Skip to main content

Advertisement

Log in

Effects of Prandtl Number on Natural Convection in a Cavity Filled with Silver/Water Nanofluid-Saturated Porous Medium and Non-Newtonian Fluid Layers Separated by Sinusoidal Vertical Interface

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study investigates the effect of Prandtl number on the natural heat convection inside a square cavity filled with two layers of Ag/water nanofluid-saturated porous medium and non-Newtonian fluid separated by a sinusoidal vertical interface. The left wall, which is adjacent to the nanofluid porous layer, has a relatively hot temperature, while the right wall is cold. Other walls of the cavity are thermally insulated. All cavity walls are impermeable except for the sinusoidal vertical interface located between the two layers. Galerkin finite element method was used to numerically solve the governing differential equations. The study examined the effects of power-law index (0.6 < n < 1.4), Darcy number (10−5 < Da < 10−1), volume fraction (0 <  < 0.2), and undulation number (1 < N < 4) on the thermal performance of the cavity for Prandtl numbers (Pr) ranging from 0.015 to 13.4 and Rayleigh number (Ra) equal to 105. Results showed that increasing Prandtl and Darcy numbers raised the average Nusselt number. However, increasing the power-law index reduced the average Nusselt number. When the non-Newtonian fluid behaves as a shear-thinning fluid (n = 0.7) and Pr = 13.4, the effect of the undulations number of the sinusoidal vertical interface on average Nu is not evident for a given range of volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C p :

Specific heat at constant pressure (KJ/kg K)

D :

Rate of strain-tensor

g :

Gravitational acceleration (m/s2)

k :

Thermal conductivity (W/m K)

L :

Dimensionless Length and Height of the cavity

P :

Dimensionless pressure

p :

Pressure (Pa)

Pr :

Prandtl number (νf/αf)

Ra :

Rayleigh number (fL3T/νfαf)

T :

Temperature (K)

Da :

Darcy numbers

N :

Number of undulation

Nu :

Nusselt number

n :

Power-law index

U :

Dimensionless velocity component in x-direction

u :

Velocity component in x-direction (m/s)

V :

Dimensionless velocity component in y-direction

v :

Velocity component in y-direction (m/s)

X :

Dimensionless coordinate in horizontal direction

x :

Cartesian coordinates in horizontal direction (m)

Y :

Dimensionless coordinate in vertical direction

y :

Cartesian coordinate in vertical direction (m)

θ :

Dimensionless temperature (T − Tc/ΔT)

Ψ :

Dimensional stream function (m2/s)

ψ :

Dimensionless stream function

μ :

Dynamic viscosity (kg s/m)

ν :

Kinematic viscosity (μ/ρ)(Pa s)

α :

Thermal diffusivity coefficient (m2/s)

:

Nanoparticle volume fraction (%)

ε :

Permeability of porous medium

β :

Volumetric coefficient of thermal expansion (K−1)

ρ :

Density (kg/m3)

β :

Thermal expansion (1/K)

σ :

The consistency coefficient

c:

Cold

fl:

Base fluid

h:

Hot

pn:

Porous-nanofluid

nN:

non-Newtonian fluid

sn:

Solid-nanoparticle

References

  1. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME FED 231, 99–103 (1995)

    Google Scholar 

  2. Albaalbaki, B.; Khayat, R.E.: Pattern selection in the thermal convection of non-Newtonian fluids. J. Fluid Mech. 668, 500–550 (2011)

    MATH  Google Scholar 

  3. Dayyan, M.; Seyyedi, S.M.; Domairry, G.G.; Gorji Bandpy, M.: Analytical solution of flow and heat transfer over a permeable stretching wall in a porous medium. Math. Probl. Eng. 10, 1–10 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Nakhjiri, A.T.; Roudsari, M.H.: Modeling and simulation of natural heat transfer process in porous and non-porous media. Appl. Res. J. 2(4), 199–204 (2016)

    Google Scholar 

  5. Hajipour, M.; Dehkordi, A.M.: Analysis of nanofluid heat transfer in parallel-plate vertical channels partially filled with porous medium. Int. J. Therm. Sci. 55, 103–113 (2012)

