Skip to main content

Advertisement

Log in

Alkaline rocks from the Deccan Large Igneous Province: Time–space distribution, petrology, geochemistry and economic aspects

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

We present a comprehensive review on the alkaline rocks from the Deccan Large Igneous Province (DLIP) and discuss their (i) temporal and spatial association with the Deccan Traps, (ii) petrography, mineral- and whole-rock geochemistry (including radiogenic and stable isotopes) and geophysical aspects, and (iii) P–T data available on their entrained xenoliths. The alkaline rocks occur in seven sub-provinces, viz., (i) the Kachchh, (ii) the Saurashtra, (iii) the Gujarat Central and Chhotaudepur, (iv) the Mumbai–Trombay, (v) the Central Deccan, (vi) the Aravalli, and (vii) the Tethyan Himalayan, with the first five in association with the Deccan Traps. A diverse variety of silica under-saturated to over-saturated alkaline rocks with varied mineralogical and geochemical compositions have been reported from these sub-provinces. These include alkali basalt, basanite, carbonatite, ijolite, lamprophyre, leucite, melteigite, mugearite, nephelinite, nepheline syenite, orangeites, alkali pyroxenite, phonolite, tinguaite, etc. Available geochronological data on the Deccan alkaline rocks reveal a wide duration of the related magmatic activity (124–55 My), and suggest the presence of pre-, syn- and post-emplacement ages of the DLIP units. Alkaline rocks of the DLIP are hosted by discrete aged lithotypes in a variety of stratigraphic horizons, such as the Deccan Traps, Cretaceous Bagh beds, Jurassic sandstones, Triassic Shrinab sediments, Proterozoic Godhra Granite and unclassified gneisses. In a majority of the sub-provinces, intrusions of alkaline rocks are controlled by fractures, rift or lineament systems such as the Kutch rift, the Son–Narmada Tapti rift, etc. Their major mineralogy is dominated by pyroxene, feldspar, amphibole, mica, olivine, nepheline, leucite, sodalite and carbonate minerals whereas accessory and minor minerals include titanite, apatite, spinel, rutile, pyrite, chalcopyrite, epidote, zircon, pyrochlore, garnet, perovskite and other REE-bearing phases. Geochemical studies reveal their sodic to potassic nature, with distinct shoshonitic character for some alkaline rocks. Combined geochemical and isotopic studies highlight the role of mixed mantle sources ranging from spinel to garnet stability depths and involvement of the lower degrees of partial melting. Source modification by subduction and crustal contamination is evaluated. Geodynamic implications for the orogenic and anorogenic signatures found in various occurrences, depth of the lithosphere–asthenosphere boundary, and economic resources are also examined and future research directions are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

(modified from Dessai and Viegas 2010).

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Ahmed Z and McCormick G R 1990 A newly discovered kimberlite rock from Pakistan; Mineral. Mag. 54 537–546, https://doi.org/10.1180/minmag.1990.054.377.02.

    Article  Google Scholar 

  • Allègre C J, Birck J L, Capmas F and Courtillot V 1999 Age of the Deccan traps using 187Re187Os systematic; Earth Planet. Sci. Lett. 170 197–204, https://doi.org/10.1016/S0012-821X(99)00110-7.

    Article  Google Scholar 

  • Banerjee A and Chakrabarti R 2019 A geochemical and Nd, Sr and stable Ca isotopes study of carbonatites and associated silicate rocks from the ~65 Ma old Ambadongar carbonatite complex and the Phenai Mata igneous complex, Gujarat, India: Implications for crustal contamination, carbonate recycling, hydrothermal alteration and source-mantle mineralogy; Lithos 326–327 572–585, https://doi.org/10.1016/j.lithos.2019.01.007.

    Article  Google Scholar 

  • Banerjee A C, Raj D and Roychowdhury M 2000 Gold and PGM contents in a subvolcanic Deccan picrite of Saurashtra, Gujarat; J. Geol. Soc. India 56(6) 625–632.

    Google Scholar 

  • Barnes S J and Roeder P 2001 The range of spinel composition in Terrestrial Mafic and Ultramafic Rocks; J. Petrol. 42(12) 2279–2302, https://doi.org/10.1093/petrology/42.12.2279.

    Article  Google Scholar 

  • Basu A R, Renne P R, Dasgupta D K, Teichmann F and Poreda R J 1993 Early and late alkali igneous pulses and a high-3He plume origin for the Deccan flood basalts; Science 261 902–906, https://doi.org/10.1126/science.261.5123.902.

    Article  Google Scholar 

  • Basu A R, Chakrabarty P, Szymanowski D, Ibañez-Mejia M, Blair S, Ghosh N and Georg R B 2020 Widespread silicic and alkaline magmatism synchronous with the Deccan Traps flood basalts, India; Earth Planet. Sci. Lett. 552 116616, https://doi.org/10.1016/j.epsl.2020.116616.

    Article  Google Scholar 

  • Bhushan S K and Chandrasekaran V 2002 Geology and geochemistry of the magmatic rocks of the Malani Igneous Suite and tertiary Alkaline Province of Western Rajasthan; Geol. Surv. India Memoir 126 1–181.

    Google Scholar 

  • Bhushan S K and Kumar A 2013 First carbonatite hosted REE deposit from India; J. Geol. Soc. India 81 41–60, https://doi.org/10.1007/s12594-013-0005-y.

    Article  Google Scholar 

  • Bhushan S K 2015 Geology of the Kamthai Rare Earth Deposit; J. Geol. Soc. India 85 537–546, https://doi.org/10.1007/s12594-015-0247-y.

    Article  Google Scholar 

  • Biswas S K 1987 Regional tectonic framework, structure and evolution of the western margin basins of India; Tectonophys. 135 307–327, https://doi.org/10.1016/0040-1951(87)90115-6.

    Article  Google Scholar 

  • Biswas S K 1992 Tertiary stratigraphy of Kutch; J. Palaeontol. Soc. India 37 1–29.

    Google Scholar 

  • Biswas S K 2005 A review of structure and tectonics of Kutch basin, Western India with special reference to earthquakes; Curr. Sci. 88(10) 1592–1600.

    Google Scholar 

  • Bond D P G and Wignall P B 2014 Large igneous provinces and mass extinctions: An update; Geol. Soc. Am. Spec. Paper 505 SPE505-602, https://doi.org/10.1130/2014.2505(02).

    Article  Google Scholar 

  • Bose M K and Das Gupta D K 1973 Petrology of the alkali syenites of Mundwara magmatic suite, Sirohi, Rajasthan, India; Geol. Mag. 110(5) 457–466, https://doi.org/10.1017/S0016756800036232.

    Article  Google Scholar 

  • Bose M K 1973 Petrology and geochemistry of the Igneous Complex of Mount Girnar, Gujrat, India; Contrib. Mineral. Petrol. 39 247–266, https://doi.org/10.1007/BF00383107.

    Article  Google Scholar 

  • Bose M K 1971 Petrology of the alkalic suite of Sivamalai, Coimbatore, Tamil Nadu; J. Geol. Soc. India 12(3) 241–261.

    Google Scholar 

  • Bose M K 1980 Alkaline magmatism in the Deccan Province; J. Geol. Soc. India 21 317–329.

    Google Scholar 

  • Bowen N L 1927 An analcite-rich rock from the Deccan traps of India; J. Wash. Acad. Sci. 17 57–59.

    Google Scholar 

  • Buiter S J H and Torsvik T H 2014 A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures?; Gondwana Res. 26(2) 627–653, https://doi.org/10.1016/j.gr.2014.02.007.

    Article  Google Scholar 

  • Cande S C and Stegman D R 2011 Indian and African plate motions driven by push force of the Réunion plume head; Nature 475 47–52, https://doi.org/10.1038/nature10174.

    Article  Google Scholar 

  • Chakraborti M K 1979 On the Alkali syenites of the Mundwara suite, Sirohi district Rajasthan; Proc. Indian Nat. Sci. Acad. 45A 284–292.

    Google Scholar 

  • Chakraborti M K and Bose M K 1978 Theralite-melteigite-carbonatite association in Mer ring of Mundwara suite, Sirohi District, Rajasthan; J. Geol. Soc. India 19(10) 454–463.

    Google Scholar 

  • Chalapathi Rao N V and Lehmann B 2011 Kimberlites, flood basalts and mantle plumes: New insights from the Deccan Large Igneous Province; Earth-Sci. Rev. 107 315–327, https://doi.org/10.1016/j.earscirev.2011.04.003.

    Article  Google Scholar 

  • Chalapathi Rao N V, Lehmann B, Mainkar D and Belyatsky B 2011 Petrogenesis of the end-Cretaceous diamondiferous Behradih orangeite pipe: Implication for mantle plume-lithosphere interaction in the Bastar craton, central India; Contrib. Mineral. Petrol. 161 721–742, https://doi.org/10.1007/s00410-010-0559-2.

    Article  Google Scholar 

  • Chalapathi Rao N V, Dharma Rao C V and Das S 2012 Petrology of lamprophyres from Chhota Udepur area, Narmada rift zone, and its relation to Deccan magmatism; J. Asian Earth Sci. 45 24–39, https://doi.org/10.1016/j.jseaes.2011.09.009.

    Article  Google Scholar 

  • Chalapathi Rao N V, Giri R K, Sharma A and Pandey A 2020 Lamprophyres from the Indian shield: A review of their occurrence, petrology, tectonomagmatic significance and relationship with the Kimberlites and related rocks; Episodes 43(1) 231–248, https://doi.org/10.18814/epiiugs/2020/020014.

    Article  Google Scholar 

  • Chandra J, Paul D, Viladkar S G and Sensarma S 2017 Origin of the Amba Dongar carbonatite complex, India and its possible linkage with the Deccan Large Igneous Province; Geol. Soc. London, Spec. Publ. 463 137–169, https://doi.org/10.1144/SP463.3.

