Skip to main content
Log in

Synthesis, characterization and application of magnetic mesoporous Fe3O4@Fe-Cu/MCM‐41 as efficient and recyclable nanocatalyst for the Buchwald-Hartwig C-N cross-coupling reaction

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

MCM-41 supported Cu and Fe with magnetic core (Fe3O4@Fe-Cu/MCM-41) was prepared and applied as a nanostructured catalyst in the Buchwald-Hartwig C-N cross-coupling reaction. The textural properties of the core-shell catalyst have been studied by means of XRD, FTIR, SEM, EDX, BET, and VSM techniques. The catalyst samples with various Si:Cu:Fe molar ratios were used in the C-N coupling, and the reaction data shows that Fe3O4@Fe-Cu/MCM-41 with Si:Cu:Fe molar ratio of 60:1.5:1 has a better catalytic performance. The prepared catalyst can be recovered and reused several times without any significant decrease in activity and magnetic properties.

Graphical abstract

MCM-41 supported Cu and Fe with magnetic core (Fe3O4@Fe-Cu/MCM-41) was prepared and applied as a nanostructured catalyst in the Buchwald-Hartwig C-N cross-coupling reaction. The catalyst with Si:Cu:Fe molar ratio of 60:1.5:1 has better catalytic performance and can be recovered and reused several times without any significant decrease in activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ahneman D T, Estrada J G, Lin S, Dreher S D and Doyle A G 2018 Predicting reaction performance in C-N cross-coupling using machine learning Science 360 186

    Article  CAS  PubMed  Google Scholar 

  2. Horton D A, Bourne G T and Smythe M L 2003 The combinatorial synthesis of bicyclic privileged structures or privileged substructures Chem. Rev. 103 893

    Article  CAS  PubMed  Google Scholar 

  3. Bikker J A, Brooijmans N, Wissner A and Mansour T S 2009 Kinase domain mutations in cancer: implications for small molecule drug design strategies J. Med. Chem. 52 1493

    Article  CAS  PubMed  Google Scholar 

  4. Douglas G E, Raw S A and Marsden S P 2019 Iron-Catalysed Direct Aromatic Amination with N-Chloroamines Eur. J. Org. Chem. 2019 5508

    Article  CAS  Google Scholar 

  5. Dhital R N, Sen A, Sato T, Hu H, Ishii R, Hashizume D, et al. 2020 Activator-Promoted Aryl Halide-Dependent Chemoselective Buchwald-Hartwig and Suzuki-Miyaura Type Cross-Coupling Reactions Org. Lett. 22 4797

    Article  CAS  PubMed  Google Scholar 

  6. Ghonchepour E, Islami M R and Tikdari A M 2019 Efficient heterogenization of palladium by citric acid on the magnetite nanoparticles surface (Nano-Fe3O4@ CA-Pd), and its catalytic application in CC coupling reactions J. Organomet. Chem. 883 1

    Article  CAS  Google Scholar 

  7. Nejad M S, Seyedi N, Sheibani H and Behzadi S 2019 Synthesis and characterization of Ni (II) complex functionalized silica-based magnetic nanocatalyst and its application in C-N and C–C cross-coupling reactions Mol. Divers. 23 527

    Article  CAS  Google Scholar 

  8. Xue D, Li G, Yang L, Liu J-J, Zhang W, Cao R, et al. 2020 Light-Promoted C-N Coupling of Aryl Halides with Nitroarenes Angew. Chem. Int. Ed. 60 5230

    Google Scholar 

  9. Zhang W, Veisi H, Sharifi R, Salamat D, Karmakar B, Hekmati M, et al. 2020 Fabrication of Pd NPs on pectin-modified Fe3O4 NPs: A magnetically retrievable nanocatalyst for efficient C-C and C–N cross coupling reactions and an investigation of its cardiovascular protective effects Int. J. Biol. Macromol. 160 1252

    Article  CAS  PubMed  Google Scholar 

  10. Zhu J, Wei S, Ryu J, Budhathoki M, Liang G and Guo Z 2010 In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites J. Mater. Chem. 20 4937

    Article  CAS  Google Scholar 

  11. Guram A S, Rennels R A and Buchwald S L 1995 A simple catalytic method for the conversion of aryl bromides to arylamines Angew. Chem. Int. Ed. 34 1348

