

    Article  Google Scholar 

  73. Rezanka T, Lukavsky J, Nedbalová L, Sigler K (2014) Production of structured triacylglycerols from microalgae. Phytochemistry 104:95–104

    Article  CAS  Google Scholar 

  74. Raposo MFJ, Morais RMSC, Morais ACMB (2013) Health applications of bioactive compounds from marine microalgae. Life Sci 93:479–486

    Article  CAS  Google Scholar 

  75. Sun GY, Simonyi A, Fritsche KL, Chuang DY, Hannink M, Gu Z, Greenlief CM, Yao JK, Lee JC, Beversdorf (2017) Docosahexaenoic acid (DHA): an essential nutrient and a nutraceutical for brain health and diseases. Prostag Leukotr Ess. doi:10.1016/j.plefa.2017.03.006

    Google Scholar 

  76. Lewis KD, Huang W, Zheng X, Jiang Y, Feldman RS, Falk MC (2016) Toxicological evaluation of arachidonic acid (ARA)-rich oil and docosahexaenoic acid (DHA)-rich oil. Food Chem Toxicol 96:133–144

    Article  CAS  Google Scholar 

  77. Turak EJ (2017) Carotenoids microencapsulation by spray drying method and supercritical micronization. Food Res Int. doi:10.1016/j.foodres.2017.02.001

    Google Scholar 

  78. Hosseini SRP, Tavakoli O, Sarrafzadeh MH (2017) Experimental optimization of SC-CO2 extraction of carotenoids from Dunaliella salina. J Supercrit Fluid 121:89–95

    Article  Google Scholar 

  79. Esatbeyoglu T, Rimbach G (2017) Canthaxanthin: from molecule to function. Mol Nutr Food Res 61:1–17

    Article  Google Scholar 

  80. Loredo AG, Benavides J, Polomares MR (2016) Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions. J Appl Phycol 28:849–860

    Article  Google Scholar 

  81. Gayathri S, Rajasree SRR, Kirubagaran R, Aranganathan L, Suman TY (2016) Spectral characterization of β-ɛ-carotene-3-3′-diol (lutein) from marine microalgae Chlorella salina. Renew Energy 98:78–83

    Article  CAS  Google Scholar 

  82. Eilers U, Dietzel L, Breitenbach J, Buchel C, Sandmann G (2016) Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum. J Plan Physiol 192:64–70

    Article  CAS  Google Scholar 

  83. Millao S, Uquiche E (2016) Antioxidant activity of supercritical extracts from Nannochloropsis gaditana: correlation with its content of carotenoids and tocopherols. J Supercrit Fluid 111:143–150

    Article  CAS  Google Scholar 

  84. Halim R, Danquah MK, Webbey PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732

    Article  CAS  Google Scholar 

  85. Cheng CH, Du TB, Pi HC, Jang SM, Lin YH, Lee HT (2011) Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Bioresour Technol 21:10151–10153

    Article  Google Scholar 

  86. Amaya DBR, Kimura M (2004) HarvestPlus handbook for carotenoid analysis. HarvestPlus technical monograph series 2, p 63

  87. Golmakani MT, Mendiola JA, Rezaei K, Ibánez E (2012) Expanded ethanol with CO2 and pressurized ethyl lactase to obtain fractions enriched in ɣ-Linolenic acid from Arthrospira platensis (Spirulina). J Supercrit Fluid 62:109–115

    Article  CAS  Google Scholar 

  88. Rapinel V, Rombuat N, Rakotomanomana N, Vallageas A, Cravotto G, Chemat F (2016) An original approach for lipophilic natural compounds extraction: use of liquefied n-butane as alternative solvent to n-hexane. Food Sci Technol. doi:10.1016/j.lwt.2016.10.003

    Google Scholar 

  89. Capeletto C, Conterato G, Scapinello J, Rodrigues FS, Copini MS, Kuhn F, Tres MV, Magro JD, Oliveira JV (2016) Chemical composition, antioxidant and antimicrobial activity of guavirova (Campomanesia xanthocarpa Berg) seeds extracts obtained by supercritical CO2 and compressed n-butane. J Supercrit Fluid 110:32–38

    Article  CAS  Google Scholar 

  90. Goto M, Kanda H, Wahyudiono Machmudah S (2015) Extraction of carotenoids and lipids from algae by supercritical CO2 and subcritical dimethyl ether. J Supercrit Fluid 96:245–251

    Article  CAS  Google Scholar 

  91. Feller R (2017) Microalgae biomass as a source of natural compounds: chemical characterization and new approaches for lipid extraction and culture harvesting. (Thesis in Chemical Engineering), Federal University of Santa Catarina, Florianópolis, Brazil, p 146

  92. Song Q, Lin H, Jiang P (2012) Advances in genetic engineering of marine algae. Biotechnol Adv 30:1602–1613

    Article  Google Scholar 

  93. Henley WJ, Litaker RW, Novoveská L, Duke CS, Quemada HD, Sayre RT (2013) Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation. Algal Res 2:66–77

    Article  Google Scholar 

Download references

Acknowledgements

AP Matos thanks CAPES/Brazil for doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ângelo Paggi Matos.

Additional information

This review article comes from an invitation by Dr. James A. Kenar, Editor-in-Chief JAOCS.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matos, Â.P. The Impact of Microalgae in Food Science and Technology. J Am Oil Chem Soc 94, 1333–1350 (2017). https://doi.org/10.1007/s11746-017-3050-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-017-3050-7

Keywords

Navigation