    Article  Google Scholar 

  • Chandra J, Paul D, Stracke A, Chabaux F and Granet M 2019 The origin of carbonatites from Amba Dongar within the Deccan Large Igneous Province; J. Petrol. 60(6) 1119–1134, https://doi.org/10.1093/petrology/egz026.

    Article  Google Scholar 

  • Chandrasekaran V and Chawade M P 1990 Carbonatites of Barmer district, Rajasthan; Ind. Mineral. 44(4) 315–324.

    Google Scholar 

  • Chandrasekaran V, Srivastava R K and Chawade M P 1990 Geochemistry of the alkaline rocks of Sarnu-Dandali Area, District Barmer, Rajasthan, India; J. Geol. Soc. India 36 365–382.

    Google Scholar 

  • Chandrasekhar D V, Mishra D C, Poornachandra Rao G V S and Mallikharjuna Rao J 2002 Gravity and magnetic signatures of volcanic plugs related to Deccan volcanism in Saurashtra, India and their physical and geochemical properties; Earth Planet. Sci. Lett. 201 277–292, https://doi.org/10.1016/S0012-821X(02)00712-4.

    Article  Google Scholar 

  • Chatterjee S K 1932 Petrology of the Igneous rocks from the west Gir forest, Kathiawar India; J. Geol. 40 154–163.

    Article  Google Scholar 

  • Chatterjee N 2021 Origin of the primitive, strongly SiO2-undersaturated alkalic rocks from the Deccan Traps by low-degree mantle melting and high-pressure fractional crystallization; Contrib. Mineral. Petrol. 176(4) 1–21, https://doi.org/10.1007/s00410-021-01787-4.

    Article  Google Scholar 

  • Chatterjee S M, Roy Choudhury M, Das S and Roy A 2017 Significance and dynamics of the Neoproterozoic (810 Ma) Phulad Shear Zone, Rajasthan, NW India; Tectonics 36 1432–1454, https://doi.org/10.1002/2017TC004554.

    Article  Google Scholar 

  • Chattopadhya S, Ghosh B, Morishita T, Nandy S, Tamura A and Bandyopadhyay D 2017 Reaction microtextures in entrapped xenoliths in alkaline basalts from the Deccan large igneous province, India: Implications to the origin and evolution; J. Asian Earth Sci. 138 291–305, https://doi.org/10.1016/j.jseaes.2017.01.028.

    Article  Google Scholar 

  • Chattopadhaya S, Ghosh B, Bandyopadhyay D, Koley M, Dhar A and Roy S 2022 Multistage evolution of subcontinental lithospheric mantle of northwestern Deccan volcanic province, India: Constraints from the ultramafic xenoliths in alkali magma; J. Earth Syst. Sci. 131 53, https://doi.org/10.1007/s12040-021-01793-x.

    Article  Google Scholar 

  • Chawade M P 1996 The petrology and geochemistry of dykes in Deccan basalts in parts of lower Narmada valley, around Chhaktala, Jhabua district, MP; In: Deccan basalts (eds) Deshmukh S S and Nair K K K, Gondwana Geol. Soc. Memoir 2 185–200.

  • Chenet A L, Quidelleur X, Fluteau F, Courtillot V and Bajpai S 2007 40K–40Ar dating of the main Deccan large igneous province: Future evidence of KTB age and short duration; Earth Planet. Sci. Lett. 263 1–15, https://doi.org/10.1016/j.epsl.2007.07.011.

    Article  Google Scholar 

  • Condie K C 2003 Incompatible element ratios in oceanic basalts and komatiites: Tracking deep mantle sources and continental growth rates with time; Geochem. Geophys. Geosys. 4(1) 1–28, https://doi.org/10.1029/2002GC000333.

    Article  Google Scholar 

  • Condie K C 2005 High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes?; Lithos 79(3–4) 491–504, https://doi.org/10.1016/j.lithos.2004.09.014.

    Article  Google Scholar 

  • Condie K C, Davaille A, Aster R C and Arndt N 2015 Upstairs-downstairs: Supercontinents and large igneous provinces, are they related?; Int. Geol. Rev. 57(11–12) 1341–1348, https://doi.org/10.1080/00206814.2014.963170.

    Article  Google Scholar 

  • Coulson A L 1933 The geology of Sirohi state, Rajputana; Geol. Surv. India Memoir 63 166.

    Google Scholar 

  • Courtillot V, Gallet Y, Rocchia R, Feraud G, Robin E, Hofmann C, Bhandari N and Ghevariya Z G 2000 Cosmic marker, 40Ar/39Ar dating and paleomagnetism of the KT sections in the Anjar area of the Deccan large igneous province; Earth Planet. Sci. Lett. 182 137–156, https://doi.org/10.1016/S0012-821X(00)00238-7.

    Article  Google Scholar 

  • Crawford A R 1983 Mantle convection pattern under India, relevance to Lonar crater Girnar node and peri-Indian volcanism; J. Geol. Soc. India 24 97–100.

    Google Scholar 

  • Crocket J H and Paul D K 2008 Platinum-group elements in igneous rocks of the Kutch rift basin, NW India: Implications for relationships with the Deccan volcanic province; Chem. Geol. 248(3–4) 239–255, https://doi.org/10.1016/j.chemgeo.2007.06.006.

    Article  Google Scholar 

  • Cucciniello C, Demonterova E I, Sheth H, Pande K and Vijayan A 2015 40Ar/39Ar geochronology and geochemistry of the central Saurashtra mafic dyke swarm: Insight into magmatic evolution magma transport, and dyke-flow relationships in the northwestern Deccan Traps; Bull. Volcanol. 77 45, https://doi.org/10.1007/s00445-015-0932-0.

    Article  Google Scholar 

  • Das B, Paul D K, Chaudhary A K, Ray A, Patil S K and Biswas S K 2007 Petrology and Geochemistry of basanite dykes and gabbro from Northern Kutch, Western India: Implications on source rock characteristics; J. Geol. Soc. India 70 771–779.

    Google Scholar 

  • Das S and Srikarni C 2005 A record of lamprophyric rocks around Chhota Udepur, Vadodara district and its petrological and geological comparison with other occurrences of lamprophyres in Gujarat; Ind. Mineral. 59 31–38.

    Google Scholar 

  • Dave S S 1972 The Geology of the igneous complex of the Barda hills, Saurashtra, Gujarat, India; Bull. Volcanol. 35 619–632, https://doi.org/10.1007/BF02596832.

    Article  Google Scholar 

  • De A 1981 Late Mesozoic lower Tertiary magma types of Kutch and Saurashtra; Geol. Soc. India Memoir 3 327–339.

    Google Scholar 

  • De A and Bhattacharya D 1971 Phase-petrology with special reference to pyroxenes of the acid igneous complex of Barda Hills, western Saurashtra (Gujarat); Bull. Volcanol. 35 907–929, https://doi.org/10.1007/BF02596854.

    Article  Google Scholar 

  • De A 1964 Iron-titanium in alkali olivine basalts, tholeiites and acidic rocks of the Deccan trap series and their significance; 24th Sess. Int. Geol. Congr. Sec. 7 126–138.

    Google Scholar 

  • Dessai A G 1985 Ultramafic Xenoliths (?) in lamprophyre dykes from Murud–Janjira, Raigarh District, Maharashtra, India; Curr. Sci. 54 1235–1238.

    Google Scholar 

  • Dessai A G and Bertrand H 1995 The “Panvel Flexure” along the Western Indian continental margin: An extensional fault structure related to Deccan magmatism; Tectonophys. 241(1–2) 165–178, https://doi.org/10.1016/0040-1951(94)00077-M.

    Article  Google Scholar 

  • Dessai A G and Vaselli O 1999 Petrology and geochemistry of xenoliths in lamprophyres from the Deccan Traps: Implications for the nature of the deep crust boundary in western India; Mineral. Mag. 63(5) 703–722, https://doi.org/10.1180/002646199548862.

    Article  Google Scholar 

  • Dessai A G and Viegas A 2010 Petrogenesis of alkaline rocks from Murud-Janjira, in the Deccan Traps, Western India; Mineral. Petrol. 98 297–311, https://doi.org/10.1007/s00710-009-0105-y.

    Article  Google Scholar 

  • Dessai A G, Rock N M S, Griffin B J and Gupta D 1990 Mineralogy and petrology of some xenoliths bearing alkaline dykes associated with Deccan magmatism, south of Bombay, India; Eur. J. Min. 2 667–685, https://doi.org/10.1127/ejm/2/5/0667.

    Article  Google Scholar 

  • Dessai A G, Markwick A, Vaselli O and Downes H 2004 Granulite and pyroxenite xenoliths from the Deccan Trap: Insight into the nature and composition of the lower lithosphere beneath craton India; Lithos 78 263–290, https://doi.org/10.1016/j.lithos.2004.04.038.

    Article  Google Scholar 

  • Dessai A G, Downes H, Lopez-Moro F-J and Lopez-Plaza M 2008 Lower crustal contamination of Deccan Traps magmas: Evidence from tholeiitic dykes and granulite xenoliths from western India; Mineral. Petrol. 93 243–272, https://doi.org/10.1007/s00710-007-0223-3.

    Article  Google Scholar 

  • Dessai A G, Viegas A and Griffin W L 2021 Thermal architecture of cratonic India and implications for decratonization of the Western Dharwar Craton: Evidence from mantle xenoliths in the Deccan Traps; Lithos 382–383, https://doi.org/10.1016/j.lithos.2020.105927.

