Skip to main content
Log in

Finite difference simulation of free convection of non-Newtonian nanofluids with radiation effects over a truncated wavy cone

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This study explores the consequences of free convective laminar two-dimensional flow with the effects of thermal radiation of power-law non-Newtonian water–Cu nanofluids over the frustum of a cone whose sides are wavy shaped. The flow is described by some well-known equations of fluid dynamics, such as the equation of continuity, momentum and energy equation having the Rosseland diffusion model for radiation effect. These governing equations are transformed into non-dimensional boundary-layer equations, which are solved by using the marching order implicit finite difference method. The numerical results are obtained by varying pertinent parameters, such as the radiation–conduction parameter \(R_d\), the surface heating parameter \(\theta _w\), power-law index n and nanoparticle volume fraction \(\epsilon \). The numerically calculated findings are reported with respect to the velocity and temperature distributions, streamlines, isotherms, local skin friction coefficient and average Nusselt number using graphs. According to the obtained results, \(R_d\), \(\epsilon \) and \(\theta _w\) accelerate the convection process. Hence, velocity, skin friction, as well as the rate of heat transfer enhance. On the other hand, an increasing power-law index decreases the convection process. As a result, velocity, skin friction as well as the rate of heat transfer reduce. The present study of non-Newtonian nanofluid with radiation effect over a truncated wavy cone is a novel study. The motto of the existing numerical effort is to observe the situations considering non-Newtonian nanofluid fluids and how the considered parameters reflected their behaviour with non-Newtonian viscosity and radiation–conduction effects. The obtained result of this present study is validated with the work of Pop and Na (Int. J. Nonlinear Mech. 34, 925, 1999). The findings of their investigation of free convective flow in a vertical cone are compared with the current work and the comparison showed an excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. I Pop and T-Y Na, Int. J. Non-Linear Mech. 34, 925 (1999)

    Article  ADS  Google Scholar 

  2. V Rajesh, O A Bég and M Mallesh, Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst. 230, 3 (2016)

  3. B Shankar Goud, Y Dharmendar Reddy and S Mishra, Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst. 23977914221100961 (2022).

  4. W A Khan, A Rashad, S El-Kabeir and A El-Hakiem, Processes 8, 379 (2020)

    Article  Google Scholar 

  5. M Sobamowo, A Yinusa and S Aladenusi, Int. J. Petrol. Chem. Sci. Eng. 5, 22 (2020)

    Google Scholar 

  6. S Siddiqa, N Begum, M A Hossain and N Massarotti, Int. Commun. Heat Mass Transf. 76, 63 (2016)

    Article  Google Scholar 

  7. S Siddiqa, N Begum, M A Hossain and R S R Gorla, Int. J. Heat Mass Transf. 113, 482 (2017)

    Article  Google Scholar 

  8. S Siddiqa, N Begum, M Hossain and R S R Gorla, J. Thermophys. Heat Transf. 31, 403 (2017)

    Article  Google Scholar 

  9. R S R Gorla and M Kumari, Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst. 225, 55 (2011)

  10. R S Gorla and M Kumari, Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst. 225, 133 (2011)

  11. M M Islam, M F Hasan and M M Molla, Iran. J. Sci. Technol. Trans. Mech. Eng. 2023, 1 (2023)

    Google Scholar 

  12. S E Ahmed, A A M Arafa and S A Hussein, Int. J. Model. Simul. 2023, 1 (2023)

    Google Scholar 

  13. M K A Mohamed, A M Ishak, I Pop, N F Mohammad and S K Soid, M. J. F. A. S. 18, 257 (2022)

    Google Scholar 

  14. R Ellahi, A Zeeshan, A Waheed, N Shehzad and S M Sait, Math. Methods Appl. Sci. 2021, 1 (2021)

    Google Scholar 

  15. C J Huang and K A Yih, J. Therm. Sci. Eng. Appl. 13, 031020 (2021)

    Article  Google Scholar 

  16. H Saleem, A H Nizamani, W A Bhutto, A M Soomro, M Y Soomro and A Toufik, Int. J. Comput. Sci. Net. Sec. (ISSN: 1738-7906), Web of Sci. Ind. HEC Rec. “Y” Categ. J. 19, 293 (2019)

