Skip to main content
Log in

Development of radiopharmaceuticals for PET renography

  • Review Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Renography is a standard clinical diagnostic test frequently used to evaluate renal function in patients with suspected renal disorders. It is conducted by dynamic planar imaging using technetium-99m renal agents. Although renography in the current form provides adequate results for certain clinical applications, the planar imaging used in renography restricts its ability in providing accurate quantitative data and detailed pathophysiologic information. These drawbacks limit the possible use of renography in the early detection and monitoring of many renal diseases. The technical limitations of renography associated with the use of planar imaging can be eliminated by using positron emission tomography (PET). In this regard, several potential PET renal agents were developed, which are all listed in this review article. PET renography could provide the potential to diagnose renal diseases early and quickly implement appropriate preventive and/or treatment strategies to improve patient care and reduce the incidence of kidney failure.

Graphical abstract

Synopsis: Application of positron emission tomography (PET) for renography would significantly increase its clinical value by providing both accurate quantitative data and higher resolution tomographic images compared to the currently used planar imaging. In this regard, several potential PET renal agents were developed, which are all listed in this review article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Stevens L A, Coresh J, Greene T and Levey A S 2006 Assessing Kidney Function — Measured and Estimated Glomerular Filtration Rate N Engl. J. Med. 354 2473

    Article  CAS  Google Scholar 

  2. Perrone R D, Madias N E and Levey A S 1992 Serum Creatinine as an Index of Renal-Function - New Insights into Old Concepts Clin. Chem. 38 1933

    Article  CAS  PubMed  Google Scholar 

  3. Bosch J P 1995 Renal reserve: a functional view of glomerular filtration rate Semin. Nephrol. 15 381

    CAS  PubMed  Google Scholar 

  4. Herrera J and Rodriguez-Iturbe B 1998 Stimulation of tubular secretion of creatinine in health and in conditions associated with reduced nephron mass. Evidence for a tubular functional reserve Nephrol. Dial. Transplant 13 623

  5. Herget-Rosenthal S 2011 Imaging techniques in the management of chronic kidney disease: current developments and future perspectives Semin. Nephrol. 31 283

    Article  PubMed  Google Scholar 

  6. Gleeson T G and Bulugahapitiya S 2004 Contrast-induced nephropathy AJR Am. J. Roentgenol. 183 1673

    Article  PubMed  Google Scholar 

  7. Michaely H J, Sourbron S, Dietrich O, Attenberger U, Reiser M F and Schoenberg S O 2007 Functional renal MR imaging: an overview Abdom. Imaging 32 758

    Article  PubMed  Google Scholar 

  8. Bokacheva L, Rusinek H, Zhang J L and Lee VS 2008 Assessment of renal function with dynamic contrast-enhanced MR imaging Magn. Reson. Imaging Clin. N. Am. 16 597

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang A J, Lee V S and Rusinek H 2003 MR imaging of renal function Radiol. Clin. North Am. 41 1001

    Article  PubMed  Google Scholar 

  10. Laissy J P, Idee J M, Fernandez P, Floquet M, Vrtovsnik F and Schouman-Claeys E 2006 Magnetic resonance imaging in acute and chronic kidney diseases: present status Nephron. Clin. Pract. 103 c50

  11. Grobner T 2006 Gadolinium–a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol. Dial. Transplant 21 1104

    Article  CAS  PubMed  Google Scholar 

  12. Taylor A Jr and Nally J V 1995 Clinical applications of renal scintigraphy AJR Am. J. Roentgenol. 164 31

    Article  PubMed  Google Scholar 

  13. Haufe S E, Riedmüller K and Haberkorn U 2006 Nuclear Medicine Procedures for the Diagnosis of Acute and Chronic Renal Failure Nephron. Clin. Pract. 103 c77

  14. Durand E, Chaumet-Riffaud P and Grenier N 2011 Functional Renal Imaging: New Trends in Radiology and Nuclear Medicine Semin. Nucl. Med. 41 61

    Article  PubMed  Google Scholar 

  15. Esteves F P, Taylor A, Manatunga A, Folks R D, Krishnan M and Garcia E V 2006 99mTc-MAG3 renography: Normal values for MAG3 clearance and curve parameters, excretory parameters, and residual urine volume Am. J. Roentgenol. 187 W610