  • Dhote P S, Das S, Pathak M and Verma D 2013 Specialized thematic mapping in the Deccan Volcanic Province, Vadodara District, south-eastern Gujrat; GSI report Item No. 13, Code No. 2012-2013/STM/WR/GUJ/2012/007.

  • Dobson D P, Jones A P, Rabe R, Sekine T, Kurita K, Taniguchi T, Kondo T, Kato T, Shimomura O and Urakawa S 1996 In-situ measurements of viscosity and density of carbonate melts at high pressure; Earth Planet. Sci. Lett. 143 207–215, https://doi.org/10.1016/0012-821X(96)00139-2.

    Article  Google Scholar 

  • Dongre A, Dhote P S, Zamarkar P, Sangode S J, Belyanin G, Meshram D C, Patil S K, Karmakar A and Jain L 2021 Short-lived alkaline magmatism related to the Réunion plume in the Deccan Large Igneous Province: Inferences from petrology, 40Ar/39Ar geochronology and palaeomagnetism of lamprophyre from the Sarnu–Dandali Alkaline Igneous Complex; Geol. Soc. London, Spec. Publ. 513, https://doi.org/10.1144/SP513-2021-34.

  • Doroshkevich A G, Viladkar S G, Ripp G S and Burtseva M V 2009 Hydrothermal REE Mineralization in the Amba Dongar Carbonatite Complex, Gujrat, India; Can. Mineral. 47(5) 1105–1116, https://doi.org/10.3749/canmin.47.5.1105.

    Article  Google Scholar 

  • Ernst R E 2014 Large Igneous Provinces; Cambridge University Press, Cambridge, 653p.

    Book  Google Scholar 

  • Evans J W 1901 A monchiquite from Mount Girnar, Junagarh (Kathiawar); Quart. J. Geol. Soc. 57 38–54, https://doi.org/10.1144/GSL.JGS.1901.057.01-04.06.

    Article  Google Scholar 

  • Fedden F 1884 The geology of Kathiawar Peninsula in Basalt province; Proc. Ind. Nat. Sci. Acad. 39A(3) 203–212.

    Google Scholar 

  • Fitton J G and Upton B G J (eds) 1987 Alkaline Igneous Rocks; Geol. Soc. London, Spec. Publ. 30 568.

  • Foley S F 1992 Vein-plus-wall-rock melting mechanisms in the lithosphere and origin of potassic alkaline magmas; Lithos 28 435–453, https://doi.org/10.1016/0024-4937(92)90018.

    Article  Google Scholar 

  • Fosu B R, Ghosh P, Chew D M and Viladkar S G 2018 Composition and U-Pb ages of apatite in the Amba-Dongar carbonatite-alkaline complex, India; Geol. J. 54(6) 3438–3454, https://doi.org/10.1002/gj.3350.

    Article  Google Scholar 

  • Fosu B R, Ghosh P and Viladkar S G 2020 Clumped isotopes geochemistry of carbonatites in the north-western Deccan igneous province: Aspects of evolution, post-depositional alteration and mineralization; Geochim. Cosmochim. Acta 274 118–135, https://doi.org/10.1016/j.gca.2020.01.020.

    Article  Google Scholar 

  • Furuyama K, Hari K R and Santosh M 2001 Crystallization History of Primitive Deccan Basalt from Pavagadh Hill, Gujrat, western India; Gondwana Res. 4(3) 427–436, https://doi.org/10.1016/S1342-937X(05)70342-7.

    Article  Google Scholar 

  • Gokarn S G, Rao C K, Singh B P and Nayak P N 1992 Magnetotelluric studies across the Kurduwadi gravity feature; Phys. Earth Planet. Inter. 72(1–2) 58–67, https://doi.org/10.1016/0031-9201(92)90049-2.

    Article  Google Scholar 

  • Greenough J D, Hari K R, Chatterjee A C and Santosh M 1998 Mildly alkaline basalts from Pavagadh Hill, India: Deccan flood basalts with an asthenospheric origin; Mineral. Petrol. 62 223–245, https://doi.org/10.1007/BF01178030.

    Article  Google Scholar 

  • Gwalani L G, Rock N M S, Chang W-J, Fernandez S, Allégre C J and Prinzhofer A 1993 Alkaline rocks and carbonatites of Amba Dongar and adjacent areas, Deccan Igneous Province, Gujarat, India: 1. Geology, petrography and petrochemistry; Mineral. Petrol. 47 219–253, https://doi.org/10.1007/BF01161569.

    Article  Google Scholar 

  • Hari K R 1998 Mineralogical and petrological studies of the lamprophyres around Chhaktalao area, Madhya Pradesh; J. Geol. Soc. India 51 21–30.

    Google Scholar 

  • Hari K R, Kumar M S, Santosh M and Rai S K 2000 Melt inclusions in olivine and pyroxene phenocrysts from lamprophyres of Chhaktalao Area, Madhya Pradesh, India; J. Asian Earth Sci. 18(2) 155–161, https://doi.org/10.1016/S1367-9120(99)00042-5.

    Article  Google Scholar 

  • Hari K R, Chalapathi Rao N V, Swarnkar V and Hou G 2014 Alkaline feldspar syenites with shoshonitic affinities from Chhotaudepur area: Implication for mantle metasomatism in the Deccan large igneous province; Geosci. Frontiers 5 261–276, https://doi.org/10.1016/j.gsf.2013.06.007.

    Article  Google Scholar 

  • Harinarayana T, Patro B P K, Veeraswamy K, Manoj C, Naganjaneyulu K, Murthy D N and Virupakshi G 2007 Regional geoelectric structure beneath Deccan Volcanic Province of the Indian subcontinent using magnetotellurics; Tectonophys. 445(1–2) 66–80, https://doi.org/10.1016/j.tecto.2007.06.010.

    Article  Google Scholar 

  • Hastie A R, Kerr A C, Pearce J A and Mitchell S F 2007 Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram; J. Petrol. 48(1) 2341–2357, https://doi.org/10.1093/petrology/egm062.

    Article  Google Scholar 

  • Hofmann C, Feraud G and Courtillot V 2000 39Ar/40Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: Future constraints on duration and age of the Deccan traps; Earth Planet. Sci. Lett. 180 13–27, https://doi.org/10.1016/S0012-821X(00)00159-X.

    Article  Google Scholar 

  • Hooper P, Widdowson M and Kelley S 2010 Tectonic setting and timing of the final Deccan flood basalt eruptions; Geology 38(9) 839–842, https://doi.org/10.1130/G31072.1.

    Article  Google Scholar 

  • Hopp J and Viladkar S G 2018 Nobel gas composition of Indian carbonatites (Amba Dongar, Siriwasan): Implication on mantle source composition and late-stage hydrothermal processes; Earth Planet. Sci. Lett. 492 186–196, https://doi.org/10.1016/j.epsl.2018.04.011.

    Article  Google Scholar 

  • Hou G, Wu C, Li Y, Wei S, Zhang Y, Qi Y and Xiang S 2020 Discovery and geological significance of REE deposit in southern Songxian Country, East Qinling, China; Ore Geol. Rev. 129 5, https://doi.org/10.1016/j.oregeorev.2020.103841.

    Article  Google Scholar 

  • Hutchison W, Babiel R J, Finch A A, Marks M A W, Markl G, Boyce A J, Stüeken E E, Friis H, Borst A M and Horburgh N J 2019 Sulphur isotopes of alkaline magmas unlock long-term records of crustal recycling on Earth; Nat. Commun. 10 4208, https://doi.org/10.1038/s41467-019-12218-1.

    Article  Google Scholar 

  • Irivine T N and Baragar W R A 1971 A guide to the chemical classification of the common volcanic rocks; Canadian J. Earth Sci. 8(5) 523–548.

    Article  Google Scholar 

  • Jagoutz O and Behn M D 2013 Foundering of lower island-arc crust as an explanation for the origin of the continental Moho; Nature 504 131–134, https://doi.org/10.1038/nature12758.

    Article  Google Scholar 

  • Jaitley A K, Karkare S G and Singh C S P 1980 Igneous rocks associated with Bajocian sediments of Kala Dongar, Patcham Island, Kachchh; Bull. Earth Sci. (pune) 8 1–6.

    Google Scholar 

  • Kaila K L, Murty P R K, Rao V K and Kharetchko G E 1981 Crustal structure from deep seismic soundings along the Koyna II (Kelsi-Loni) profile in the Deccan Trap area, India; Tectonophys. 73(4) 365–384, https://doi.org/10.1016/0040-1951(81)90223-7.

    Article  Google Scholar 

  • Kale V S and Pande K 2022 Reappraisal of duration and eruptive rates in Deccan volcanic province, India; J. Geol. Soc. India 98 7–17.

    Article  Google Scholar 

  • Kale V, Bodas M, Chatterjee P and Pande K 2020 Emplacement history and evolution of the Deccan volcanic province, India; Episodes 43(1) 278–299, https://doi.org/10.18814/epiiugs/2020/020016.

    Article  Google Scholar 

  • Karkare S G, Satyendra Kumar and Ram Chandra 1989 Geochemical specialization and evolution of Kala Doongar Complex, Patcham Island, Kutch district, Gujarat; Indian J. Geochem. 4(1) 55–58.

    Google Scholar 

  • Karmalkar N R and Rege S 2002 Cryptic metasomatism in the upper mantle beneath Kutch: Evidence from spinel lherzolite xenoliths; Curr. Sci. 82 1157–1165.

    Google Scholar 

  • Karmalkar N R and Sarma P K 2003 Characterization and origin of silicic and alkali-rich glasses in the Upper mantle-derived spinel peridotite xenoliths from alkali basalts, Deccan Trap, Kutch, northwest India; Curr. Sci. 85(3) 386–392.

