Skip to main content
Log in

Strang time-splitting technique for the generalised Rosenau–RLW equation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, a numerical scheme based on quintic B-spline collocation method using the Strang splitting technique is presented for solving the generalised Rosenau–regularised long wave (RLW) equation given by appropriate initial-boundary values. For this purpose, firstly the problem is split into two subproblems such that each one includes the derivative in the direction of time. Secondly, each subproblem is reduced to a system of ordinary differential equations (ODEs) using collocation finite-element method with quintic B-splines for spatial integration. Then, the resulting ODEs for time integration are solved using the Strang time-splitting technique with the second order via the usual Runge–Kutta (RK-4) algorithm with the fourth order. To measure the accuracy and efficiency of the present scheme, a model problem with an exact solution is taken into consideration and investigated for various values of the parameter p. The error norms \(L_{2}\) and \(L_{\infty }\) together with the invariants of discrete mass Q and discrete energy E have been computed and a comparison is given with other ones found in the literature. The convergence order of the present numerical scheme has also been computed. Furthermore, the stability analysis of the scheme is numerically examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P Rosenau, Phys. Scr. 34, 827 (1986)

    Article  ADS  Google Scholar 

  2. P Rosenau, Progr. Theoret. Phys. 79, 1028 (1988)

    Article  ADS  Google Scholar 

  3. M A Park, Mat. Aplic. Comp. 9, 145 (1990)

    Google Scholar 

  4. J M Zuo, Y M Zhang, T D Zhang and F Chang, Bound. Value Probl. 2010, 13 (2010)

    Article  Google Scholar 

  5. J M Zuo, Y M Zhang, T D Zhang and F Chang, Bound. Value Probl. 2010, 13 (2010)

    Article  Google Scholar 

  6. X Pan and L Zhang, Appl. Math. Model. 36, 3371 (2012)

    Article  MathSciNet  Google Scholar 

  7. X Pan and L Zhang, Math. Prob. in Eng. 2012, 15 (2012)

    Google Scholar 

  8. R C Mittal and R K Jain, Commun. Numer. Anal. 2012, 16 (2012)

    Google Scholar 

  9. X Pan, K Zheng and L Zhang, Appl. Anal. 92, 2578 (2013)

    Article  MathSciNet  Google Scholar 

  10. J Hu and Y Wang, Math. Prob. Eng. 2013, 8 (2013)

    Google Scholar 

  11. N Atouani and K Omrani, Comput. Math. Appl. 66, 289 (2013)

    Article  MathSciNet  Google Scholar 

  12. B Wongsaijai, K Poochinapan and T Disyadej, Int. J. Appl. Math. 44(4), 5 (2014)

    Google Scholar 

  13. N M Yagmurlu, B Karaagac and S Kutluay, Am. J. Comput. Appl. Math. 7(1), 1 (2017)

    Google Scholar 

  14. H Wang, S Li and J Wang, Comput. Appl. Math. 36, 63 (2017)

    Article  MathSciNet  Google Scholar 

  15. W Hundsdorfer, Lecture notes for Ph.D. course (Thomas Stieltjes Institute, Amsterdam, 2000)

  16. B Gustafsson, High order difference methods for time dependent PDE, in: Springer series in computational mathematics (Springer-Verlag, Berlin, New York, Heidelberg, 2007) p. 38

    Google Scholar 

  17. M D Buhlmann, Radial basis functions, in: Cambridge monographs on applied and computational mathematics (Cambridge, 2004)

  18. J Geiser and K Bartecki, AIP Conf. Proc. 470002, 1978 (2018)

    Google Scholar 

  19. J Geiser, Decomposition methods for differential equations: Theory and applications, in: Chapman & Hall/CRC numerical analysis and scientific computing series (Chapman & Hall, New York, 2009)

  20. J Geiser and A Nasari, Math. Comput. Appl. 24, 76 (2019)

    Google Scholar 

  21. J Geiser, Multicomponent and multiscale systems – Theory, methods, and applications in engineering (Springer International Publishing, AG, 2016)

    Book  Google Scholar 

  22. G Strang, SIAM J. Numer. Anal. 5, 506 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  23. R I McLachlan and G R W Quispel, Acta Numer. 2001, 341 (2001)

  24. S Blanes and F Casas, A concise introduction to geometric numerical integration (CRC Press, 2016)

    MATH  Google Scholar 

  25. J Geiser, J. Algorithm Comput. Technol. 9(1), 65 (2013)

    Article  Google Scholar 

  26. G I Marchuk, Appl. Math. 13, 103 (1968)

    Article  Google Scholar 

  27. S Blanes and F Kasas, Appl. Numer. Meth. 54, 23 (2005)

    Article  Google Scholar 

  28. M Seydaoğlu and S Blanes, Appl. Numer. Meth. 84, 22 (2014)

    Article  Google Scholar 

  29. M Seydaoğlu, U Erdogan and T Oziş, J. Comput. Appl. Math. 291, 410 (2016)

    Article  MathSciNet  Google Scholar 

  30. S Ganesan and L Tobiska, Appl. Math. Comput. 219, 6182 (2013)

    MathSciNet  Google Scholar 

  31. I Carbone and A Volcic, Rend. Istit. Mat. Univ. Trieste XXXIX, 119 (2007)

    Google Scholar 

  32. F Zürnacı and M Seydaoğlu, Numer. Meth. Part. D E 35(1), 1363 (2019)

    Article  Google Scholar 

  33. W Hundsdorfer and J Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations (Springer-Verlag, Berlin, Heidelberg, 2003)

    Book  Google Scholar 

  34. P M Prenter, Splines and variational methods (Wiley, New York, 1975)

    MATH  Google Scholar 

  35. H Wang, J Wang and S Li, Bound. Value Probl. 2015, 11 (2015)

    Article  Google Scholar 

  36. S Kutluay, M Karta and N M Yağmurlu, Numer. Meth. Part. D E 35, 2221 (2019)

    Article  Google Scholar 

  37. Abbas I Abdel Karim, Comput. J. 9(3), 308 (1966)

  38. John W Carr, J. Assoc. Comp. Mach. 5(1), 39 (1958)

Download references

Acknowledgements

The authors would like to express their sincere thanks to referees and editor for their many valuable suggestions and comments to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Uçar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutluay, S., Karta, M. & Uçar, Y. Strang time-splitting technique for the generalised Rosenau–RLW equation. Pramana - J Phys 95, 148 (2021). https://doi.org/10.1007/s12043-021-02182-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02182-1

Keywords

PACS Nos

Navigation