    Google Scholar 

  6. Mahian, O.; Kianifar, A.; Kleinstreuer, C.; Al-Nimr, A.; Pop, I.; Pop, I.; Sahin, A.Z.: A review of entropy generation in nanofluid flow. Int. J. Heat Mass Transf. 65, 514–532 (2013)

    Google Scholar 

  7. Bourantas, G.C.; Skouras, E.D.; Loukopoulos, V.C.; Burganos, V.N.: Heat transfer and natural convection of nanofluids in porous media. Eur. J. Mech. B/Fluids 43, 45–56 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Ghalambaz, M.; Behseresht, A.; Behseresht, J.; Chamkha, A.: Effects of nanoparticles diameter and concentration on natural convection of the Al2O3–water nanofluids considering variable thermal conductivity around a vertical cone in porous media. Adv. Powder Technol. 26, 224–235 (2015)

    Google Scholar 

  9. Sheremet, M.A.; Grosgan, T.; Pop, I.: Steady-state free convection in right-angle porous trapezoidal cavity filled by a nanofluid: Buongiorno’s mathematical model. Eur. J. Mech. B/Fluids 53, 241–250 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Jmai, R.; Brahim, B.-B.; Taieb, L.: Heat transfer and fluid flow of nanofluid-filled enclosure with two partially heated side walls and different nanoparticles. Super Lattices Microstruct. 53, 130–154 (2013)

    Google Scholar 

  11. Chamkha, A.J.; Ismael, M.A.: Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer. Heat Transf. A 65, 1089–1113 (2014)

    Google Scholar 

  12. Mansour, M.A.; Ahmed, S.E.: A numerical study on natural convection in porous media-filled an inclined triangular enclosure with heat sources using nanofluid in the presence of heat generation effect. Eng. Sci. Technol. 18, 485–495 (2015)

    Google Scholar 

  13. Nguyen, M.T.; Aly, A.M.; Lee, S.-W.; Abdel Raheem, M.: Natural convection in a Non-Darcy porous cavity filled with Ag-water nanofluid using the characteristic-based split procedure in finite-element method. Numer. Heat Transf. A 67, 224–247 (2015)

    Google Scholar 

  14. Sheikholeslami, M.; Ellahi, R.; Vafai, K.: Study of Fe3O4-Water nanofluid with convective heat transfer in the presence of magnetic source. Alexandria Eng. J. 57(2), 565–575 (2018)

    Google Scholar 

  15. Al-Zamily, A.; Amin, M.R.: Natural convection and entropy generation in a cavity filled with two horizontal layers of nanofluid and porous medium in presence of a magnetic field. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition (2015)

  16. Al-Zamily, A.M.J.: Analysis of natural convection and entropy generation in a cavity filled with multi-layers of porous medium and nanofluid with a heat generation. Int. J. Heat Mass Transf. 106, 1218–1231 (2016)

    Google Scholar 

  17. Sheikholeslami, M.; Ganji, D.D.: Numerical approach for magnetic nanofluid flow in a porous cavity using CuO nanoparticles. Mater. Des. (2017). https://doi.org/10.1016/j.matdes.2017.02.039

    Article  Google Scholar 

  18. Kasaeian, A.; Daneshazarian, R.; Mahian, O.; Kolsi, L.; Chamkha, A.J.; Wongwises, S.; Pop, I.: Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int. J. Heat Mass Transf. 107, 778–791 (2017)

    Google Scholar 

  19. Ahmed, S.Y.; Ali, F.H.; Hamzah, H.K.: Heatlines visualization of natural convection in trapezoidal cavity filled with nanofluid and divided by porous medium partition. Comput. Fluids (2018). https://doi.org/10.1016/j.compfluid.2018.12.004. (in print)

    Article  Google Scholar 

  20. Alloui, Z.; Khelifa, N.B.; Beji, H.; Vasseur, P.; Guizani, A.: The onset of convection of power-law fluids in a shallow cavity heated from below by a constant heat flux. J. Non-Newton. Fluid Mech. 196, 70–82 (2013)