    Google Scholar 

  • Karmalkar N R, Griffin W L and O’Reilly S Y 2000 Ultramafic xenoliths from Kutch (NW India): Plume-related mantle samples; Int. Geol. Rev. 42 416–444, https://doi.org/10.1080/00206810009465090.

    Article  Google Scholar 

  • Karmalkar N R, Rege S, Griffin W L and O’Reilly S Y 2005 Alkaline magmatism from Kutch, NW India: Implication for plume-lithosphere interaction; Lithos 81 101–119, https://doi.org/10.1016/j.lithos.2004.09.019.

    Article  Google Scholar 

  • Karmalkar N R, Duraiswami R A, Chalapathi Rao N V and Paul D K 2009 Mantle-derived mafic–ultramafic Xenoliths and the nature of Indian sub-continental lithosphere; J. Geol. Soc. India 73 657–679.

    Article  Google Scholar 

  • Karmalkar N R, Duraiswami R A, Jonnalagadda M K and Griffin W L 2014 Mid-Cretaceous lamproite from the Kutch region, Gujarat India: Genesis and tectonic implications; Gondwana Res. 26 942–956, https://doi.org/10.1016/j.gr.2013.09.012.

    Article  Google Scholar 

  • Kerr C A, Khan M, Mahoney J J, Nicholson K N and Hall C M 2010 Late Cretaceous alkaline sills of the south Tethyan suture zone, Pakistan: Initial melts of the Réunion hotspot?; Lithos 117 161–171, https://doi.org/10.1016/j.lithos.2010.02.010.

    Article  Google Scholar 

  • Khandelwal M K, Maithani P B, Pant P C, Hansda P K and Ramachandran S 1997 Geological and geochemical studies on carbonatites and rocks of carbonatitic (?) affinity from areas north of the Narmada Lineament in Madhya Pradesh and Gujarat; J. Geol. Soc. India 50(3) 307–313.

    Google Scholar 

  • Knight K B, Baker J A, Basu A R, Desai A G, Renne P R and Waight T E 2000 A question of timing: Chronological and isotopic evidence of the Deccan plume, India. Penrose Conference 2000 on Volcanic Rifted Margins: Boulder, Colorado, Geological Society of America, and Royal Holloway, Uni. London, Abst. 43–44.

  • Krishnamurthy P 2019 Carbonatites of India; J. Geol. Soc. India 94 117–138, https://doi.org/10.1007/s12594-019-1281-y.

    Article  Google Scholar 

  • Krishnamurthy P 2020 The Deccan Volcanic Province (DVP), India: A review; J. Geol. Soc. India 96 9–35, https://doi.org/10.1007/s12594-020-1501-5.

    Article  Google Scholar 

  • Krishnamurthy P, Pandey K, Gopalan K and Macdougall J D 1999 Mineralogical and chemical studies on alkaline and basaltic rocks of Kutch, Gujrat, India. Deccan Volcanic Province; Geol. Soc. India Memoir 43 757–784.

    Google Scholar 

  • Krishnamurthy P 1988 Carbonatites of India; Explor. Res. At. Miner. 1 111–171.

    Google Scholar 

  • Krishnamurthy P, Hoda S Q, Sinha R P, Banerjee D and Dwivedy K K 2000 Economic aspects of carbonatites of India; J. Asian Earth Sci. 18 229–235, https://doi.org/10.1016/S1367-9120(99)00031-0.

    Article  Google Scholar 

  • Krishnamurthy P and Cox K G 1980 A potassium-rich alkaline suite from the Deccan Traps, Rajpipla, India; Contrib. Mineral. Petrol 73 179–189, https://doi.org/10.1007/BF00371393.

    Article  Google Scholar 

  • Krishnamurthy P, Pande K, Gopalan K and Macdougall J D 1988 Upper mantle xenoliths in alkali basalts related to Deccan Trap volcanism; Geol. Soc. India Memoir 10 53–67.

    Google Scholar 

  • Kshirsagar P V, Sheth H C and Shaikh B 2011 Mafic alkalic magmatism in central Kachchh, India: A monogenetic volcanic field in the northwestern Deccan Traps; Bull. Volcanol. 73 595–612, https://doi.org/10.1007/s00445-010-0429-9.

    Article  Google Scholar 

  • Kumar S 1996 Chemistry of Clinopyroxenes from Subalkaline and Alkaline rocks of Phenai Mata Igneous Complex, Baroda District, Gujrat, western India; J. Geol. Soc. India 48 547–558.

    Google Scholar 

  • Lakshmi Narasimhan C, Arora B R and Patil S K 2019 Rock magnetic and palaeomagnetic studies on the alkaline complexes of weatern Rajasthan, India; J. Earth Syst. Sci. 128 228, https://doi.org/10.1007/s12040-019-1249-8.

    Article  Google Scholar 

  • Laxman M B and Kumar V 2018 Geochemistry evidences for possible absence of Cu-sulfide deposits in the Deccan Colcanic province, India; J. Geol. Soc. India 92 393–403, https://doi.org/10.1007/s12594-018-1033-4.

    Article  Google Scholar 

  • LeBas M J, LeMaitre R W, Streckeisen A and Zanettin B 1986 A chemical classification of volcanic rocks based on the total alkali-silica diagram; J. Petrol. 27 754–750, https://doi.org/10.1093/petrology/27.3.745.

    Article  Google Scholar 

  • Lehmann B, Burgess R, Frei D, Belyatsky B, Mainkar D, Chalapathi Rao N V and Heaman L M 2010 Diamondiferous kimberlite in central India synchronous with Deccan flood basalts; Earth Planet. Sci. Lett. 290 142–149, https://doi.org/10.1016/j.epsl.2009.12.014.

    Article  Google Scholar 

  • Madhusudhan Rao K, Kumar M R, Arun Singh and Rastogi B K 2013 Two distinct shear wave splitting directions in the northwestern Deccan Volcanic Province; J. Geophys. Res. 118(10) 5487–5499, https://doi.org/10.1002/2013JB010644.

    Article  Google Scholar 

  • Magee C, Stevenson C T E, Ebmeier S K, Keir D, Hammond J O S, Gottasmann J H, Whaler K A, Schofield N, Jackson C A-L, Petronis M S, O’Driscoll B, Morgan J, Cruden A, Vollgger S A, Dering G, Micklethwaite S and Jack M D J 2018 Magma plumbing systems: A geophysical perspective; J. Petrol. 59(6) 1217–1251, https://doi.org/10.1093/petrology/egy064.

    Article  Google Scholar 

  • Mahoney J J, Macdougall J D, Lugmair G W, Gopalan K and Krishnamurthy P 1985 Origin of contemporaneous tholeiitic and K-rich alkalic lavas: Case study from the northern Deccan Plateau, India; Earth Planet Sci. Lett. 72 39–53, https://doi.org/10.1016/0012-821X(85)90115-3.

    Article  Google Scholar 

  • Mahoney J J 1988 Deccan Traps; In: Continental flood basalts (ed.) Macdougall J D, Kluwer, Dordrecht, pp. 151–194.

    Chapter  Google Scholar 

  • Maitra M 2003 Petrology of the alkaline plugs in Patcham island, Kachhah District, Gujarat; Indian J. Geol. 75(1–4) 167–190.

    Google Scholar 

  • Mandal P 2011 Crustal and lithospheric thinning beneath the seismogenic Kachchh rift zone, Gujrat (India): Its implication toward the generation of the 2001 Bhuj earthquake sequence; J. Asian Earth Sci. 40 150–161, https://doi.org/10.1016/j.jseaes.2010.08.012.

    Article  Google Scholar 

  • Mandal P 2016 Influence of Deccan volcanism/synrift magmatism on the crust–mantle structure and its implications for the seismogenesis of earthquakes occurring in the Kachchh rift zone; Geol. Soc. Spec. Publ. 445, https://doi.org/10.1144/SP445.6.

  • Manu Prasanth P, Hari K R and Santosh M 2019 Tholeiitic basalts of Deccan large igneous province, India: An overview; Geol. J. 54(5) 2980–2993, https://doi.org/10.1002/gj.3497.

    Article  Google Scholar 

  • Mathur K K, Dubey V S and Sharma N L 1926 Magmatic differentiation in Mount Girnar; J. Geol. 34(4) 289–307.

    Article  Google Scholar 

  • McKenzie D 1989 Some remarks on the movement of small melt fraction in the mantle; Earth Planet. Sci. Lett. 95 53–72, https://doi.org/10.1016/0012-821X(89)90167-2.

    Article  Google Scholar 

  • Melluso L, Sethna S F, Antonio M D, Javeri P and Bennio L 2002 Geochemistry and petrogenesis of sodic and potassic mafic alkaline rocks in the Deccan Volcanic Province, Mumbai Area (India); Mineral. Petrol. 74 323–342, https://doi.org/10.1007/s007100200009.

    Article  Google Scholar 

  • Melluso L, Sethna S F and Srivastava R K 2021 First occurrence of melilite, potassic richterite and tetraferriphlogopite in Deccan Trap-related alkaline rocks, and its petrogenetic significance: The Rajpuri ijolitenephelinite intrusion, Murud, Mumbai area, India; N. Jb. Miner. Abh. (J. Min. Geochem.), https://doi.org/10.1127/njma/2020/0236.

    Article  Google Scholar 

  • Melluso L, Beccaluva L, Brotzu P, Gregnanin A, Gupta A K, Morbidelli L and Traversa G 1995 Constraints on the Mantle Source of the Deccan Traps from the petrology and Geochemistry of the basalts of Gujarat State (Western India); J. Petrol. 36(5) 1393–1432, https://doi.org/10.1093/petrology/36.5.1393.

    Article  Google Scholar 

  • Mitchell R H 1995 Kimberlites, orangeites and related rocks; Plenum Press, New York, 410p.

