Skip to main content
Log in

Introgression of terminal drought stress tolerance in advance lines of popular pearl millet hybrid through molecular breeding

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

HHB 226 is a popular pearl millet hybrid of northern India and terminal drought stress is a major factor limiting its yield potential. Genetic improvement is one of the most effective strategies to develop improved versions of farmer-preferred varieties of crop plants. The present study was undertaken to improve terminal drought tolerance in pearl millet hybrid HHB 226 by introgressing, drought tolerance QTLs from 863 B to the male parent HBL 11 of the hybrid. Marker-assisted foreground selection was undertaken using four polymorphic SSR primers present on linkage group 2 and 5 to identify plants possessing alleles for resistance in the segregating population (BC4F2) along with stringent phenotypic selection for faster recovery of the recurrent parent genome. Background selection using 32 polymorphic SSR markers spanning on seven linkage groups were used to estimate the recovery of recurrent parent genome in improved lines. A maximum of 82% of recurrent parent genome was recovered in selected plants. The plants with drought tolerance QTLs and higher recurrent parent genome were selfed to raise BC4F3. Morpho-physiological analysis of BC4F3 lines under non-irrigated conditions showed that the QTL introgressed lines had higher yield than both the parents. Molecular marker and morpho-physiological analysis showed that line number MBB 58 has highest recovery of recurrent parent genome and performed well in comparison to original HBL 11. The improved versions of HBL 11 can be crossed with ICMA 843-22 to develop improved HHB 226.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allouis, S., Qi, X., Lindup, S., Gale, M. D., & Devos, K. M. (2001). Construction of a BAC library of pearl millet, Pennisetum glaucum. Theoretical and Applied Genetics,102(8), 1200–1205. https://doi.org/10.1007/s001220100559.

    Article  CAS  Google Scholar 

  • Baliyan, N., Malik, R., Rani, R., Mehta, K., Vashisth, U., Dhillon, S., et al. (2018). Integrating marker-assisted background analysis with foreground selection for pyramiding bacterial blight resistance genes into Basmati rice. Comptes Rendus Biologies,341(1), 1–8. https://doi.org/10.1016/J.CRVI.2017.11.003.

    Article  PubMed  Google Scholar 

  • Bidinger, F. R., Nepolean, T., Hash, C. T., Yadav, R. S., & Howarth, C. J. (2007). Quantitative trait loci for grain yield in pearl millet under variable postflowering moisture conditions. Crop Science,47(3), 969–980. https://doi.org/10.2135/cropsci2006.07.0465.

    Article  Google Scholar 

  • Bidinger, F. R., Serraj, R., Rizvi, S. M. H., Howarth, C., Yadav, R. S., & Hash, C. T. (2005). Field evaluation of drought tolerance QTL effects on phenotype and adaptation in pearl millet [Pennisetum glaucum (L.) R. Br.] topcross hybrids. Field Crops Research,94(1), 14–32. https://doi.org/10.1016/j.fcr.2004.11.006.

    Article  Google Scholar 

  • Budak, H., Pedraza, F., Cregan, P. B., Baenziger, P. S., & Dweikat, I. (2003). Development and utilization of SSRs to estimate the degree of genetic relationships in a collection of pearl millet germplasm. Crop Science,43(6), 2284–2290. https://doi.org/10.2135/cropsci2003.2284.

    Article  CAS  Google Scholar 

  • Cheng, A., Ismail, I., Osman, M., Hashim, H., & Mohd Zainual, N. S. (2017). Rapid and targeted introgression of fgr gene through marker-assisted backcrossing in rice (Oryza sativa L.). Genome,60(12), 1045–1050. https://doi.org/10.1139/gen-2017-0100.

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury, J. A., Karim, M. A., Khaliq, Q. A., Solaiman, A. R. M., & Ahmed, J. U. (2015). Genotypic variations in growth, yield and yield components of soybean genotypes under drought stress conditions. Bangladesh Journal of Agricultural Research,40, 537–550. https://doi.org/10.3329/bjar.v40i4.26929.

