Skip to main content
Log in

Synthesis, characterization, investigation of mesomorphic properties and DFT studies of a new 2,5-(dimethoxy)-2-[[(4-(dodecyloxy)phenyl)imino]methyl]benzene): a material liquid crystal for optoelectronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, synthesis, characterization and mesomorphic properties of a new calamitic liquid crystal, 2,5-(dimethoxy)-2-[[(4-(dodecyloxy)phenyl)imino]methyl]benzene) (DDPIMB) are described. The phase transition temperatures of the DDPIMB mesomorphic compound have been carried out by differential scanning calorimetry and optical polarizing microscopy. Geometry optimization calculations have been made for the two possible isomers as cis and trans of DDPIMB using the DFT/B3LYP/6-311++G(d,p) level of theory. According to the theoretical calculation results, trans isomerism was found more stable than cis isomerism. Therefore, all theoretical calculations were made for the trans-isomer and compared to the observed results. Vibrational assignments of the observed infrared spectra of title compound were carried out based on the calculated potential energy distributions (PEDs). The electronic properties of the DDPIMB were shown on the TD-DFT/B3LYP level. The optical behavior of the liquid crystal DDPIMB was determined through basic optical parameters, nonlinear optics (NLO) properties and dipole moments. Moreover, frontier molecular orbitals and molecular electrostatic potential (MEP) were determined to define the chemical activity of the headline molecule. The obtained results showed that this liquid crystal is a candidate material that can be used in NLO, optics and optoelectronic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Nandi, H.K. Singh, S.K. Singh, B. Singh, Liq. Cryst. 40, 884–889 (2013)

    CAS  Google Scholar 

  2. M. Roychoudhury, P.K. Gaurav, R. Manohar, A.K. Prajapatı, Mol. Cryst. Liq. Cryst. 537, 3 (2011)

    CAS  Google Scholar 

  3. J. Herman, E. Dmochowska, M. Czerwinski, J. Mol. Liq. 271, 353 (2018)

    CAS  Google Scholar 

  4. Ç. Yörür, A. Nesrullajev, B. Bilgin-Eran, Mol. Phys. 105, 23 (2007)

    Google Scholar 

  5. R.J. Carlton, J.T. Hunter, D.S. Miller, R. Abbasi, P.C. Mushenheim, L.N. Tan, N.L. Abbott, Liq. Cryst. Rev. 1, 29 (2015)

    Google Scholar 

  6. M.R. Darla, S. Varghese, Liq. Cryst. 39, 1 (2012)

    Google Scholar 

  7. G. Karanlık, H. Ocak, B.B. Eran, J. Mol. Liq. 275, 567–577 (2019)

    Google Scholar 

  8. S. Mutlu Yanic, F. Cakar, H. Ocak, F. Karaman, O. Cankurtaran, B.B. Eran, J. Chem. Eng. Data 64, 3 (2019)

    Google Scholar 

  9. H. Ocak, B. Bilgin-Eran, M. Prehm, S. Schymura, J.P.F. Lagerwall, C. Tschierske, Soft Matter 7, 8266 (2011)

    CAS  Google Scholar 

  10. H. Ocak, B. Bilgin-Eran, M. Prehm, C. Tschierske, Soft Matter 8, 7773 (2012)

    CAS  Google Scholar 

  11. S. Mutlu Yanic, H. Ocak, F. Cakar, B. Bilgin-Eran, D. Guzeller, O. Cankurtaran, Optoelectron. Adv. Mater. Rapid Commun. 11, 77 (2017)