    Book  Google Scholar 

  • Mitchell R H 2005 Carbonatites and carbonatites and carbonatites; Can. Mineral. 43 2049–2068, https://doi.org/10.2113/gscanmin.43.6.2049.

    Article  Google Scholar 

  • Mohan G and Ravi Kumar M 2004 Seismological constraints on the structure and composition of western Deccan Volcanic Province from converted phases; Geophys. Res. Lett. 31(2), https://doi.org/10.1029/2003GL018920.

  • Mohapatra R K and Murthy S V S 2002 Nitrogen and noble gas isotopes in mafic and ultramafic inclusions in the alkali basalts from Kutch and Reunion – implications for their mantle sources; J. Asian Earth Sci. 20(7) 867–877, https://doi.org/10.1016/S1367-9120(01)00070-0.

    Article  Google Scholar 

  • Mukherjee A B and Biswas S 1988 Mantle-derived spinel lherzolite xenoliths from the Deccan volcanic province (India): Implications for the thermal structure of the lithosphere underlying the Deccan traps; J. Volcanol. Geotherm. Res. 35(3) 269–276, https://doi.org/10.1016/0377-0273(88)90022-4.

    Article  Google Scholar 

  • Müller D 2002 Gold-copper mineralization in alkaline rocks; Mineral. Deposita 37 1–3, https://doi.org/10.1007/s00126-001-0226-7.

    Article  Google Scholar 

  • Müller D and Groves D I 1993 Direct and indirect associations between potassic igneous rocks, shoshonites and gold–copper deposits; Ore Geol. Rev. 85 383–406, https://doi.org/10.1016/0169-1368(93)90035-W.

    Article  Google Scholar 

  • Müller D and Groves D I 2000 Potassic igneous rocks and associated Gold–Copper mineralization; Springer, https://doi.org/10.1007/978-3-642-59665-0.

    Article  Google Scholar 

  • Nabi G, Siddiqui A, Farooqui M A and Baloch M A 2002 Geology geochemistry and tectonic settings of doleritic sills of Qila–Saifullah district, Balochistan, Pakistan; Acta Mineralogica Pakistanica 13 41–51.

    Google Scholar 

  • Nagabhushnam B, Durai Raju S, Mundra K L, Rai S D, Purohit R K, Verma M B and Nanda L K 2018 LREE–Nb mineralisation in the southwestern part of Amba Dongar carbonatite complex, Chhota Udaipur district, Gujarat; Curr. Sci. 114(8) 1608–1610.

    Article  Google Scholar 

  • Narayan Das G R, Bagchi A K, Chaube D N, Sharma C V and Navaneetham K V 1978 Rare metal content, geology and tectonic setting of the alkaline complexes across the Trans Aravalli region, Rajasthan; Rec. Res. Geol. 7 201–217.

    Google Scholar 

  • Naushad Md, Dongre A, Behera J R, Murthy P V R and Chakra M 2019 Mineralogy of new occurrence of lamprophyre dyke from the Saurashtra peninsula of Gujrat, Northwest Deccan Trap, India; J. Geol. Soc. India 93 629–637, https://doi.org/10.1007/s12594-019-1241-6.

    Article  Google Scholar 

  • Newlay S K and Pashine J 1993 New find of diamond-bearing kimberlite in Raipur district, Madhya Pradesh, India; Curr. Sci. 65(4) 292–293.

    Google Scholar 

  • O’Reilly S Y and Griffin W L 2000 Apatite in the mantle: Implication for metasomatism processes and high heat production in Phanerozoic mantle; Lithos 53 217–232, https://doi.org/10.1016/S0024-4937(00)00026-8.

    Article  Google Scholar 

  • Ottens B, Gotze J, Schuster R, Krenn K, Hauzenberger C, Zsolt B and Vennemann T 2019 Exceptional multi-stage mineralization of secondary minerals in cavities of flood basalts from the Deccan Volcanic Province, India; Minerals 9(6) 351, https://doi.org/10.3390/min9060351.

    Article  Google Scholar 

  • Owen-Smith T M, Ashwal L D, Torvik T H, Ganerød M, Nebel O, Webb S J and Wener S C 2013 Seychelles alkaline suite records the culmination of Deccan Traps continental flood vocanism; Lithos 182–183 33–47, https://doi.org/10.1016/j.lithos.2013.09.011.

    Article  Google Scholar 

  • Palmer D A S and William-Jones A E 1996 Genesis of carbonatite-hosted fluorite deposits at Amba Dongar, India: Evidence from fluid inclusion, stable isotopes and whole rock mineral geochemistry; Econ. Geol. 91 934–950, https://doi.org/10.2113/gsecongeo.91.5.934.

    Article  Google Scholar 

  • Pande K, Venkatesan T R, Gopalan K, Krishnamurthy P and MacDougall J D 1988 40Ar/39Ar ages of alkali basalts from Kutch, Deccan Volcanic Province, India; Geol. Soc. India Memoir 10 145–150.

    Google Scholar 

  • Pande K, Cucciniello C, Sheth H, Vijayan A, Sharma K K, Purohit R, Jagadeesan K C and Shinde S 2017 Polychronous (Early Cretaceous to Palaeogene) emplacement of the Mundwara alkaline complex, Rajasthan, India: 40Ar/39Ar geochronology, petrochemistry and geodynamics; Int. J. Earth Sci. 106 1487–1504, https://doi.org/10.1007/s00531-016-1362-8.

    Article  Google Scholar 

  • Pandey A, Chalapathi Rao N V, Pandit D, Pankaj P, Pandey R, Sahoo S and Kumar A 2017a Subduction-tectonics in the evolution of the eastern Dharwar craton, southern India: Insight from the post-collisional calc-alkaline lamprophyres at the western margin of the Cuddapah basin; Precamb. Res. 298 235–251, https://doi.org/10.1016/j.precamres.2017.06.004.

    Article  Google Scholar 

  • Pandey A, Pandey R, Pandit D, Pankaj P and Chalapathi Rao N V 2017b A note on the origin of Clinopyroxene megacrysts from the Udiripikonda lamprophyre, Eastern Dharwar craton, southern India; J. Indian Geophys. Union 21 124–131.

    Google Scholar 

  • Pandey R, Chalapathi Rao N V, Pandit D, Sahoo S and Dhote P 2017c Imprints of modal metasomatism in the post-Deccan subcontinental lithospheric mantle: Petrological evidence from an ultramafic xenolith in an Eocene lamprophyre, NW India; J. Geol. Soc. London, Spec. Publ. 463 117–136, https://doi.org/10.1144/SP463.6.

    Article  Google Scholar 

  • Pandey A, Chalapathi Rao N V, Chakrabarti R, Pankaj P, Pandit D, Pandey R and Sahoo S 2018a Post-collisional calc-alkaline lamprophyres from the Kadiri greenstone belt: Evidence for the Neoarchean convergence-related evolution of the Eastern Dharwar Craton and its schist belts; Lithos 320–321 106–117, https://doi.org/10.1016/j.lithos.2018.09.005.

    Article  Google Scholar 

  • Pandey R, Chalapathi Rao N V, Dhote P, Pandit D, Chaudhary A K, Sahu S and Lehmann B 2018b Rift-associated ultramafic lamprophyre (damtjernite) from the middle part of the Lower Cretaceous (125 Ma) succession of Kutuch, northwestern India: Tectonomagmatic implication; Geosci. Frontiers 9 1883–1902, https://doi.org/10.1016/j.gsf.2017.10.013.

    Article  Google Scholar 

  • Pandey R, Sahoo S, Pandit D, Pandey M and Chalapathi Rao N V 2018c Recurrent lamprophyre magmatism in the Narmada rift zone: Petrographic and mineral chemistry evidence from xenoliths in the Eocene Dongargaon lamprophyre, NW Deccan Large Igneous Province; India. J. Indian Inst. Sci. 98(4) 401–415, https://doi.org/10.1007/s41745-018-0074-4.

    Article  Google Scholar 

  • Pandey R, Pandey A, Chalapathi Rao N V, Belyatsky B, Choudhary A K, Lehmann B, Pandit D and Dhote P 2019 Petrogenesis of end Cretaceous/Early Eocene lamprophyres from the Deccan Large Igneous Province: Constraints on plume lithosphere interaction and the post-Deccan lithosphere-asthenosphere boundary (LAB) beneath NW India; Lithos 346–347 105139, https://doi.org/10.1016/j.lithos.2019.

    Article  Google Scholar 

  • Parisio L, Jourdan F, Marzoli A, Melluso L, Sethna S F and Bellieni G 2016 40Ar/39Ar ages of the alkaline and thoeiitic rocks from the northern Deccan Traps: Implications for magmatic processes and the K–Pg boundary; Geol. Soc. London 173(4) 679, https://doi.org/10.1144/jgs2015-133.

    Article  Google Scholar 

  • Paul D K, Potts P J, Rex D C and Beckinsale R D 1977 Geochemistry and petrogenetic study of the Girnar igneous complex, Deccan volcanic province, India; Bull. Geol. Soc. Am. 88 227–234, https://doi.org/10.1130/0016-7606(1977)88<227:GAPSOT>2.0.CO;2.

    Article  Google Scholar 

  • Paul D K, Ray A, Das B, Patil S K and Biswas S K 2008 Petrology, geochemistry and paleomagnetism of the earliest magmatic rocks of Deccan Volcanic Province, Kutch Northwest India; Lithos 102 237–259, https://doi.org/10.1016/j.lithos.2007.08.005.

    Article  Google Scholar 

  • Paul D, Chandra J and Halder M 2019 Proterozoic Alkaline rocks and carbonatites of Peninsular India: A review; Episodes 43(1) 249–277, https://doi.org/10.18814/epiiugs/2020/020015.