    Article  Google Scholar 

  • Devos, K. M., Pittaway, T. S., Reynolds, A., & Gale, M. D. (2000). Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theoretical and Applied Genetics,100(2), 190–198. https://doi.org/10.1007/s001220050026.

    Article  CAS  Google Scholar 

  • Fracheboud, F. (1999). Using chlorophyll fluorescence to study photosynthesis.

  • Hasan, M. M., Rafii, M. Y., Ismail, M. R., Mahmood, M., Rahim, H. A., Alam, M. A., et al. (2015). Marker-assisted backcrossing: A useful method for rice improvement. Biotechnology, Biotechnological Equipment,29(2), 237–254. https://doi.org/10.1080/13102818.2014.995920.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hash, C. T., Bhasker Raj, A., Lindup, S., Sharma, A., Beniwal, C., Folkertsma, R., et al. (2003). Opportunities for marker-assisted selection (MAS) to improve the feed quality of crop residues in pearl millet and sorghum. Field Crops Research,84(1–2), 79–88. https://doi.org/10.1016/S0378-4290(03)00142-4.

    Article  Google Scholar 

  • Hash, C. T., Sharma, A., Kolesnikova-Allen, M. A., Singh, S., Thakur, R. P., Bhasker Raj, A., et al. (2006). Teamwork delivers biotechnology products to Indian small-holder crop-livestock producers: Pearl millet hybrid “HHB 67 Improved” enters seed delivery pipeline. Journal of SAT Agricultural Research,2(1), 1–3.

    Google Scholar 

  • Hash, C. T., Yadav, R. S., Cavan, G. P., Howarth, C. J., Liu, H., Qi, X., et al. (2000). Marker-assisted backcrossing to improve terminal drought tolerance in pearl millet. In J. M. Ribaut & D. Poland (Eds.), Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments (pp. 114–119). Mexico City: CIMMYT.

    Google Scholar 

  • Hash, C. T., Yadav, R. S., Cavan, G. P., Howarth, C. J., Liu, H., Sharma, A., et al. (1999). Marker-assisted backcrossing to improve terminal drought tolerance in pearl millet. In J. M. Ribaut & D. Poland (Eds.), Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments (pp. 114–119). Mexico City: CIMMYT.

    Google Scholar 

  • Hossain, F., Muthusamy, V., Pandey, N., Vishwakarma, A. K., Baveja, A., Zunjare, R. U., et al. (2018). Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. Journal of Genetics,97(1), 287–298. https://doi.org/10.1007/s12041-018-0914-z.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, G. L. (2015). Molecular marker-assisted breeding: a plant breeder’s review. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), Advances in plant breeding strategies: Breeding, biotechnology and molecular tools (pp. 431–472). Cham: Springer. https://doi.org/10.1007/978-3-319-22521-0_15.

    Chapter  Google Scholar 

  • Karim, I., Makmur, M., & Bahmid, N. A. (2019). Pearl millet (Pennisetum glaucum) farming for food security: Gross output, net farm income, and B/C ratio. IOP Conference Series: Earth and Environmental Science,235(1), 012044. https://doi.org/10.1088/1755-1315/235/1/012044.

    Article  Google Scholar 

  • Khairwal, I., Yadav, S., Rai, K., Upadhyaya, H., Kachhawa, D., Nirwan, B., et al. (2007). Evaluation and identification of promising pearl millet germplasm for grain and fodder traits. SAT eJournal,5(1), 1–6.

    Google Scholar 

  • Krishna, M. S. R., Surender, M., & Sokka Reddy, S. (2017). Marker assisted breeding for introgression of opaque-2 allele into elite maize inbred line BML-6. Acta Ecologica Sinica,37(5), 340–345. https://doi.org/10.1016/J.CHNAES.2017.04.002.

    Article  Google Scholar 

  • Krishnamurthy, L., Zaman-Allah, M., Purushothaman, R., Irshad, M., & Vadez, V. (2011). Plant biomass productivity under abiotic stresses in SAT agriculture. In M. D. Matovicb (Ed.), Biomass—Detection, production and usage (pp. 247–264). London: InTech. https://doi.org/10.5772/17279.