    CAS  Google Scholar 

  12. M.G. Reddy, N.P. Lobo, T. Narasimhaswamy, Liq. Cryst. 43, 896 (2016)

    CAS  Google Scholar 

  13. V.S. Sharma, R.B. Patel, Mol. Cryst. Liq. Cryst. 648, (2017)

  14. C.C. Huang, C.C. Hsu, L.W. Chen, Y.L. Cheng, Soft Matter 10, 9343 (2014)

    CAS  Google Scholar 

  15. B.N. Veerabhadraswamy, D.S.S. Rao, C.V. Yelamaggad, J. Phys. Chem. B 119, 12 (2015)

    Google Scholar 

  16. R. Nandi, H.K. Singh, S.K. Singh, D.S.S. Rao, K. Prasad, B. Singh, R.K. Singh, J. Liq. Cryst. 44, 1185 (2017)

    CAS  Google Scholar 

  17. S. Kumar, Liquid Crystal: Experimental Study of Physical Properties and Phase Transitions (Cambridge University Press, Cambridge, 2001), pp. 65–93

    Google Scholar 

  18. R. Nandi, K. Vikram, S.K. Singh, B. Singh, R.K. Singh, Vib. Spec. 69, 40 (2013)

    CAS  Google Scholar 

  19. R. Nandi, S.K. Singh, H.K. Singh, R.D. Shankar, P.S. Krishna, B. Singh, R.K. Singh, J. Raman Spectrosc. 47, 9 (2016)

    Google Scholar 

  20. R. Nandi, H.K. Singh, S.K. Singh, B. Singh, R.K. Singh, Spectrochim. Acta A 128, 248 (2014)

    CAS  Google Scholar 

  21. S.K. Saha, J. Deb, U. Sarkar, M.K. Paul, J. Liq. Cryst. 44, 14 (2017)

    Google Scholar 

  22. K. Druzbicki, E. Mikuli, Spectrochim. Acta A 77, 402 (2010)

    Google Scholar 

  23. D.D. Sarkar, R. Deb, N. Chakraborty, G. Mohiuddin, R.K. Nath, V.S.R. Nandiraju, Liq. Cryst. 39, 8 (2013)

    Google Scholar 

  24. D. Pegu, J. Deb, C. Van Alsenoy, U. Sarkar, Spectrosc. Lett. 50, 4 (2017)

    Google Scholar 

  25. V. Barone, A. Baiardi, M. Biczysko, J. Bloino, C. Cappelli, F. Lipparini, Phys. Chem. Chem. Phys. 14, 12404 (2012)

    CAS  Google Scholar 

  26. V. Barone, M.B. Biczysko, J. Phys. Chem. Chem. Phys. 16, 1759 (2014)

    CAS  Google Scholar 

  27. N. Yilmaz-Canli, B. Bilgin-Eran, A. Nesrullajev, J. Mol. Struct. 990, 79 (2011)

    CAS  Google Scholar 

  28. A. Nesrullajev, B. Bilgin-Eran, Cryst. Res. Technol. 43, 3 (2008)

    Google Scholar 

  29. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Google Scholar 

  30. A.D. Becke, Phys. Rev. A. 38, 3098 (1988)

    CAS  Google Scholar 

  31. S.H. Vosko, L. Vilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

    CAS  Google Scholar 

  32. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    CAS  Google Scholar 

  33. M.J. Frisch, H.P. Hratchian, R.D. Dennington II, T.A. Keith, J. Millam, B. Nielsen, A.J. Holder, J. Hiscocks, Gaussian, Inc., GaussView Version 5.0.8 (2009)