    Article  Google Scholar 

  • Pearce J A, Bender J F, De Long S E, Kidd W S F, Low P J, Güner Y, Saroglu F, Yilmaz Y, Moorbath S and Mitchell J G 1990 Genesis of collisional volcanism in Eastern Anatolia, Turkey; J. Volcal. Geotherm. Res. 44 189–229, https://doi.org/10.1016/0377-0273(90)90018-B.

    Article  Google Scholar 

  • Pyle D M, Dawson J B and Ivanovich M 1991 Short-lived decay series disequilibria in the natrocarbonatite lavas of OldoinyoLengai, Tanzania: Constraints on the timing of magma genesis; Earth Planet. Sci. Lett. 105(4) 378–396, https://doi.org/10.1016/0012-821X(91)90179-L.

    Article  Google Scholar 

  • Rajaram M, Anand S P, Hemant K and Purucker M E 2009 Curie isotherm map of Indian subcontinent from satellite and aeromagnetic data; Earth Planet. Sci. Lett. 281(3–4) 147–158, https://doi.org/10.1016/j.epsl.2009.02.013.

    Article  Google Scholar 

  • Raju A T R, Chaube A N and Chowdhary L R 1971 Deccan Trap and the geologic framework of the Cambay basin; Bull. Volcanol. 35 521–538, https://doi.org/10.1007/BF02596826.

    Article  Google Scholar 

  • Rajaram M, Anand S P, Erram V C and Shinde B N 2016 Insight into the structures below the Deccan Trap-covered region of Maharashtra, India from geopotential data; Geol. Soc. London, Spec. Publ. 445, https://doi.org/10.1144/SP445.8.

  • Randive K R, Prasad G J S, Anil Kumar A, Rama Rao R, Bhaskar Rao Y J and Dayal A M 2005 Picrobasalt and lamprophyre dyke swarm of Bakhatgarh–Phulmal area, Chhota Udaipur alkaline Complex, Deccan Igneous Complex; Indian J. Geochem. 20 191–212.

    Google Scholar 

  • Randive K R 2008 Compositional variation of micas from the lamprophyre dykes of Bakhatgarh–Phulmal area, Jhabua district, MP, India; In: Indian dykes: Geochemistry, Geophysics and Geochronology (eds) Srivastava R K, Sivaji Ch and Chalapathi Rao N V, Narosa Publishing, New Delhi, India, pp. 133–141.

    Google Scholar 

  • Randive K R, Sahu M K, Lanjewar S and Belyatsky B 2012 Eocene (~55 Ma) age for the lamprophyre dyke of Chota Udaipur carbonatite-alkaline subprovince, Lower Narmada Valley, Gujarat and Madhya Pradesh States, India; Tenth International Kimberlite Conference (Extended abstract).

  • Rathore S S, Venkatesan T R and Srivastava R K 1996 Mundwara Alkali Igneous Complex, Rajasthan, India: Chronology and Sr Isotope Systematics; J. Geol. Soc. India 91 517–528.

    Google Scholar 

  • Ray A, Patil S K, Paul D K, Biswas S K, Das B and Pant N C 2006 Petrology, geochemistry and magnetic properties of Sadara sill: Evidence of rift related magmatism from Kutch basin, northwest India; J. Asian Earth Sci. 27(6) 907–921, https://doi.org/10.1016/j.jseaes.2005.09.006.

    Article  Google Scholar 

  • Ray J S and Pande K 1991 Carbonatite alkaline magmatism associated with continental flood basalts at stratigraphic boundaries: Cause for mass extinctions; Geophys. Res. Lett. 26 1917–1920, https://doi.org/10.1029/1999GL900390.

    Article  Google Scholar 

  • Ray J S and Ramesh R 2006 Stable carbon and oxygen isotopic compositions of Indian carbonatites; Int. Geol. Rev. 48(1) 17–45, https://doi.org/10.2747/0020-6814.48.1.17.

    Article  Google Scholar 

  • Ray J S and Ramesh R 1999 A fluid-rock interaction model for carbon and oxygen isotopic variations in altered carbonatites; J. Geol. Soc. India 54(2) 179–186.

    Google Scholar 

  • Ray J S and Shukla P N 2004 Trace element geochemistry of Amba Dongar carbonatite complex, India: Evidence for fractional crystallization and silicate-carbonate melt immiscibility; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113(4) 519–531.

    Article  Google Scholar 

  • Ray A, Paul D K, Sen G and Biswas K 2014 Carbonatite-silicate immiscible melt inclusions in lamprophyre from Kutch, western India: Implication for plume-lithosphere interaction and initiation of Deccan Trap magmatism; Geophys. Res. Abstracts 16 1503.

    Google Scholar 

  • Ray A, Hatui K, Paul D K, Sen G, Biswas S and Das B 2016 Mantle xenoliths-xenocryst-bearing monogenetic alkali basaltic lava field from Kutch Basin, Gujrat, Western India: Estimation of magma ascent rate; J. Volcanol. Geotherm. Res. 312 40–52, https://doi.org/10.1016/j.jvolgeores.2016.01.015.

    Article  Google Scholar 

  • Ray J S, Ramesh R, Pande K, Trivedi J R, Shukla P N and Patel P P 2000 Isotope and rare earth element chemistry of carbonatite–alkaline complexes of Deccan volcanic province: Implications to magmatic and alteration processes; J. Asian Earth Sci. 18(2) 177–194, https://doi.org/10.1016/S1367-9120(99)00030-9.

    Article  Google Scholar 

  • Reddy P R, Kotesswara Rao P and Kalachand Sain 1999 Crustal configuration of the Narmada–Son lineament in Central India from deep seismic sounding studies; Geol. Soc. India Memoir 43 353–365.

    Google Scholar 

  • Rock N M S 1991 Lamprophyres; Blackie and Son Ltd., Glasgow, 285p.

    Book  Google Scholar 

  • Rock N M S, Gwalani L G and Griffin B J 1994 Alkaline rocks and carbonatites of Amba Dongar and adjacent areas, Decaan Alkaline Province, Gujrat, India, 2. Complexly zoned clinopyroxene phenocrysts; Mineral. Petrol. 51 113–135, https://doi.org/10.1007/BF01159723.

    Article  Google Scholar 

  • Ross P and Bedard J H 2009 Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams; Can. J. Earth Sci. 46 823–832, https://doi.org/10.1139/E09-054.

    Article  Google Scholar 

  • Rudnick R L and Gao S 2003 The composition of the continental crust; In: Treatise on Geochemistry (eds) Holland H D and Turekian K K, Vol. 3, The Crust, Elsevier-Pergamon, Oxford, 64p., https://doi.org/10.1016/b0-08-043751-6/03016-4.

  • Sahoo S, Chalapathi Rao N V, Monié P, Belyatsky B, Dhote P and Lehmann B 2020 Petro-geochemistry, Sr–Nd isotopes and 40Ar/39Ar ages of fractionated alkaline lamprophyres from the Mount Girnar igneous complex (NW India): Insights into the timing of magmatism and the lithospheric mantle beneath the Deccan large Igneous Province; Lithos 374–375, https://doi.org/10.1016/j.lithos.2020.105712.

  • Sahu R, Kumar A, Subbarao K V, Walsh J N and Biswal T K 2003 Rb–Sr age and Sr isotopic composition of alkaline dykes near Mumbai: Further evidence for the Deccan trap-Réunion plume connection; J. Geol. Soc. India 62 641–646.

    Google Scholar 

  • Sant D A, Karanth R V and Jadhav P C 1991 A Note on the occurrence of carbonatite dykes in the Lower Narmada Valley; J. Geol. Soc. India 37 119–127.

    Google Scholar 

  • Sarkar A and Bhattacharya S K 1992 Carbonatites from Rajasthan indicate mantle carbon- and oxygen-isotope composition; Curr. Sci. 62 368–370.

    Google Scholar 

  • Schweitzer E L, Papike J J and Bence A E 1979 Statistical analysis of clinopyroxenes from deep-sea basalts; Am. Mineral. 64 501–513.

    Google Scholar 

  • Sen G, Bizimis M, Das R, Paul D K, Ray A and Biswas S 2009 Deccan plume, lithosphere rifting, and volcanim in Kutch, India; Earth Planet. Sci. Lett. 277 101–111, https://doi.org/10.1016/j.epsl.2008.10.002.

    Article  Google Scholar 

  • Sen A, Pande K, Hegner E, Sharma K K, Dayal A M, Sheth H C and Mistry H 2012 Deccan volcanism in Rajasthan: 40Ar/39Ar geochronology and geochemistry of the Tavidar volcanic suite; J. Asian Earth Sci. 59 127–140, https://doi.org/10.1016/j.jseaes.2012.07.021.

    Article  Google Scholar 

  • Sen G, Hames W E, Paul D K, Biswas S K, Ray A and Sen I S 2016 Pre Deccan and Deccan Magmatism in Kutch, India: Implications of New 40Ar/39Ar Ages of Intrusions; Geol. Soc. India Spec. Publ. 6 211–222.

    Google Scholar 

  • Sethna S F 1989 Petrology and geochemistry of the acid, intermediate and alkaline rocks associated with the Deccan basalts in Gujarat and Maharashtra; Geol. Soc. India Memoir 15 74–61.

    Google Scholar 

  • Sethna S F and D’sa C P R 1991 Occurrence of ijolite with veinlets of carbonatite in the Deccan Trap at Murud–Janjira, Maharashtra, India; J. Geol. Soc. India 37(3) 257–263.

    Google Scholar 

  • Sharma A, Kumar D, Sahoo S, Pandit D and Chalapathi Rao N V 2018 Chrome-diopside Megacryst-bearing Lamprophyre from the Late Cretaceous Mundwara Alkaline complex, NW India: Petrological and Geodynamic Implications; J. Geol. Soc. India 91 395–399, https://doi.org/10.1007/s12594-018-0871-4.