    Article  Google Scholar 

  16. Taylor A T, Blaufox M D, De Palma D, Dubovsky E V, Erbas B, Eskild-Jensen A, et al. 2012 Guidance document for structured reporting of diuresis renography Semin. Nucl. Med. 42 41

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jamar F and Barone R 2006 Renal Imaging in Diagnostic Nuclear Medicine A Baert, K Sartor and C Schiepers (Eds.) (Berlin Heidelberg: Springer) p. 83

  18. Maisey M 2003 Radionuclide renography: a review Curr. Opin. Nephrol. Hypertens 12 649

    Article  PubMed  Google Scholar 

  19. Taylor A T 2014 Radionuclides in nephrourology, part 1: radiopharmaceuticals, quality control, and quantitative indices J. Nucl. Med. 55 608

    Article  CAS  PubMed  Google Scholar 

  20. Klopper J F, Hauser W, Atkins H L, Eckelman W C and Richards P 1972 Evaluation of 99mTc-DTPA for the measurement of glomerular filtration rate J. Nucl. Med. 13 107

    CAS  PubMed  Google Scholar 

  21. Eshima D and Taylor A Jr 1992 Technetium-99m (99mTc) mercaptoacetyltriglycine: update on the new 99mTc renal tubular function agent Semin. Nucl. Med. 22 61

    Article  CAS  PubMed  Google Scholar 

  22. Van Nerom C G, Bormans G M, De Roo M J and Verbruggen A M 1993 First experience in healthy volunteers with technetium-99m L, L-ethylenedicysteine, a new renal imaging agent Eur. J. Nucl. Med. 20 738

    Article  PubMed  Google Scholar 

  23. Bubeck B, Brandau W, Weber E, Kalble T, Parekh N and Georgi P 1990 Pharmacokinetics of technetium-99m-MAG3 in humans J. Nucl. Med. 31 1285

    CAS  PubMed  Google Scholar 

  24. Yasky J and Volpe R 1963 An assessment of the “radioactive renogram” using O-iodohippurate sodium (Hippuran) labelled with radioactive iodine Can. Med. Assoc. J. 88 1055

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tubis M, Posnick E and Nordyke R A 1960 Preparation and Use of I-131 Labeled Sodium Iodohippurate in Kidney Function Tests Proc. Soc. Exp. Biol. Med. 103 497

    Article  CAS  PubMed  Google Scholar 

  26. Schlegel J U, Smith B G and O’Dell R M 1962 Estimation of effective renal plasma flow using I131-labeled Hippuran J. Appl. Physiol. 17 80

    Article  CAS  PubMed  Google Scholar 

  27. Short M D, Glass H I, Chisholm G D, Vernon P and Silvester D J 1973 Gamma-camera renography using 123I-hippuran Br. J. Radiol. 46 289

    Article  CAS  PubMed  Google Scholar 

  28. Fritzberg A R, Kasina S, Eshima D and Johnson D L 1986 Synthesis and Biological Evaluation of Technetium-99m MAG3 as a Hippuran Replacement J. Nucl. Med. 27 111

    CAS  PubMed  Google Scholar 

  29. Shikano N, Kanai Y, Kawai K, Ishikawa N and Endou H 2004 Transport of 99mTc-MAG3 via rat renal organic anion transporter 1 J. Nucl. Med. 45 80

    CAS  PubMed  Google Scholar 

  30. Takahara N, Saga T, Inubushi M, Kusuhara H, Seki C, Ito S, et al. 2013 Drugs interacting with organic anion transporter-1 affect uptake of Tc-99m-mercaptoacetyl-triglycine (MAG3) in the human kidney: Therapeutic drug interaction in Tc-99m-MAG3 diagnosis of renal function and possible application of Tc-99m-MAG3 for drug development Nucl. Med. Biol. 40 643

    Article  CAS  PubMed  Google Scholar 

  31. Despopoulos A 1965 A definition of substrate specificity in renal transport of organic anions J. Theor. Biol. 8 163

    Article  CAS  PubMed  Google Scholar 

  32. Sekine T, Miyazaki H and Endou H 2006 Molecular physiology of renal organic anion transporters Am. J. Physiol. Renal. Physiol. 290 F251