    Article  CAS  Google Scholar 

  12. Qu Y, Pander P, Vybornyi O, Vasylieva M, Guillot R, Miomandre F, et al. 2020 Donor-Acceptor 1, 2, 4, 5-Tetrazines Prepared by the Buchwald-Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-On Property by Inverse Electron Demand Diels-Alder Reaction J. Org. Chem. 85 3407

    Article  CAS  PubMed  Google Scholar 

  13. Sobhani S, Habibollahi A and Zeraatkar Z 2019 A Novel Water-Dispersible/Magnetically Recyclable Pd Catalyst for C-C Cross-Coupling Reactions in Pure Water Org. Process Res. Dev. 23 1321

    Article  CAS  Google Scholar 

  14. Heravi M M, Kheilkordi Z, Zadsirjan V, Heydari M and Malmir M 2018 Buchwald-Hartwig reaction: an overview J. Organomet. Chem. 861 17

    Article  CAS  Google Scholar 

  15. Veisi H, Tamoradi T, Karmakar B and Hemmati S 2020 Green tea extract–modified silica gel decorated with palladium nanoparticles as a heterogeneous and recyclable nanocatalyst for Buchwald-Hartwig C-N cross-coupling reactions J. Phys. Chem. Solids 138 109256

    Article  CAS  Google Scholar 

  16. Shetty S, Baig N, Al-Mousawi S, Al-Sagheer F and Alameddine B 2019 Synthesis of secondary arylamine copolymers with Iron (II) clathrochelate units and their functionalization into tertiary Polyarylamines via Buchwald-Hartwig cross-coupling reaction Polymer 178 121606

    Article  CAS  Google Scholar 

  17. Nasseri M A, Rezazadeh Z, Kazemnejadi M and Allahresani A 2020 A Co–Cu bimetallic magnetic nanocatalyst with synergistic and bifunctional performance for the base-free Suzuki, Sonogashira, and C-N cross-coupling reactions in water Dalton Trans. 49 10645

    Article  CAS  PubMed  Google Scholar 

  18. Absalan Y, Shad N N, Gholizadeh M, Mahmoudi G, Sarvestani H S, Strashnov P, Ghandi K and Kovalchukova O 2021 Schiff bases-titanium (III) & (IV) complex compounds: Novel photocatalysts in Buchwald-Hartwig C–N cross-coupling reaction J. Photochem. Photobiol., A 417 113346

  19. Tian X, Lin J, Zou S, Lv J, Huang Q, Zhu J, et al. 2018 [Pd(IPr*R)(acac)Cl]: Efficient bulky Pd-NHC catalyst for Buchwald-Hartwig C-N cross-coupling reaction J. Organomet. Chem. 861 125

    Article  CAS  Google Scholar 

  20. Barot N, Patel S B and Kaur H 2016 Nitro resin supported copper nanoparticles: An effective heterogeneous catalyst for CN cross coupling and oxidative CC homocoupling J. Mol. Catal. A: Chem. 423 77

    Article  CAS  Google Scholar 

  21. Hachemaoui M, Mokhtar A, Mekki A, Zaoui F, Abdelkrim S, Hacini S and Boukoussa B 2020 Composites beads based on Fe3O4@ MCM-41 and calcium alginate for enhanced catalytic reduction of organic dyes Int. J. Biol. Macromol. 164 468

    Article  CAS  PubMed  Google Scholar 

  22. Hashemi-Uderji S, Abdollahi-Alibeik M and Ranjbar-Karimi R 2018 Fe3O4@FSM-16-SO3H as a new magnetically recyclable nanostructured catalyst: Synthesis, characterization and catalytic application for the synthesis of pyrano[2,3-c]pyrazoles Iran J. Catal. 8 311

    CAS  Google Scholar 

  23. Hashemi-Uderji S, Abdollahi-Alibeik M and Ranjbar-Karimi R 2019 Fe3O4@FSM-16-SO 3 H as a novel magnetically recoverable nanostructured catalyst: preparation, characterization and catalytic application J. Porous Mater. 26 467

    Article  CAS  Google Scholar 

  24. Nasr-Esfahani M, Hoseini S J and Mohammadi F 2011 Fe3O4 Nanoparticles as an Efficient and Magnetically Recoverable Catalyst for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones under Solvent-Free Conditions Chin. J. Catal. 32 1484