  17. C S Balla and K Naikoti, Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst. 230, 161 (2016)

  18. Q R Al-Amir, S Y Ahmed, H K Hamzah and F H Ali, Arab. J. Sci. Eng. 44, 10339 (2019)

    Article  Google Scholar 

  19. S Afsana, M M Molla, P Nag, L K Saha and S Siddiqa, Int. J. Mech. Sci. 198, 106350 (2021)

    Article  Google Scholar 

  20. A Mahdy, Appl. Math. Comput. 352, 59 (2019)

    MathSciNet  Google Scholar 

  21. W A Khan, A Rashad, M Abdou and I Tlili, Eur. J. Mech.-B\({/}\)Fluids 75, 133 (2019)

  22. M S Iqbal, W Khan, I Mustafa and A Ghaffari, Symmetry 11, 1363 (2019)

    Article  ADS  Google Scholar 

  23. H Hanif, I Khan and S Shafie, Phys. Scr. 94, 125208 (2019)

    Article  ADS  Google Scholar 

  24. A Rahman, M Molla and S Thohura, Heat Mass Transf. Re. J. 2, 60 (2018)

    Google Scholar 

  25. S Ahmed, Appl. Math. Mech. 38, 1171 (2017)

    Article  Google Scholar 

  26. C RamReddy and C V Rao, Non-Lin. Eng. 6, 277 (2017)

    Google Scholar 

  27. N Zainuddin, I Hashim, H Saleh and R Roslan, Sains Malaysiana 45, 315 (2016)

    Google Scholar 

  28. I Pop and T-Y Na, Appl. Sci. Re. 54, 125 (1995)

    Article  ADS  Google Scholar 

  29. M M Molla and M A Hossain, Int. J. Therm. Sci. 46, 926 (2007)

    Article  Google Scholar 

  30. M Molla, M A Hossain and R Gorla, Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci. 223, 1605 (2009)

    Article  Google Scholar 

  31. T Javed, H Ahmad and A Ghaffari, Alex. Eng. J. 55, 2221 (2016)

    Article  Google Scholar 

  32. S Abdul Gaffar, V R Prasad and E K Reddy, Int. J. Appl. Comput. Math. 3, 2849 (2017)

  33. R Kumar, S Sood, S A Shehzad and M Sheikholeslami, J. Mol. Liq. 248, 143 (2017)

    Article  Google Scholar 

  34. M Irfan, K Rafiq, M S Anwar, M Khan, W A Khan and K Iqbal, Pramana – J. Phys. 95, 1 (2021)

  35. P Kaur and S Singh, Pramana – J. Phys. 96, 1 (2022)

  36. K Sharma, Pramana – J. Phys. 95, 1 (2021)

  37. L-S Yao, Int. J. Heat Mass Transf. 49, 281 (2006)

    Article  Google Scholar 

  38. R Cess, Int. J. Heat Mass Transf. 9, 1269 (1966)

    Article  Google Scholar 

  39. Y Xuan and Q Li, Int. J. Heat Fluid Flow 21, 58 (2000)

    Article  Google Scholar 

  40. M Ghanbarpour, E B Haghigi and R Khodabandeh, Exp. Therm. Fluid Sci. 53, 227 (2014)

    Article  Google Scholar 

  41. Y Xuan and Q Li, Int. J. Heat Fluid Flow 103, 955 (2016)

    Google Scholar 

  42. M Ghanbarpour, E B Haghigi and R Khodabandeh, Exp. Therm. Fluid Sci. 53, 227 (2014)

    Article  Google Scholar 

  43. K Kalidasan, R Velkennedy and P R Kanna, Appl. Therm. Eng. 92, 219 (2016)

    Article  Google Scholar 

  44. T Mahalakshmi, N Nithyadevi, H F Oztop and N Abu-Hamdeh, Int. J. Mech. Sci. 142, 407 (2018)

    Article  Google Scholar 

  45. T Javed and M A Siddiqui, Int. J. Therm. Sci. 125, 419 (2018)

    Article  Google Scholar 

  46. A Hossain, P Nag and M M Molla, Phys. Scr. 98 015008 (2022)

    Article  ADS  Google Scholar 

  47. M A Sheremet, H Oztop, I Pop and K Al-Salem, Int. J. Heat Mass Transf. 103, 955 (2016)

    Article  Google Scholar 

  48. H C Brinkman, J. Chem. Phys. 20, 571 (1952)

    Article  ADS  Google Scholar 

  49. T Mahalakshmi, N Nithyadevi, H F Oztop and N Abu-Hamdeh, Chin. J. Phys. 56, 1497 (2018)

    Article  Google Scholar 

  50. L-S Yao and M M Molla, Int. J. Heat Mass Transf. 51, 5154 (2008)

    Article  Google Scholar 

  51. M Molla and L Yao, J. Heat Transf. 131(1), 012501 (2009)

  52. M Molla and L Yao, Int. J. Heat Mass Transf. 52, 3266 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Md Mamun Molla gratefully acknowledges the North South University for the financial support as a faculty research grant  (Grant No. CTRG-22-SEPS-09). He also acknowledges the Ministry of Science and Technology (MOST), the government of Bangladesh for providing the financial support for this research  (Grant No. EAS/SRG-222427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Mamun Molla.

Ethics declarations

Data availibility statement

The data are available on request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, A., Anee, M.J., Thohura, S. et al. Finite difference simulation of free convection of non-Newtonian nanofluids with radiation effects over a truncated wavy cone. Pramana - J Phys 97, 168 (2023). https://doi.org/10.1007/s12043-023-02642-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02642-w

Keywords

PACS

Navigation