    Article  CAS  PubMed  Google Scholar 

  33. Norrgren K, Svegborn S L, Areberg J and Mattsson S 2003 Accuracy of the Quantification of Organ Activity from Planar Gamma Camera Images Cancer Biother. Radiopharm. 18 125

    PubMed  Google Scholar 

  34. Blaufox M D 2016 PET Measurement of Renal Glomerular Filtration Rate: Is There a Role in Nuclear Medicine? J. Nucl. Med. 57 1495

    Article  CAS  PubMed  Google Scholar 

  35. Buijs W C, Siegel J A, Boerman O C and Corstens F H 1998 Absolute organ activity estimated by five different methods of background correction J. Nucl. Med. 39 2167

    CAS  PubMed  Google Scholar 

  36. Tsui B M W, Zhao X, Frey E C and McCartney W H 1994 Quantitative single-photon emission computed tomography: Basic and clinical considerations Semin. Nucl. Med. 24 38

    Article  CAS  PubMed  Google Scholar 

  37. Alavi A and Basu S 2008 Planar and SPECT imaging in the era of PET and PET-CT: can it survive the test of time? Eur. J. Nucl. Med. Mol. Imaging 35 1554

    Article  PubMed  Google Scholar 

  38. Spanoudaki V C and Ziegler S I 2008 PET & SPECT instrumentation Handb. Exp. Pharmacol. (185 Pt 1) 53

  39. Blokland J A, Trindev P, Stokkel M P and Pauwels E K 2002 Positron emission tomography: a technical introduction for clinicians Eur. J. Radiol. 44 70

    Article  PubMed  Google Scholar 

  40. Desmonts C, Bouthiba M A, Enilorac B, Nganoa C, Agostini D and Aide N 2020 Evaluation of a new multipurpose whole-body CzT-based camera: comparison with a dual-head Anger camera and first clinical images EJNMMI Phys. 7 18

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zaidi H, Montandon M-L and Alavi A 2007 Advances in Attenuation Correction Techniques in PET PET Clinics 2 191

    Article  PubMed  Google Scholar 

  42. Szabo Z, Alachkar N, Xia J, Mathews W B and Rabb H 2011 Molecular Imaging of the Kidneys Semin. Nucl. Med. 41 20

    Article  PubMed  PubMed Central  Google Scholar 

  43. Blaufox M D 2016 Renal background correction and measurement of split renal function: The challenge Eur. J. Nucl. Med. Mol. Imaging 43 548

    Article  PubMed  Google Scholar 

  44. Werner R A, Chen X, Lapa C, Koshino K, Rowe S P, Pomper M G, et al. 2019 The next era of renal radionuclide imaging: novel PET radiotracers Eur. J. Nucl. Med. Mol. Imaging 46 1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Szabo Z, Xia J, Mathews W B and Brown P R 2006 Future Direction of Renal Positron Emission Tomography Semin. Nucl. Med. 36 36

    Article  PubMed  PubMed Central  Google Scholar 

  46. Awasthi V, Pathuri G, Agashe H B and Gali H 2011 Synthesis and in vivo evaluation of p-18F-fluorohippurate as a new radiopharmaceutical for assessment of renal function by PET J. Nucl. Med. 52 147

    Article  CAS  PubMed  Google Scholar 

  47. Pathuri G, Hedrick A F, Awasthi V and Gali H 2012 Single-step radiosynthesis and in vivo evaluation of a novel fluorine-18 labeled hippurate for use as a PET renal agent Nucl. Med. Biol. 39 1195

    Article  CAS  PubMed  Google Scholar 

  48. Lipowska M, Klenc J, Shetty D, Nye J A, Shim H and Taylor A T 2014 Al18F-NODA-butyric acid: Biological evaluation of a new PET renal radiotracer Nucl. Med. Biol. 41 248

    Article  CAS  PubMed  Google Scholar 

  49. Schnockel U, Reuter S, Stegger L, Schlatter E, Schafers K P, Hermann S, et al. 2008 Dynamic 18F-fluoride small animal PET to noninvasively assess renal function in rats Eur. J. Nucl. Med. Mol. Imaging 35 2267