    Google Scholar 

  21. Huang, W.; Huiping, L.I.; Zizhao, H.U.: Contemp. Chem. Ind. 41, 41 (2012)

    Google Scholar 

  22. Bin, L.: Study on Modified Viscous Fluid and its Damper. Southeast University, Nanjing (2007)

    Google Scholar 

  23. Spencer jr, B.F.; Dyke, S.J.; Sain, M.K.; Carlson, J.D.: Phenomenological model for magnetorheological dampers. J. Eng. Mech. ASCE 123, 230 (1997). https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)

    Article  Google Scholar 

  24. Yong, T.; Deming, Z.; Wei, X.: Application and proposed of the Non-Newtonian fluid in industrial Field. J. South China Univ. Technol. Nat. Sci. Ed. 29(1), 34 (2001)

    Google Scholar 

  25. Mowla, D.; Naderi, A.: Experimental study of drag reduction by a polymeric additive in slug two-phase flow of crude oil and air in horizontal pipes. Chem. Eng. Sci. 61, 1549 (2006). https://doi.org/10.1016/j.ces.2005.09.006

    Article  Google Scholar 

  26. Kerget, L.; Samec, N.: Bem for non-Newtonian fluid flow. Eng. Anal. Bound. Elem. 23, 435–442 (1999)

    MATH  Google Scholar 

  27. Hojjat, M.; Etemad, S.G.; Bagheri, R.; Thibault, J.: Rheological characteristics of non-Newtonian nanofluids: experimental investigation. Int. Commun. Heat Mass Transf. 38, 144–148 (2011)

    MATH  Google Scholar 

  28. Vinogradov, I.; Khezzar, L.; Siginer, D.: Heat transfer of non-Newtonian dilatants power law fluids in square and rectangular cavities. J. Appl. Fluid Mech. 4, 37–42 (2011)

    Google Scholar 

  29. Turan, O.; Sachdeva, A.; Chakraborty, N.; Poole, R.J.: Laminar natural convection of power-law fluids in a square enclosure with differentially heated walls subjected to constant temperatures. J. Non-Newton. Fluid Mech. 166, 1049–1063 (2011)

    MATH  Google Scholar 

  30. Habibi, M.M.; Pop, I.; Khanchezar, S.: Natural convection of power-law fluid between two-square eccentric duct annuli. J. Non-Newton. Fluid Mech. 197, 11–23 (2013)

    Google Scholar 

  31. Getachew, D.; Minkowycz, W.J.; Poulikakost, D.: Natural convection in a porous cavity saturated with a Non-Newtonian fluid. J. Thermophys. Heat Transf. 10(4), 640–651 (1996)

    Google Scholar 

  32. Jecl, R.; kerget, L.S.: Boundary element method for natural convection in non-Newtonian fluid saturated square porous cavity. Eng. Anal. Bound. Elem. 27, 963–975 (2003)

    MATH  Google Scholar 

  33. Hadim, H.: Non-Darcy natural convection of a non-Newtonian fluid in a porous cavity. Int. Commun. Heat Mass Transf. 33, 1179–1189 (2006)

    Google Scholar 

  34. Sarkar, K.; Santra, A.K.: Effect of aspect ratio on heat transfer in a differentially heated square cavity using non-newtonian nanofluid. Int. J. Emerg. Technol. Adv. Eng. 3(3), 443–450 (2013)

    Google Scholar 

  35. Chamkha, A.J.; Abbasbandy, S.; Rashad, A.M.: Non-Darcy natural convection flow for non-Newtonian nanofluid over cone saturated in porous medium with uniform heat and volume fraction fluxes. Int. J. Numer. Meth. Heat Fluid Flow 25, 422–437 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Alsabery, A.I.; Chamkha, A.J.; Hussain, S.H.; Saleh, H.; Hashim, I.: Heatline visualization of natural convection in a trapezoidal cavity partly filled with nanofluid porous layer and partly with non-Newtonian fluid layer. Adv. Powder Technol. 26(4), 1230–1244 (2015)