    Article  CAS  Google Scholar 

  25. Abdollahi-Alibeik M, Moaddeli A and Masoomi K 2015 BF3 bonded nano Fe3O4 (BF3/MNPs): an efficient magnetically recyclable catalyst for the synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives RSC Adv. 5 74932

    Article  CAS  Google Scholar 

  26. Abdollahi-Alibeik M, Gharibpour N and Ramazani Z 2020 Magnetically recoverable nanostructured Pd complex of dendrimeric type ligand on the MCM-41: Preparation, characterization and catalytic activity in the Heck reaction Main Group Met. Chem. 43 184

    Article  CAS  Google Scholar 

  27. Sajjadi M, Nasrollahzadeh M and Tahsili M R 2019 Catalytic and antimicrobial activities of magnetic nanoparticles supported N-heterocyclic palladium(II) complex: A magnetically recyclable catalyst for the treatment of environmental contaminants in aqueous media Sep. Purif. Tech. 227 15716

    Article  CAS  Google Scholar 

  28. Liu X, Mi W, Zhang Q and Zhang X 2019 Negative differential resistance and magnetotransport in Fe3O4/SiO2/Si heterostructures Appl. Phys. Lett. 114 242402

    Article  CAS  Google Scholar 

  29. Meng C, Zhikun W, Qiang L, Chunling L, Shuangqing S and Songqing H 2018 Preparation of amino-functionalized Fe3O4@ mSiO2 core-shell magnetic nanoparticles and their application for aqueous Fe3+ removal J. Hazard. Mater. 341 198

    Article  PubMed  CAS  Google Scholar 

  30. Norouzi M, Elhamifar D, Mirbagheri R and Ramazani Z 2018 Synthesis, characterization and catalytic application of a novel ethyl and boron sulfonic acid based bifunctional periodic mesoporous organosilica J. Taiwan Inst. Chem. Eng. 89 234

    Article  CAS  Google Scholar 

  31. Mohammadi P and Sheibani H 2019 Synthesis and characterization of Fe3O4@ SiO2 guanidine-poly acrylic acid nanocatalyst and using it for one-pot synthesis of 4H-benzo [b] pyrans and dihydropyrano [c] chromenes in water Mater. Chem. Phys. 228 140

    Article  CAS  Google Scholar 

  32. Nori Z Z, Landarani-Isfahani A, Bahadori M, Moghadam M, Mirkhani V, Tangestaninejad S and Mohammadpoor-Baltork I 2020 Ultrafine Pt nanoparticles supported on a dendrimer containing thiol groups: an efficient catalyst for the synthesis of benzimidazoles and benzothiazoles from benzyl alcohol derivatives in water RSC Adv. 10 33137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zirak M, Abdollahiyan A, Eftekhari-Sis B and Saraei M 2018 Carboxymethyl cellulose coated Fe3O4@SiO2 core–shell magnetic nanoparticles for methylene blue removal: equilibrium, kinetic, and thermodynamic studies Cellulose 25 503

    Article  CAS  Google Scholar 

  34. Noval V E and Carriazo J G 2019 Fe3O4-TiO2 and Fe3O4-SiO2 core-shell powders synthesized from industrially processed magnetite (Fe3O4) microparticles Mater. Res. 22

  35. Teo S H, Islam A, Chan E S, Choong S T, Alharthi N H, Taufiq-Yap Y H and Awual M R 2019 Efficient biodiesel production from Jatropha curcus using CaSO4/Fe2O3-SiO2 core-shell magnetic nanoparticles J. Clean. Prod. 208 816

    Article  CAS  Google Scholar 

  36. Pourhasan-Kisomi R, Shirini F and Golshekan M 2019 Organic/inorganic Fe3O4@ MCM-41@ Zr-piperazine: an impressive magnetite nanocatalyst for N-tert-butoxycarbonylation of amines J. Nanosci. Nanotechnol. 19 3859

    Article  CAS  PubMed  Google Scholar 

  37. Yin L, Song S, Wang X, Niu F, Ma R, Yu S, et al. 2018 Rationally designed core-shell and yolk-shell magnetic titanate nanosheets for efficient U (VI) adsorption performance Environ. Pollut. 238 725

    Article  CAS  PubMed  Google Scholar 

  38. Bhaumik A, Samanta S and Mal N K 2005 Iron oxide nanoparticles stabilized inside highly ordered mesoporous silica Pramana J. Phys. 65 855