    Article  PubMed  Google Scholar 

  50. Pathuri G, Hedrick A F, January S E, Galbraith W K, Awasthi V, Arnold C D, et al. 2015 Synthesis and in vivo evaluation of gallium-68-labeled glycine and hippurate conjugates for positron emission tomography renography J. Label Compd. Radiopharm. 58 14

    Article  CAS  Google Scholar 

  51. Hofman M, Binns D, Johnston V, Siva S, Thompson M, Eu P, et al. 2015 68Ga-EDTA PET/CT imaging and plasma clearance for glomerular filtration rate quantification: comparison to conventional 51Cr-EDTA J. Nucl. Med. 56 405

    Article  CAS  PubMed  Google Scholar 

  52. Tahari A K, Bravo P E, Rahmim A, Bengel F M and Szabo Z 2014 Initial human experience with Rubidium-82 renal PET/CT imaging J. Med. Imaging Radiat. Oncol. 58 25

    Article  PubMed  Google Scholar 

  53. Lee J Y, Jeong J M, Kim Y J, Jeong H-J, Lee Y-S, Lee D S and Chung J-K 2014 Preparation of Ga-68-NOTA as a renal PET agent and feasibility tests in mice Nucl. Med. Biol. 41 210

    Article  CAS  PubMed  Google Scholar 

  54. Yamashita M, Inaba T, Kawase Y, Horii H, Wakita K, Fujii R and Nakahashi H 1988 Quantitative measurement of renal function using Ga-68-EDTA Tohoku J. Exp. Med. 155 207

    CAS  Google Scholar 

  55. Goethals P, Volkaert A, Vandewielle C, Dierckx R and Lameire N 2000 55Co-EDTA for renal imaging using positron emission tomography (PET): a feasibility study Nucl. Med. Biol. 27 77

    Article  CAS  PubMed  Google Scholar 

  56. Schnöckel U, Reuter S, Stegger L, Schlatter E, Schäfers K, Hermann S, et al. 2008 Dynamic 18F-fluoride small animal PET to noninvasively assess renal function in rats Eur J. Nucl. Med. Mol. Imaging 35 2267

    Article  Google Scholar 

  57. Green M A, Mathias C J, Willis L R, Handa R K, Lacy J L, Miller M A and Hutchins G D 2007 Assessment of Cu-ETS as a PET radiopharmaceutical for evaluation of regional renal perfusion Nucl. Med. Biol. 34 247

    Article  CAS  PubMed  Google Scholar 

  58. Pathuri G, Hedrick A F, Awasthi V, Cowley B D Jr and Gali H, 2016 Synthesis and in vivo evaluation of ortho-[(124)I]iodohippurate for PET renography in healthy rats Appl. Radiat. Isot. 115 251

    Article  CAS  PubMed  Google Scholar 

  59. Wang H, Dong W, Zhao Q, Lu K, Guo X, Liu H, et al. 2019 Synthesis of N-(6-[18F]Fluoropyridin-3-yl)glycine as a potential renal PET agent Nucl. Med. Biol. 76–77 21

    Article  PubMed  CAS  Google Scholar 

  60. Lipowska M, Jarkas N, Voll R J, Nye J A, Klenc J, Goodman M M and Taylor A T 2018 Re(CO)3([18F]FEDA), a novel 18F PET renal tracer: Radiosynthesis and preclinical evaluation Nucl. Med. Biol. 58 42

    Article  CAS  PubMed  Google Scholar 

  61. Gündel D, Pohle U, Prell E, Odparlik A and Thews O 2017 Assessing Glomerular Filtration in Small Animals Using [68Ga]DTPA and [68Ga]EDTA with PET Imaging Mol. Imaging Biol. 20 457

    Article  CAS  Google Scholar 

  62. Hofman M S and Hicks R J 2016 Gallium-68 EDTA PET/CT for Renal Imaging Semin. Nucl. Med. 46 448

    Article  PubMed  Google Scholar 

  63. Werner R A, Ordonez A A, Sanchez-Bautista J, Marcus C, Lapa C, Rowe S P, et al. 2019 Novel Functional Renal PET Imaging With 18F-FDS in Human Subjects Clin. Nucl. Med. 44 410