    Google Scholar 

  37. Alsabery, A.I.; Chamkha, A.J.; Saleh, H.; Hashim, I.: Transient natural convective heat transfer in a trapezoidal cavity filled with non-Newtonian nanofluid with sinusoidal boundary conditions on both Sidewalls. Adv. Powder Technol. 308, 214–234 (2017)

    Google Scholar 

  38. Kefayati, G.H.R.: Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. Int. J. Heat Mass Transf. 92, 1066–1089 (2016)

    Google Scholar 

  39. Kefayati, G.H.R.; Sidik, N.A.C.: Simulation of natural convection and entropy generation of non-Newtonian nanofluid in an inclined cavity using Buongiorno’s mathematical model (Part II, entropy generation). Powder Technol. 305, 679–703 (2017)

    Google Scholar 

  40. Sheremet, M.A.; Trimbitas, R.; Grosan, T.; Pop, I.: Natural convection of an alumina-water nanofluid inside an inclined wavy-walled cavity with a non-uniform heating using Tiwari and Das’ nanofluid mode. Appl. Math. Mech. Engl. Ed. 39(10), 1425–1436 (2018). https://doi.org/10.1007/s10483-018-2377-7

    Article  Google Scholar 

  41. Begum, N.; Siddiqa, S.; Muqaddass, N.; Hossain, M.A.; Gorla, R.S.R.: Influence of surface radiation on dusty fluid along vertical isothermal wavy wall. J. Thermophys. Heat Transf. 33(1), 87–95 (2019). https://doi.org/10.2514/1.T5458

    Article  Google Scholar 

  42. Siddiqa, S.; Begum, N.; Hossain, M.A.; Gorla, R.S.R.: Numerical solution of contaminated oil along a vertical wavy frustum of a cone. Thermal Sci. 22(6B), 2933–2942 (2018)

    Google Scholar 

  43. Jabbar, M.Y.; Ahmed, S.Y.; Hamazh, H.K.; Ali, F.H.; Khafaji, S.O.W.: Effect of layer thickness on natural convection in a square enclosure superposed by nano-porous and non-newtonian fluid layers divided by a wavy permeable wall. Int. J. Mech. Mechatron. Eng. 19, 03 (2019)

  44. Andersson, H.I.; Irgens, F.: Film flow of power-law fluids. In: Cheremissinoff, N.P. (ed.) Encyclopedia of Fluid Mechanics, Polymer Flow Engineering, vol. 9. Gulf Publishing, Houston (1990)

    Google Scholar 

  45. Neal, G.; Nader, W.: Practical significant of Brinkman extension of Darcys law: coupled parallel flow within a channel and bounding porous medium. Fluid Mech. 4, 644–717 (1990)

    Google Scholar 

  46. Nasrin, R.; Parvin, S.: Investigation of buoyancy-driven flow and heat transfer in a trapezoidal cavity with water-Cu nanofluid. Int. Commun. Heat Mass Transfer 39(2), 270–274 (2012)

    Google Scholar 

  47. Brinkman, H.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20(4), 571–572 (1952)

    Google Scholar 

  48. Ögüt, E.B.: Natural convection of water-based nanofluids in an inclined enclosure with a heat source. Int. J. Therm. Sci. 48(11), 2063–2073 (2009)

    Google Scholar 

  49. Rao, S.S.: The Finite Element Method in Engineering. Elsevier, Amsterdam (2010)

    Google Scholar 

  50. Donea, J.; Huerta, A.: Finite Element Methods for Flow Problems. John Wiley & Sons, Hoboken (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba Y. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Amir, Q.R., Ahmed, S.Y., Hamzah, H.K. et al. Effects of Prandtl Number on Natural Convection in a Cavity Filled with Silver/Water Nanofluid-Saturated Porous Medium and Non-Newtonian Fluid Layers Separated by Sinusoidal Vertical Interface. Arab J Sci Eng 44, 10339–10354 (2019). https://doi.org/10.1007/s13369-019-04115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04115-y

Keywords

Navigation