    Chapter  Google Scholar 

  • Kumar, A., & Elston, J. (1992). Genotypic differences in leaf water relations between Brassica juncea and B. napus. Annals of Botany,70(1), 3–9. https://doi.org/10.1093/oxfordjournals.aob.a088436.

    Article  Google Scholar 

  • Larkunthod, P., Nounjan, N., Siangliw, J. L., Toojinda, T., Sanitchon, J., Jondee, B., et al. (2018). Physiological responses under drought stress of improved drought-tolerant rice lines and their parents. Notulae Botanicae Horti Agrobotanici Cluj-Napoca,46(2), 653. https://doi.org/10.15835/nbha46211188.

    Article  CAS  Google Scholar 

  • Liu, C. J., Witcombe, J. R., Pittaway, T. S., Nash, M., Hash, C. T., Busso, C. S., et al. (1994). An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theoretical and Applied Genetics,89(4), 481–487. https://doi.org/10.1007/BF00225384.

    Article  CAS  PubMed  Google Scholar 

  • Mariac, C., Luong, V., Kapran, I., Mamadou, A., Sagnard, F., Deu, M., et al. (2006). Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. Theoretical and Applied Genetics,114(1), 49–58. https://doi.org/10.1007/s00122-006-0409-9.

    Article  CAS  PubMed  Google Scholar 

  • Miah, G., Rafii, M. Y., Ismail, M. R., Puteh, A. B., Rahim, H. A., & Latif, M. A. (2017). Marker-assisted introgression of broad-spectrum blast resistance genes into the cultivated MR219 rice variety. Journal of the Science of Food and Agriculture,97(9), 2810–2818. https://doi.org/10.1002/jsfa.8109.

    Article  CAS  PubMed  Google Scholar 

  • Qi, X., Pittaway, T. S., Lindup, S., Liu, H., Waterman, E., Padi, F. K., et al. (2004). An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theoretical and Applied Genetics,109(7), 1485–1493. https://doi.org/10.1007/s00122-004-1765-y.

    Article  CAS  PubMed  Google Scholar 

  • Rani, A. (2014). Marker assisted selection for drought tolerance in pearl millet [Pennisetum glaucum (L.) R. Br.]. Ph.D. thesis submitted to CCS Haryana Agricultural University, Hisar.

  • Rohlf, F. J. (1992). NTSYS-pc numerical taxonomy and multivariate analysis system. New York: Applied Biostatistics.

    Google Scholar 

  • Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., & Allard R. W. (1984). Ribosomal DNA sepacer-length polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics. Proceedings of National Academy of Sciences, 81, 8014–8019.

    Article  CAS  Google Scholar 

  • Sehgal, D., Rajaram, V., Armstead, I. P., Vadez, V., Yadav, Y. P., Hash, C. T., et al. (2012). Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biology. https://doi.org/10.1186/1471-2229-12-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehgal, D., Skot, L., Singh, R., Srivastava, R. K., Das, S. P., Taunk, J., et al. (2015). Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS ONE,10(5), e0122165. https://doi.org/10.1371/journal.pone.0122165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senthilvel, S., Jayashree, B., Mahalakshmi, V., Kumar, P. S., Nakka, S., Nepolean, T., et al. (2008). Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC Plant Biology,8, 119. https://doi.org/10.1186/1471-2229-8-119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serraj, R., Hash, C. T., Rizvi, S. M. H., Sharma, A., Yadav, R. S., & Bidinger, F. R. (2005). Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Production Science,8(3), 334–337. https://doi.org/10.1626/pps.8.334.

    Article  Google Scholar 

  • Sharma, A. (2001). Marker-assisted improvement of peral millet (Pennisetum glaucum) downy mildew resistane in elite hybrid parental line H 77/1833-2. Ph.D. thesis submitted to CCS Haryana Agricultural University, Hisar.

  • Sharma, P. C., Singh, D., Sehgal, D., Singh, G., Hash, C. T., & Yadav, R. S. (2014). Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake. Environmental and Experimental Botany,102(100), 48–57. https://doi.org/10.1016/j.envexpbot.2014.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheoran, O. P., Tonk, D. S., Kaushik, L. S., Hasija, R. C., & Pannu, R. S. (1998). Statistical software package for agricultural research workers. In D. S. Hooda & R. C. Hasija (Eds.), Recent advances in information theory, statistics and computer applications (pp. 139–143). Hisar: CCS HAU.