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cheki M and Gali H 2017 Preliminary radiation dosimetry of a novel PET radiopharmaceutical 68Ga-NODAGA-glycine in comparison with 99mTc-DTPA in renal studies Hell. J. Nucl. Med. 20 241

    PubMed  Google Scholar 

  65. Mohsen C, Maryam P, Luigi M, Sean K and Gali H 2018 Preliminary Human Radiation Dose Estimates of PET Renal Agents, Para-18F-Fluorohippuric Acid and Ortho-124I-Iodohippuric Acid from Rat Biodistribution Data Curr. Raciopharm. 11 58

    Article  CAS  Google Scholar 

  66. Chen B C, Germano G, Huang S C, Hawkins R A, Hansen H W, Robert M J, et al. 1992 A new noninvasive quantification of renal blood flow with N-13 ammonia, dynamic positron emission tomography, and a two-compartment model J. Am. Soc. Nephrol. 3 1295

    Article  CAS  PubMed  Google Scholar 

  67. Juillard L, Janier M F, Fouque D, Lionnet M, Le Bars D, Cinotti L, Barthez P, Gharib C and Laville M 2000 Renal blood flow measurement by positron emission tomography using 15O-labeled water Kidney Int. 57 2511

  68. Shi S, Zhang L, Wu Z, Zhang A, Hong H, Choi S R, et al. 2020 [68Ga]Ga-HBED-CC-DiAsp: A new renal function imaging agent Nucl. Med. Biol. 82–83 17

    Article  PubMed  CAS  Google Scholar 

  69. Ruiz-Bedoya C A, Ordonez A A, Werner R A, Plyku D, Klunk M H, Leal J, et al. 2020 11C-PABA as a PET Radiotracer for Functional Renal Imaging: Preclinical and First-in-Human Study J. Nucl. Med. 61 1665

    Article  CAS  PubMed  Google Scholar 

  70. Pathuri G, Sahoo K, Awasthi V and Gali H 2011 Renogram comparison of p-[18F]fluorohippurate with o-[125I]iodohippurate and [99mTc]MAG3 in normal rats Nucl. Med. Commun. 32 908

    Article  PubMed  Google Scholar 

  71. Nkepang G N, Hedrick A F, Awasthi V and Gali H 2016 Facile synthesis of para-[18F]fluorohippurate via iodonium ylide-mediated radiofluorination for PET renography Bioorg. Med. Chem. Lett. 26 479

    Article  CAS  PubMed  Google Scholar 

  72. Pathuri G, Hedrick A F, Awasthi V, Cowley B D Jr and Gali H 2016 Evaluation of [18F]PFH PET renography to predict future disease progression in a rat model of autosomal dominant polycystic kidney disease Nucl. Med. Biol. 43 1

    Article  CAS  PubMed  Google Scholar 

  73. Stieger B, Unadkat J D, Prasad B, Langer O and Gali H 2014 Role of (drug) transporters in imaging in health and disease Drug Metab. Dispos. 42 2007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Geist B K, Baltzer P, Fueger B, Hamboeck M, Nakuz T, Papp L, et al. 2018 Assessing the kidney function parameters glomerular filtration rate and effective renal plasma flow with dynamic FDG-PET/MRI in healthy subjects EJNMMI Res. 8, 37

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding by the University of Oklahoma College of Pharmacy, Presbyterian Health Foundation (Seed Grant C5046801), and the Oklahoma Center for the Advancement of Science and Technology (Award# HR13-210) is gratefully acknowledged. The author is greatly indebted to all the lab members and collaborators, who supported the development of PET renal agents (18F-PFH, 18F-CNPFH, 124I-OIH, and 68Ga-NODAGA-Gly) cited in this review article. The author acknowledges the OUHSC Nuclear Pharmacy staff for their constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HARIPRASAD GALI.

Additional information

Special Issue on Beyond Classical Chemistry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GALI, H. Development of radiopharmaceuticals for PET renography. J Chem Sci 133, 80 (2021). https://doi.org/10.1007/s12039-021-01924-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01924-3

Keywords

Navigation