    Article  Google Scholar 

  • Sharma A, Sahoo S, Chalapathi Rao N V, Belyatsky B, Dhote P and Lehmann 2021a Petrology and Nd–Sr isotopic composition of alkaline lamprophyres from the Early to Late Cretaceous Mundwara Alkaline Complex, NW India: Evidence of crystal fractionation, accumulation and corrosion in a complex magma chamber plumbing system; Geol. Soc. London, Spec. Publ. 513, https://doi.org/10.1144/SP513-2020-175.

  • Sharma A, Pandey R, Chalapathi Rao N V, Sahoo S, Belyatsky B and Dhote P 2021b Mineralogy and petrology of lamprophyre and dolerite dykes from the end-Cretaceous (~66 Ma) Phenaimata alkaline igneous complex, north-western India: Evidence for open magma chamber fractionation, mafic recharge, and disaggregation of crystal mush zone in a large igneous province; Mineral. Petrol., https://doi.org/10.1007/s00710-021-00770-y.

    Article  Google Scholar 

  • Shastry A and Kumar S 1996 Trace and rare earth elements geochemistry of alkaline rocks of Sarnu–Dandali, Barmer, Rajasthan; J. Geol. Soc. India 48 663–670.

    Google Scholar 

  • Sheth H C and Chandrasekharam D 1997 Early alkaline magmatism in the Deccan Traps: Implications for plume incubation and lithospheric rifting; Phys. Earth Planet. Int. 104 371–376, https://doi.org/10.1016/S0031-9201(97)00027-7.

    Article  Google Scholar 

  • Sheth H C and Melluso L 2008 The Mount Pavagadh volcanic suite, Deccan Traps: Geochemical stratigraphy and magmatic evolution; J. Asian Earth Sci. 32 5–21, https://doi.org/10.1016/j.jseaes.2007.10.001.

    Article  Google Scholar 

  • Sheth H C, Zellmer G F, Demonterova E I, Ivanov A V, Kumar R and Patel R K 2013 The Deccan tholeiite lavas and dykes of Ghatkopar–Powai area, Mumbai, Panvel flexure zone: Geochemistry, stratigraphic status, and tectonic significance; J. Asian Earth Sci. 84 69–82, https://doi.org/10.1016/j.jseaes.2013.05.007.

    Article  Google Scholar 

  • Sheth H, Pande K, Vijayan A, Sharma K K and Cuccinello C 2017 Recurrent Early Cretaceous, Indo-Madagascar (89–86 Ma) and Deccan (66 Ma) alkaline magmatism in the Sarnu–Dandali complex, Rajasthan: 40Ar/39Ar age evidence and geodynamic significance; Lithos 284–285 512–524, https://doi.org/10.1016/j.lithos.2017.05.005.

    Article  Google Scholar 

  • Simandl G J and Paradis S 2018 Carbonatites: Related ore deposits, resources, footprint, and exploration methods; Appl. Earth Sci. 127 123–152, https://doi.org/10.1080/25726838.2018.1516935.

    Article  Google Scholar 

  • Simonetti A, Bell K and Viladkar S G 1995 Isotopic data from the Amba Dongar carbonatite Complex, west-central India: Evidence for an enriched mantle source; Chem. Geol. 122 185–198, https://doi.org/10.1016/0009-2541(95)00004-6.

    Article  Google Scholar 

  • Simonetti A, Goldstein S L, Schmidberger S S and Viladkar S G 1998 Geochemical and Nd, Pb, and Sr isotope data from Deccan Alkaline Complex –- Inferences for mantle source and plume-lithosphere interaction; J. Petrol. 39(11–12) 1847–1864, https://doi.org/10.1093/petroj/39.11-12.1847.

    Article  Google Scholar 

  • Singh B, Prabhakara Rao M R K, Prajapati S K and Swarnpriya Ch 2014 Combined gravity and magnetic modeling over Pavagadh and Phenaimata igneous complex, Gujarat, India: Inference on emplacement history of Deccan volcanism; J. Asian Earth Sci. 80 119–133, https://doi.org/10.1016/j.jseaes.2013.11.005.

    Article  Google Scholar 

  • Singh Y 2020 Rare earth element resource: Indian context; Society of Earth Scientists Series, Springer, https://doi.org/10.1007/978-3-030-41353-8.

  • Sørensen H 1974 The alkaline rocks; John Wiley and Sons Ltd., 622p.

  • Srivastava R K 1994 Petrology. Petrochemistry and genesis of the alkaline rocks associated with the Amba Dongar carbonatite complex, Baroda district, Gujrat, India; J. Geol. Soc. India 43 23–39.

    Google Scholar 

  • Srivastava R K 1997 Petrology, geochemistry and genesis of rift-related carbonatites of Ambadungar, India; Mineral. Petrol. 61 47–66, https://doi.org/10.1007/BF01172477.

    Article  Google Scholar 

  • Srivastava R K and Taylor L A 1996 Carbon- and oxygen-isotope variations in Indian carbonatites; Int. Geol. Rev. 38(5) 419–429, https://doi.org/10.1080/00206819709465344.

    Article  Google Scholar 

  • Srivastava R K 1989 Alkaline and peralkaline rocks of Rajasthan; Geol. Soc. India Memoir 15 3–25.

    Google Scholar 

  • Stoppa F, Rukhlov A S, Bell K, Schiazza M and Vichi G 2014 Lamprophyres of Italy: Early Cretaceous alkaline lamprophyres of Southern Tuscany, Italy; Lithos 188 97–112, https://doi.org/10.1016/j.lithos.2013.10.010.

    Article  Google Scholar 

  • Subba Rao S 1971 Alkaline rocks of the Deccan traps; Bull. Volcanol. 35 998–1011, https://doi.org/10.1007/BF02596861.

    Article  Google Scholar 

  • Subrahmaniam N P and Leelanandam C 1989 Differentiation due to probable liquid immiscibility in the Musala pluton of the Mundwara alkali igneous complex, Rajasthan, India; In: Alkaline rocks (ed.) Leelanandam C, Geol. Soc. India Memoir 15 25–46.

  • Subrahmaniam N P and Rao G V U 1977 Petrography, geochemistry and origin of the carbonatite veins of Mer pluton, Mundwara igneous complex, Rajasthan; J. Geol. Soc. India 18 306–322.

    Google Scholar 

  • Subrahmaniam N P, Murali A V and Rao G V U 1972 Age of Mundwara igneous complex, Rajasthan; Curr. Sci. 41 63–64.

    Google Scholar 

  • Subramaniam A P and Parimoo M L 1963 Fluorspar Mineralization related to Deccan Basalt Volcanism at Amba Dongar, Baroda District, India; Nature 198 563–564, https://doi.org/10.1038/198563a0.

    Article  Google Scholar 

  • Sukheswala R N 1982 Igneous Complex of Mount Girnar Saurastra, Gujrat: A reappraisal; J. Geol. Soc. India 23 13–18.

    Google Scholar 

  • Sukheswala R N and Avasia R K 1972 Carbonatite-alkalic complex of Panwad–Kawant, Gujarat, and its bearing on the structural characteristics of the area; Bull. Volcanol. 35 564–578, https://doi.org/10.1007/BF02596828.

    Article  Google Scholar 

  • Sukheswala R N and Avasia R K 1966 Nepheline syenite in the Deccan Traps of Jawhar, Bombay; J. Geol. Soc. India 7 86–91.

    Google Scholar 

  • Sukheswala R N and Sethna S F 1969 Layered gabbro of the composite plug of Phenai Mata, Gujarat State; J. Geol. Soc. India 10 177–187.

    Google Scholar 

  • Sukheswala R N and Poldervaart A 1958 Deccan basalts from the Bombay area; Bull. Geol. Soc. Amer. 69 1474–1494, https://doi.org/10.1130/0016-7606(1958)69[1473:DBOTBA]2.0.CO;2.

    Article  Google Scholar 

  • Sukheswala R N and Udas G R 1963 Carbonatite of Amba Dongar (Gujrat State) and its economic potentialities; Sci. Cult. 29 563–568.

    Google Scholar 

  • Sukheswala R N, Shah S D and Antao F B 1964 A note on subaqueous basalt (Deccan Trap around Bodhan, Surat District), Gujarat State; Ind. Minerals 18(3) 227–233.

    Google Scholar 

  • Sun S S and McDonough W F 1989 Chemical and isotopic systematic of oceanic basalt: Implication for mantle composition and processes; Geol. Soc. London, Spec. Publ. 42 313–345.

    Article  Google Scholar 

  • Talusani R V R 2001 A newly reported alkali basalt flow near Bhir, Deccan Volcanic Province, India; J. Asian Earth Sci. 19(4) 501–506, https://doi.org/10.1016/S1367-9120(00)00050-X.

    Article  Google Scholar 

  • Talusani R V R 2010 Bimodal tholeiitic and mildly alkalic basalts from Bhir area, central Deccan Volcanic Province, India: Geochemistry and petrogenesis; J. Volcanol. Geotherm. Res. 189 278–290, https://doi.org/10.1016/j.jvolgeores.2009.11.019.

    Article  Google Scholar 

  • Tappe S, Smart K, Torsvik T, Massuyeau M and de Whouit M 2018 Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles; Earth Planet. Sci. Lett. 484 1–14, https://doi.org/10.1016/j.epsl.2017.12.013.

    Article  Google Scholar 

  • Thakkar M G, Chauhan G, Shah Y, Jain C, Chavada B, Lakhote A, Bhosale S and Mistry C P 2021 Nepheline syenite and related rocks at Meruda Takkar hill, northern Kachchh: Neoproterozoic Malani basement or Mesozoic alkaline magmatism?; J. Earth Syst. Sci. 130(4), https://doi.org/10.1007/s12040-020-01493-y.