    Google Scholar 

  • Shivhare, R., & Lata, C. (2017). Exploration of genetic and genomic resources for abiotic and biotic stress tolerance in pearl millet. Frontiers in Plant Science,7, 2069. https://doi.org/10.3389/fpls.2016.02069.

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava, D., Shamim, M., Kumar, M., Mishra, A., Pandey, P., Kumar, D., et al. (2017). Current status of conventional and molecular interventions for blast resistance in rice. Rice Science,24(6), 299–321. https://doi.org/10.1016/J.RSCI.2017.08.001.

    Article  Google Scholar 

  • Sullivan, C. Y., & Ross, W. M. (1979). Selecting for drought and heat resistance in grain sorghum. In H. Mussell & R. C. Staples (Eds.), Stress physiology in crop plants (pp. 263–281). New York: Wiley.

    Google Scholar 

  • Supriya, A., Senthilvel, S., Nepolean, T., Eshwar, K., Rajaram, V., Shaw, R., et al. (2011). Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theoretical and Applied Genetics,123(2), 239–250. https://doi.org/10.1007/s00122-011-1580-1.

    Article  CAS  PubMed  Google Scholar 

  • Taunk, J., Rani, A., Yadav, N. R., Yadav, D. V., Yadav, R. C., Raj, K., et al. (2018). Molecular breeding of ameliorating commercial pearl millet hybrid for downy mildew resistance. Journal of Genetics,97(5), 1241–1251.

    Article  CAS  Google Scholar 

  • Thu Ha, P. T., Khang, D. T., Tuyen, P. T., Toan, T. B., Huong, N. N., Thi Lang, N., et al. (2016). Development of new drought tolerant breeding lines for vietnam using marker-assisted backcrossing. International Letters of Natural Sciences,59, 1–13. https://doi.org/10.18052/www.scipress.com/ILNS.59.1.

    Article  Google Scholar 

  • van Berloo, R. (2008). GGT 2.0: Versatile software for visualization and analysis of genetic data. Journal of Heredity,99(2), 232–236. https://doi.org/10.1093/jhered/esm109.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, R. S., Bidinger, F. R., Hash, C. T., Cavan, G. P., Serraj, R., & Howarth, C. J. (2005). Improving pearl millet drought tolerance. International Sorghum and Millets Newsletter,42, 15–16.

    Google Scholar 

  • Yadav, R. S., Hash, C. T., Bidinger, F. R., Cavan, G. P., & Howarth, C. J. (2002). Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theoretical and Applied Genetics,104(1), 67–83. https://doi.org/10.1007/s001220200008.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, R. S., Hash, C. T., Bidinger, F. R., Devos, K. M., & Howarth, C. J. (2004). Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background. Euphytica,136(3), 265–277. https://doi.org/10.1023/B:EUPH.0000032711.34599.3a.

    Article  CAS  Google Scholar 

  • Yadav, R., Hash, C., Bidinger, F., Dhanoa, M., & Howarth, C. (1999). Identification and utilisation of quantitative trait loci to improve terminal drought tolerance in pearl millet (Pennisetum glaucum (L.) R. Br.). In J. M. Ribaut & D. Poland (Eds.), Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments (pp. 108–113). Mexico City: CIMMYT.

    Google Scholar 

Download references

Acknowledgement

The valuable suggestions by two anonymous reviewers in improving this manuscript are highly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

RCY and NRY conceived and designed the research. SJ and AR conducted the experiments and analyzed the data. SJ and NRY wrote the manuscript. DV collaborated in the field experiments and helped in morphological data analysis.

Corresponding author

Correspondence to Neelam R. Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangra, S., Rani, A., Yadav, R.C. et al. Introgression of terminal drought stress tolerance in advance lines of popular pearl millet hybrid through molecular breeding. Plant Physiol. Rep. 24, 359–369 (2019). https://doi.org/10.1007/s40502-019-00464-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-019-00464-w

Keywords

Navigation