    Article  CAS  Google Scholar 

  39. Ray S, Brown M, Bhaumik A, Dutta A and Mukhopadhyay C 2013 A new MCM-41 supported HPF6 catalyst for the library synthesis of highly substituted 1,4-dihydropyridines and oxidation to pyridines: report of one-dimensional packing towards LMSOMs and studies on their photophysical properties Green Chem. 15 1910

    Article  CAS  Google Scholar 

  40. Abdollahi-Alibeik M and Pouriayevali M 2011 12-Tungstophosphoric acid supported on nano sized MCM-41 as an efficient and reusable solid acid catalyst for the three-component imino Diels-Alder reaction React. Kinet. Mech. Cat. 104 235

    Article  CAS  Google Scholar 

  41. Tahmasbi B and Ghorbani-Choghamarani A 2019 Magnetic MCM-41 nanoparticles as a support for the immobilization of a palladium organometallic catalyst and its application in C-C coupling reactions New J. Chem. 43 14485

    Article  CAS  Google Scholar 

  42. Sohrabnezhad S and Rajabi S 2018 The influence of MCM-41 mesoporous shell in photocatalytic activity of magnetic core-shell J. Photochem. Photobiol., A 350 86

    Article  CAS  Google Scholar 

  43. Pourhasan-Kisomi R, Shirini F and Golshekan M 2018 Introduction of organic/inorganic Fe3O4@ MCM-41@ Zr-piperazine magnetite nanocatalyst for the promotion of the synthesis of tetrahydro-4H-chromene and pyrano [2, 3-d] pyrimidinone derivatives Appl. Organomet. Chem. 32 e4371

    Article  CAS  Google Scholar 

  44. Nikoorazm M and Erfani Z 2019 Core–shell nanostructure (Fe3O4@ MCM-41@ Cu-P2C) as a highly efficient and recoverable nanocatalyst for the synthesis of polyhydroquinoline, 5-substituted 1H-tetrazoles and sulfides Chem. Phys. Lett. 737 136784

    Article  CAS  Google Scholar 

  45. Abdollahi-Alibeik M and Rezaeipoor-Anari A 2016 Fe3O4@B-MCM-41: A new magnetically recoverable nanostructured catalyst for the synthesis of polyhydroquinolines J. Magn. Magn. Mater. 398 205

    Article  CAS  Google Scholar 

  46. Ramazani Z, Elhamifar D, Norouzi M and Mirbagheri R 2019 Magnetic mesoporous MCM-41 supported boric acid: A novel, efficient and ecofriendly nanocomposite Compos. Part B 164 10

    Article  CAS  Google Scholar 

  47. Stöber W, Fink A and Bohn E 1968 Controlled growth of monodisperse silica spheres in the micron size range J. Colloid Interface Sci. 26 62

    Article  Google Scholar 

  48. Kankala R K, Zhang H, Liu C G, Kanubaddi K R, Lee C H, Wang S B, Cui W, Santos H A, Lin K and Chen A Z 2019 Metal Species–Encapsulated Mesoporous Silica Nanoparticles: Current Advancements and Latest Breakthroughs Adv. Funct. Mater. 29

  49. Wang P, Kong A, Wang W, Zhu H and Shan Y 2010 Facile preparation of ionic liquid functionalized magnetic nano-solid acid catalysts for acetalization reaction Catal. Lett. 135 159

    Article  CAS  Google Scholar 

  50. Omidi F, Behbahani M, Kalate Bojdi M and Shahtaheri S J 2015 Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica J. Magn. Magn. Mater. 395 213

    Article  CAS  Google Scholar 

  51. Abidin N H Z, Wan Ibrahim W N, Hanapi N S M and Saim N 2020 Magnetic Mesoporous Silica Composite for Enhanced Preconcentration of Selected Organophosphorus Pesticides in Fruits Indones. J. Chem. 20

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abdollahi-Alibeik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahi-Alibeik, M., Ramazani, Z. Synthesis, characterization and application of magnetic mesoporous Fe3O4@Fe-Cu/MCM‐41 as efficient and recyclable nanocatalyst for the Buchwald-Hartwig C-N cross-coupling reaction. J Chem Sci 134, 77 (2022). https://doi.org/10.1007/s12039-022-02066-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-022-02066-w

Keywords

Navigation