Skip to main content
Log in

Electronic and electro-optical properties of 5CB and 5CT liquid crystal molecules: A comparative DFT study

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the present work, electro-optical and electronic properties of 4-n-pentyl-\(4^{\prime }\)-cyanobiphenyl (5CB) and \(4^{\prime }\)-cyano-4-n-pentyl-p-terphenyl (5CT) liquid crystal molecules have been investigated. The 5CB compound transforms from crystal to nematic phase at 24\(^\circ \)C and nematic to isotropic phase at 35.3\(^\circ \)C while 5CT compound transforms from crystal to nematic phase at 130\(^\circ \)C and nematic to isotropic phase at 239\(^\circ \)C. Molecular geometry of 5CB and 5CT have been optimised by DFT method with 6-31G(d,p) basis set. Binding energies acting between dimers have been calculated. Mulliken and natural population analyses have been done. The HOMO–LUMO surfaces, molecular and thermodynamic properties have been examined. The excitation energy and oscillator strength have been calculated by TD-DFT/B3LYP/6-31G(d,p) method. All the investigated parameters of 5CT have been compared with that of 5CB molecule. Results have been used to elucidate the electro-optical and electronic properties of 5CB and 5CT molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N Vieweg et al, Opt. Express 18, 6097 (2010)

    Article  ADS  Google Scholar 

  2. G W Gray, K J Harrison and J A Nash, Electron. Lett. 9, 130 (1973)

    Article  ADS  Google Scholar 

  3. G W Gray, K J Herrison, J Constant, D Hulme, J Kirton and E Raynes, Liquid crystals and ordered fluids edited by J F Johnson and R S Porter (Plenum, New York, 1974)

    Google Scholar 

  4. G W Gray and A Mosley, J. Chem. Soc. Perkin 2. 1, 97 (1976)

  5. A Kumar, A K Srivastava, S N Tiwari, N Misra and D Sharma, Mol. Cryst. Liq. Cryst. 681, 23 (2019)

    Article  Google Scholar 

  6. N Kumar, P Singh, S Chaudhary, K B Thapa, P Upadhyay, A K Dwivedi and D Kumar, Acta Phys. Pol. A 137, 1135 (2020)

    Article  ADS  Google Scholar 

  7. D S Seo, H Matsuda, T Oh-Ide and S Kobayashi, Mol. Cryst. Liq. Cryst. 224, 13 (1993)

    Article  Google Scholar 

  8. A Bogi and S Faetti, Liq. Cryst. 28, 729 (2001)

    Article  Google Scholar 

  9. S Al-Zangana et al, Sci. Rep. 6, 31885 (2016)

    Article  ADS  Google Scholar 

  10. V Gdovinová, M A Schroer, N Tomašovičová, I Appel, S Behrens, J Majorošová, J Ková, D I Svergun and P Kopcanský, Soft Matter 13, 7890 (2017)

    Article  ADS  Google Scholar 

  11. G W Gray, K J Harrison and J A Nash, J. Soc. Chem. Commun. 11, 431 (1974)

    Article  Google Scholar 

  12. J H Noh, Y Wang, H L Liang, V S R Jampani, A Majumdar and J P F Lagerwall, Phys. Rev. Res. 2, 033160 (2020)

    Article  Google Scholar 

  13. Y Iwai, R Iijima, K Yamamoto, T Akita, Y Uchida and N Nishiyama, Adv. Opt. Mater. 8, 1901363 (2020)

    Article  Google Scholar 

  14. D Myung and S Park, ACS Appl. Mater. Interfaces 11, 20350 (2019)

    Article  Google Scholar 

  15. A Sharma, V Jampani and J Lagerwall, Langmuir 35, 11132 (2019)

    Article  Google Scholar 

  16. V S R Jampani, R H Volpe, K Reguengo de Sousa, J Ferreira Machado, C M Yakacki and J P F Lagerwall, Sci. Adv. 5, eaaw2476 (2019)

  17. P J Hasnip, K Refson, M I J Probert, J R Yates, S J Clark and C J Pickard, Phil. Trans. R. Soc. A 372, 20130270 (2014)

    Article  ADS  Google Scholar 

  18. H Tondon, T Chakraborty and V Suhag, Res. Med. Eng. Sci. 7, 791 (2019)

    Google Scholar 

  19. P Hohenberg and W Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  Google Scholar 

  20. D Sharma and S N Tiwari, J. Mol. Liq. 214, 128 (2016)

  21. V Barone, Computational strategies for spectroscopy: From small molecules to nano systems (John Wiley & Sons, Inc., Hoboken, NJ, 2011)

    Book  Google Scholar 

  22. D P Singh et al, J. Mol. Liq. 302, 112537 (2020)

    Article  Google Scholar 

  23. A D Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  24. C Lee, W Yang and R G Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  25. M J Frisch, G W Trucks, H B Schlegel, G E Scuseria, M A Robb, J R Cheeseman, G Scalmani, V Barone, G A Petersson, H Nakatsuji and X M Li, Gaussian 16, Revision B.01, Gaussian Inc., Wallingford CT (2016)

  26. J A Padrón, R Carasco and R F Pellón, J. Pharm. Pharmaceut. Sci. 5, 258 (2002)

  27. R P Verma and C Hansch, Bioorg. Med. Chem. 13, 2355 (2005)

    Article  Google Scholar 

  28. R P Verma, A Kurup and C Hansch, Bioorg. Med. Chem. 13, 237 (2005)

    Article  Google Scholar 

  29. D Sharma, A K Srivastava and S N Tiwari, J. Mol. Liq. 294, 111672 (2019)

    Article  Google Scholar 

  30. N Kumar, S Chaudhary, P Upadhyay A K Dwivedi and D Kumar, Pramana – J. Phys. 94:106 (2020)

  31. E Scrocco and J Tomasi, Adv. Quantum Chem. 2, 115 (1978)

    Article  Google Scholar 

  32. N H March, Theor. Comput. Chem. 3, 619 (1996)

    Google Scholar 

  33. P Geerlings, F De Proft and W Langenaeker, Chem. Rev. 103, 1793 (2003)

    Article  Google Scholar 

  34. R G Parr, R A Donnelly, M Levy and W E Palke, J. Chem. Phys. 68, 3801 (1978)

    Article  ADS  Google Scholar 

  35. J B Foresman and A Frisch, Exploring chemistry with electronic structure methods, 2nd Edn (Gaussian, Inc., Pittsburg, 1996)

    Google Scholar 

  36. L Pauling, The nature of the chemical bond (Cornell University Press, Ithaca, New York, 1960)

    MATH  Google Scholar 

  37. P Senet, Chem. Phys. Lett. 275, 527 (1997)

    Article  ADS  Google Scholar 

  38. R G Parr, L Szentpaly and S Liu, J. Am. Chem. Soc. 121, 1922 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

D Sharma acknowledges University Grants Commission (UGC), New Delhi, India for awarding a Start Up Project Grant [F.30-505/2020(BSR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipendra Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Tiwari, G. & Tiwari, S.N. Electronic and electro-optical properties of 5CB and 5CT liquid crystal molecules: A comparative DFT study. Pramana - J Phys 95, 71 (2021). https://doi.org/10.1007/s12043-021-02114-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02114-z

Keywords

PACS Nos

Navigation