Skip to main content

Advertisement

Log in

Promising versions of a commercial pearl millet hybrid for terminal drought tolerance identified through MAS

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Extreme climatic conditions like drought are a major threat to global food production. Terminal drought stress causes severe yield losses in pearl millet. Development of climate-resilient varieties/hybrids can minimize the yield losses to the farmers caused due to climatic extremes. In the present study, marker-assisted selection (MAS) was employed with an aim to develop improved version of HHB 226 by introgression of QTLs for terminal drought stress tolerance into the male parent of the hybrid (HBL 11). HBL 11 (recurrent parent) was crossed with PRLT 2 (donor) to develop F1 and backcrossed four times to raise BC4F1 and further selfed twice to raise BC4F3. Four polymorphic SSR markers were used to track the QTL introgressed lines in each subsequent generation until BC4F2. The recurrent parent genome recovery was assessed using 25 polymorphic SSRs. Morpho-physiological analysis of BC4F3 generation at field-level under terminal drought stress conditions showed that the QTL introgressed lines showed higher, grain yield, 1000-seed weight, relative water content (%), and lower electrolyte leakage (%) than the recurrent parent. Line number 63 performed best with all the four foreground markers, 97.20% recurrent parent genome recovery, 7.27 g 1000-seed weight, 73.27% relative water content, 65.06% electrolyte leakage, 0.58 (fv/fm) chlorophyll fluorescence, and 53.25 g grain yield per plant. Finally, the Improved version of HHB 226 was developed by using the Improved HBL 11 developed through MAS. Besides this, HBL 11 is the male parent of other commercial hybrids like HHB 223 and HHB 197 as well making Improved HBL 11 an asset to improve these pearl millet hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Allouis S., Qi X., Lindup S., Gale M. D. and Devos K. M. 2001 Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor. Appl. Genet. 102, 1200–1205.

    Article  CAS  Google Scholar 

  • Babu R. C., Nguyen B. D., Chamarerk V., Shanmugasundaram P., Chezhian P., Jeyaprakash P. et al. 2003 Genetic analysis of drought resistance in rice by molecular markers. Crop Sci. 43, 1457–1469.

    Article  CAS  Google Scholar 

  • Bidinger F. R., Nepolean T., Hash C. T., Yadav R. S. and Howarth C. J. 2007 Quantitative trait loci for grain yield in pearl millet under variable post-flowering moisture conditions. Crop Sci. 47, 969–980.

    Article  Google Scholar 

  • Bollam S., Pujarula V., Srivastava R. K. and Gupta R. 2018 Genomic approaches to enhance stress tolerance for productivity improvements in pearl millet. In Biotechnologies of Crop Improvement, vol. 3 (eds. Gosal S. and Wani S.), pp. 239–264. Springer, Cham.

    Chapter  Google Scholar 

  • Budak H., Pedraza F., Cregan P. B., Baenziger P. S. and Dweikat I. 2003 Development and utilization of SSRs to estimate the degree of genetic relationships in a collection of pearl millet germplasm. Crop Sci. 43, 2284–2290.

    Article  CAS  Google Scholar 

  • Collard B. C. Y., Jahufer M. Z. Z., Brouwer J. B. and Pang E. C. K. 2005 An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142, 169–196.

    Article  CAS  Google Scholar 

  • Collard B. C. and Mackill D. J. 2008 Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. London B Biol. Sci. 363, 557–572.

    Article  CAS  Google Scholar 

  • Devos K. M., Pittaway T. S., Reynolds A. and Gale M. D. 2000 Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor. Appl. Genet. 100, 190–198.

    Article  CAS  Google Scholar 

  • Fracheboud Y. 2006 Using chlorophyll fluorescence to study photosynthesis. Institute of Plant Sciences ETH, 1–17.

  • Hash C. T., Sharma A., Kolesnikova-Allen M. A., Singh S. D., Thakur R. P., Bhasker Raj A. G. et al. 2006 Teamwork delivers biotechnology products to Indian small-holder crop-livestock producers: Pearl millet hybrid “HHB 67 Improved” enters seed delivery pipeline. J. SAT. Agric. Res. 2, 1–3

    Google Scholar 

  • Hifzur R., Vijayalakshmi D., Sasikala R., Sudha M., Ashok Kumar K., Suchismita R. et al. 2018 Introgression of submergence tolerance into CO 43, a popular rice variety of India, through marker-assisted backcross breeding. Czech. J. Genet. Plant Breed. 54, 101–108.

    Article  Google Scholar 

  • Jalil M. A., Juraimi A. S., Yusop M. R., Uddin M. K. and Hakimm M. A. 2019 Introgression of root trait genes for drought tolerance to a Malaysian rice variety by marker-assisted backcross breeding. Int. J. Agric. Biol. 20, 119–126.

    Google Scholar 

  • Jangra S., Mishra A., Kamboj D., Yadav N. R. and Yadav R. C. 2017 Engineering abiotic stress tolerance traits for mitigating climate change. In Plant Biotechnology: Recent Advancements and Developments (eds. Gahlawat S., Salar R., Siwach P., Duhan J., Kumar S. and Kaur P.), pp. 59–73. Springer Singapore, Singapore.

    Chapter  Google Scholar 

  • Jangra S., Mishra A., Priti, Kamboj D., Yadav N. R. and Yadav R. C. 2019 Plant responses and tolerance to drought. In Approaches for Enhancing Abiotic Stress Tolerance in Plants (eds. Mirza H., Kamrun N., Masayuki F., Hirosuke O. and Islam T. M.), pp. 79–98. CRC Press, Boca Raton, Taylor and Francis Group.