  34. J.P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 111, 11683 (2007)

    CAS  Google Scholar 

  35. M.H. Jamroz, Spectrochim. Acta A 14, 220 (2013)

    Google Scholar 

  36. R. Ditchfield, J. Chem. Phys. 56, 5988 (1972)

    Google Scholar 

  37. K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990)

    CAS  Google Scholar 

  38. H. Saral, Ö. Özdamar, I. Ucar, Y. Bekdemir, M. Aygün, J. Mol. Struct. 1103, 5 (2016)

    Google Scholar 

  39. B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, (Wiley, Hoboken, 2004), p. 139

  40. E. Tanış, E.B. Sas, M. Kurban, M. Kurt, J. Mol. Struct. 1154, 301 (2018)

    Google Scholar 

  41. S. Muthu, J. Uma Maheswari, Spectrochim. Acta A 92, 154 (2012)

    CAS  Google Scholar 

  42. K. Govindarasu, E. Kavitha, Spectrochim. Acta A 122, 130 (2014)

    CAS  Google Scholar 

  43. K. Govindarasu, E. Kavitha, N. Sundaraganesan, Spectrochim. Acta A 133, 417 (2014)

    CAS  Google Scholar 

  44. O. Christiansen, J. Gauss, J.F. Stanton, Chem. Phys. Lett. 305, 147 (1999)

    CAS  Google Scholar 

  45. K.M. Hijas, S.M. Kumar, K. Byrappa, T.G. Jeyaram, R. Nagalakshmi, J. Molc. Struct. 1155, 249 (2018)

    CAS  Google Scholar 

  46. P.L. Praveen, D.S. Ramakrishna, P.O. Durga, Mol. Cryst. Liq. Cryst. 643, 76 (2017)

    CAS  Google Scholar 

  47. J.R. Reynolds, B.C. Thompson, T.A. Skotheim, Conjugated Polymers Properties, Processing and Applications, 4th edn. (CRC Press, New York, 2019), pp. 61

  48. P. Javier, C. Enrique, W.C. Alex, A. Javier, F.H. Susana, B.P. Martin, J. Chem. Phys. 139, 224103 (2013)

    Google Scholar 

  49. A. Chandekar, J.E. Whitten, Synth. Met. 150, 259 (2005)

    CAS  Google Scholar 

  50. S. Mohakud, A.P. Alex, S.K. Pati, J. Phys. Chem. C 114, 20436 (2010)

    CAS  Google Scholar 

  51. B. Gündüz, Polym. Bull. 72, 3241 (2015)

    Google Scholar 

  52. B. Gündüz, Opt. Mater. 36, 425 (2013)

    Google Scholar 

  53. J. Tauc, A. Menth, J. Non-Cryst. Solids 8, 569 (1972)

    Google Scholar 

  54. S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, J. Alloys Compd. 448, 21 (2008)

    CAS  Google Scholar 

  55. M. Oubaha, S. Elmaghrum, R. Copperwhite, B. Corcoran, C. McDonagh, A. Gorin, Opt. Mater. 34, 1366 (2012)

    CAS  Google Scholar 

  56. C. Leguijt, P. LokIgen, J.A. Eikelboom, A.W. Weeper, F.M. Schuurmans, W.C. Sinke, P.F.A. Alkemade, P.M. Sarro, C.H.M. Maree, L.A. Verhoef, Sol. Energy Mater. Sol. Cells 40, 297 (1996)

    CAS  Google Scholar 

  57. S.K. Tripathy, Opt. Mater. 46, 240 (2015)

    CAS  Google Scholar 

  58. C. Sosa, J. Andzelm, B.C. Elkin, E. Wimmer, K.D. Dobbs, D.A. Dixon, J. Phys. Chem. 96, 6630 (1992)

    CAS  Google Scholar 

  59. J. Murray, K. Sen, Molecular Electrostatic Potentials: Concepts and Applications, 1st edn. (Elsevier, Amsterdam, 1996)

    Google Scholar 

  60. E. Scrocco, J. Tomasi, Adv. Quant. Chem. 11, 115 (1978)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by TUBITAK. Project Number: 1919BO11602561.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emine Tanış.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmalı Gülbaş, H., Tanış, E. & Antepli, A. Synthesis, characterization, investigation of mesomorphic properties and DFT studies of a new 2,5-(dimethoxy)-2-[[(4-(dodecyloxy)phenyl)imino]methyl]benzene): a material liquid crystal for optoelectronics. J Mater Sci: Mater Electron 31, 15829–15842 (2020). https://doi.org/10.1007/s10854-020-04145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04145-5

Navigation