  • Thompson R N and Gibson S A 2000 Transient high temperatures in Mantle plume heads inferred from magnesian olivines in Phanerozoic picrites; Nature 407 502–505, https://doi.org/10.1038/35035058.

    Article  Google Scholar 

  • Udas G R 1971 Economic importance of some carbonatites in India and the relation of Amba Dongar carbonatite complex to plateau basalts; Bull. Volcanol. 35 799–809, https://doi.org/10.1007/BF02596846.

    Article  Google Scholar 

  • Udas G R 1974 Geochemistry of Pre-Cambrian carbonatite complexes of India: Present status of and gaps in our knowledge; J. Geol. Soc. India 7 457–462.

    Google Scholar 

  • Veenakrishna, Pandey B K, Krishnamurthy P, Chabria T and Gupta J N 1993 Sr and Nd isotopic data and Rb–Sr age on the Amba Dongar–Siriwasan alkaline complex and its relation to the Deccan Trap volcanism; 6th National Symp. Mass. Spectro., pp. 515–517.

  • Vijaya Kumar J and Randive K 2021 Platinum group elements in lamprophyre, Picrobasalt gabbro and basalts of the Phenai Mata and nearby areas: Implications for Fe–Ni–Cu–PGE mineralization in the Deccan large Igneous Province; Geol. Soc. London, Spec. Publ. 513, https://doi.org/10.1144/SP513-2020-265.

  • Vijayan A, Sheth H and Sharma K K 2016 Tectonic significance of dykes in the Sarnu–Dandali alkaline complex, Rajasthan, northwestern Deccan Traps; Geosci. Frontiers 7 783–791, https://doi.org/10.1016/j.gsf.2015.09.004.

    Article  Google Scholar 

  • Viladkar S G 1998 Carbonatite occurrences in Rajasthan, India; Petrology 6(3) 272–283.

    Google Scholar 

  • Viladkar S G 2010 The origin of pseudoleucite in Tinguaite, Ghori, India: A re-evaluation; Petrology 18(5) 544–554.

    Article  Google Scholar 

  • Viladkar S G 2015 Mineralogy and geochemistry of fenitized nephelinites of the Amba Dongar Complex, Gujrat; J. Geol. Soc. India 85 87–97, https://doi.org/10.1007/s12594-015-0196-5.

    Article  Google Scholar 

  • Viladkar S G 2000 Phlogopite as an indicator of magmatic differentiation in the Amba Dongar carbonatite, Gujrat, India; N. Jb. Miner. Mh. 7(7) 302–314.

    Google Scholar 

  • Viladkar S G and Dulski P 1986 Rare earth element abundances in cebonatites, alkaline rocks and fenites of the Amba Dongar complex, Gujrat, India; N. Jb. Miner. Mh. 1 37–48.

    Google Scholar 

  • Viladkar S G and Avasia R K 1992 Pyroxene from alkaline rocks of the Chhota Udaipur carbonatite-Alkalic Province, Gujarat, India; J. Geol. Soc. India 39 313–319.

    Google Scholar 

  • Viladkar S G and Avasia R K 1994 Analcime-phonolite and associated alkaline rocks of Panwad–Kawant Complex, Gujarat, India; Chem. Erde 54 46–66.

    Google Scholar 

  • Viladkar S G and Schidlowski M 2000 Carbon and oxygen isotope geochemistry of the Amba Dongar carbonatite complex, Gujarat, India; Gondwana Res. 3 415–424, https://doi.org/10.1016/S1342-937X(05)70299-9.

    Article  Google Scholar 

  • Viladkar S G and Gittins J 2016 Trace elements and REE geochemistry of Siriwasan Carbonatite, Chhota Udaipur, Gujarat; J. Geol. Soc. India 87 709–715.

    Article  Google Scholar 

  • Viladkar S G, Ramesh R, Avasia R K and Pawaskar P B 2005 Extrusive phase of carbonatite-alkalic activity in Amba Dongar complex, Chhota Udaipur, Gujrat; J. Geol. Soc. India 66(3) 273–276.

    Google Scholar 

  • Vishwanathan S 1977 Differentiated dykes rocks of Mer Mundwara, Rajasthan and their metallogenic significance; Geol. Mag. 114(4) 291–298, https://doi.org/10.1017/S0016756800045088.

    Article  Google Scholar 

  • West W D 1958 The petrography and petrogenesis of the forty-eight flow of Deccan trap penetrated by borings in western India; Trans. Nat. Geol. Ind. 4 1–56.

    Google Scholar 

  • Wiedenbeck M, Goswami J N and Roy A B 1996 Stabilization of the Aravali Craton of northwestern India at 2.5 Ga: An ion microprobe zircon study; Chem. Geol. 129(3–4) 325–340, https://doi.org/10.1016/0009-2541(95)00182-4.

    Article  Google Scholar 

  • Williams-Jones A E and Palmer D A S 2002 The evolution of aqueous-carbonic fluids in the Amba Dongar carbonatites, India: Implication for fenitisation; Chem. Geol. 185(3–4) 283–301, https://doi.org/10.1016/S0009-2541(01)00409-0.

    Article  Google Scholar 

  • Wilson M and Bianchini G 1999 Tertiary-Quaternary magmatism within the Mediterranean and surrounding regions; Geol. Soc. London, Spec. Publ. 156 141–168, https://doi.org/10.1144/GSL.SP.1999.156.01.09.

    Article  Google Scholar 

  • Winter J D 2010 Principles of Igneous and Metamorphic Petrology; Pearson Education.

  • Woolley A R and Kempe D R C 1989 Carbonatites: Nomenclature, average chemical compositions and element distribution; In: Carbonatites: Genesis and evolution (ed.) Bell K, Unwin Hyman, London, pp. 1–14.

    Google Scholar 

  • Zindler A and Hart S 1986 Chemical geodynamics; Ann. Rev. Earth Planet. Sci. 14 493–571, https://doi.org/10.1146/annurev.ea.14.050186.002425.

    Article  Google Scholar 

Download references

Acknowledgements

It is a great pleasure to contribute to this special issue in memory of Prof Gautam Sen with whom one of us (NVCR) was closely associated for several years. We tried to accommodate as many relevant references as possible in this review, and any exclusion (given the magnitude of the literature available) is inadvertent, unintentional and constrained by the page limit and we solicit an understanding and pardon by the aggrieved author, if any. We are thankful to the Head, Department of Geology, BHU, Varanasi for his support. NVCR thanks DST-SERB, New Delhi for granting research projects on the alkaline rocks (No. SR/S4/ES-554/2011 and IR/S4/ESF-18/2011 dated 12.11.2013) and Institute of Eminence Project (IoE). IoE and UGC are also acknowledged by RP for seed grant and start-up grant projects. MKS thanks CSIR-New Delhi for awarding an SRF (NET). CSIR is also acknowledged for awarding JRF to DT. We also thank Samrendra Sahoo, B Lehmann, Abhinay Sharma and Prashant Dhote for their help and assistance during our study on the Deccan-related alkaline rocks. Insightful reviews by four anonymous journal reviewers and editorial comments by Jyotisankar Ray are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Rohit Pandey: Data compilation, interpretation and manuscript drafting; N V Chalapathi Rao: Conceptualization, overall supervision, and finalization of the manuscript; Mahendra K Singh: Data compilation, graphic preparation and manuscript drafting; Debojit Talukdar: Compilation, interpretation and manuscript drafting.

Corresponding author

Correspondence to N V Chalapathi Rao.

Additional information

Communicated by: Jyotisankar Ray

This article is part of the Topical Collection: Deccan Traps and other Flood Basalt Provinces – Recent Research Trends.

Supplementary materials pertaining to this article are available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Below is the link to the electronic supplementary material.

12040_2022_1852_MOESM1_ESM.tif

Supplementary file 1 Supplementary figure S1. (A) Total-alkali silica diagram for different alkaline rocks associated with the Deccan. Majority of the alkali basalts are restricted to basaltic and basanite composition while maximum variation is shown by miscellaneous alkaline rocks (after Le Bas et al. 1986). A good positive correlation is apparent between total alkalis with increasing silica for Deccan lamprophyres suggesting a strong control of differentiation on the alkali content of these rocks. (B) Co (ppm) vs. Th (ppm) bi-variant plot for the Deccan lamprophyres displaying a high K calc-alkaline to shoshonitic nature (after Hastie et al. 2007). (C) Zr/Y vs. Th/Yb discrimination plot for the Deccan lamprophyres depicting their calc-alkaline nature (after Ross and Bedard 2009). (TIF 674 kb)

12040_2022_1852_MOESM2_ESM.tif

Supplementary file 2 Supplementary figure S2. Bi-variant plot for the Deccan alkali basalts (A) MgO (wt%) vs. Zr (ppm), (B) FeO (wt %) vs. Zr (ppm), (C) MgO (wt%) vs. Y (ppm), (D) FeO (wt%) vs. Y (ppm), and (E) AFM plot (A = Na2O + K2O; F = FeOt; M = MgO) for Deccan alkali basalt displaying their calc-alkaline to tholeiitic nature (after Irvine and Baragar 1971), and (F) CaO vs. P2O5 bi-variant plot for the Deccan carbonatites depicting an overall scatter which highlights the presence of cumulus crystals of apatite rather than effects of fractionation. (TIF 747 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, R., Rao, N.V.C., Singh, M.K. et al. Alkaline rocks from the Deccan Large Igneous Province: Time–space distribution, petrology, geochemistry and economic aspects. J Earth Syst Sci 131, 108 (2022). https://doi.org/10.1007/s12040-022-01852-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-01852-x

Keywords

Navigation