    Chapter  Google Scholar 

  • Krishnamurthy L., Zaman-Allah M., Purushothaman R., Irshad M. and Vadez V. 2011 Plant biomass productivity under abiotic stresses in SAT agriculture. In Biomass—detection, production and usage (ed. M. D. Matovic), pp. 247–264. InTech.

    Google Scholar 

  • Kumar A. and Elston J. 1992 Genotypic differences in leaf water relations between Brassica juncea and B. napus. Ann. Bot. 70, 3–9.

    Article  Google Scholar 

  • Liu C. J., Witcombe J. R., Pittaway T. S., Nash M., Hash C. T., Busso C. S. and Gale M. D. 1994 An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor. Appl. Genet. 89, 481–487.

    Article  CAS  Google Scholar 

  • Mariac C., Luong V., Kapran I., Mamadou A., Sagnard F., Deu M. et al. 2006 Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. Theor. Appl. Genet. 114, 49–58.

    Article  CAS  Google Scholar 

  • Priyaadharshini M., Sritharan N., Senthil A. and Marimuthu S. 2019 Physiological studies on effect of chitosan nanoemulsion in pearl millet under drought condition. J. Pharmacogn. Phytochem. 8, 3304–3307.

    CAS  Google Scholar 

  • Qi X., Pittaway T. S., Lindup S., Liu H., Waterman E., Padi F. K. et al. 2004 An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theor. Appl. Genet. 109, 1485–1493.

    Article  CAS  Google Scholar 

  • Rai N., Bellundagi A., Kumar P. K. C., Kalasapura Thimmappa R., Rani S., Sinha N. et al. 2018 Physiological and morphological evaluation of MABB derived lines under drought stress in bread wheat (Triticum aestivum L. em. Thell.). Indian J. Genet. Plant Breed. 78, 417–425.

    CAS  Google Scholar 

  • Rohlf F. J. 1992 NTSYS-Pc Numerical Taxonomy and Multivariate Analysis System. Applied Biostatistics.

  • Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A. and Allard R. W. 1984 Ribosomal DNA spacer-length polymorphism in barley. Mendelian in heritance, chromosomal-location and population dynamics. Proc. Natl. Acad. Sci. USA 81, 8014–8018.

  • Serraj R., Hash C. T., Rizvi S. M. H., Sharma A., Yadav R. S. and Bidinger F. R. 2005 Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Prod. Sci. 8, 334–337.

    Article  Google Scholar 

  • Sehgal D., Rajaram V., Armstead I. P., Vadez V., Yadav Y. P., Hash C. T. and Yadav R. S. 2012 Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biol. 12, 9.

    Article  CAS  Google Scholar 

  • Senthilvel S., Jayashree B., Mahalakshmi V., Kumar P. S., Nakka S., Nepolean T. and Hash C. T. 2008 Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC Plant Biol. 8, 119.

    Article  CAS  Google Scholar 

  • Shamsudin N. A. A., Swamy B. P. M., Ratnam W., Sta Cruz M. T., Raman A. and Kumar A. 2016 Marker-assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet. 17, 30.

    Article  Google Scholar 

  • Sharma A. 2001 Marker-assisted improvement of pearl millet (Pennisetum glaucum) downy mildew resistance in elite hybrid parental line H 77/833-2, pp. 131. Ph.D. thesis submitted to CCS Haryana Agricultural University, Hisar.

  • Sintayehu S., Adugna A., Fetene M., Tirfessa A. and Ayalew K. 2018 Study of growth and physiological characters in stay-green QTL introgression Sorghum bicolor (L.) lines under post-flowering drought stress. Cereal. Res. Commun. 46, 54–66.

    Article  Google Scholar 

  • Statistics of FAO 2017 Force and Agriculture Organization of the United Nations.

  • Sullivan C. Y. and Ross W. M. 1979 Selecting for drought and heat resistance in grain sorghum. In Physiology in Crop Plants Stress (eds. Mussell H. and Staples R. C.), pp. 263–281. John Wiley and Sons, New York.

    Google Scholar 

  • Supriya A., Senthilvel S., Nepolean T., Eshwar K., Rajaram V., Shaw R. et al. 2011 Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theor. Appl. Genet. 123, 239–250.

    Article  CAS  Google Scholar 

  • Taunk J., Rani A., Yadav N. R., Yadav D., Yadav R. C., Raj K. et al. 2018 Molecular breeding of ameliorating commercial pearl millet hybrid for downy mildew resistance. J. Genet. 97, 1241–1251.

    Article  CAS  Google Scholar 

  • van Berloo R. 2008 GGT 2.0: Versatile software for visualization and analysis of genetic data. J. Hered. 99, 232–236.

    Article  Google Scholar 

  • Yadav R. S., Hash C. T., Bidinger F. R., Cavan G. P. and Howarth C. J. 2002 Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theor. Appl. Genet. 104, 67–83.

    Article  CAS  Google Scholar 

  • Yadav R. S., Hash C. T., Bidinger F. R., Devos K. M. and Howarth C. J. 2004 Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background. Euphytica 136, 265–277.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Suggestions by Dr Anil and Dr Vivek, CCS HAU, in conducting the statistical analysis are highly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

RCY and NRY conceived and designed the research. SJ and AS conducted the experiments. DY collaborated in the field experiments. SJ, AS, DY, and NRY analysed the data. SJ and NRY wrote the manuscript.

Corresponding author

Correspondence to Neelam R. Yadav.

Additional information

Corresponding editor: Shrish Tiwari

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 272 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangra, S., Rani, A., Yadav, D. et al. Promising versions of a commercial pearl millet hybrid for terminal drought tolerance identified through MAS. J Genet 100, 88 (2021). https://doi.org/10.1007/s12041-021-01337-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-021-01337-8

Keywords

Navigation