Skip to main content
Log in

Assessing Glomerular Filtration in Small Animals Using [68Ga]DTPA and [68Ga]EDTA with PET Imaging

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Determining the glomerular filtration rate (GFR) is essential for clinical medicine but also for pre-clinical animal studies. Functional imaging using positron emission tomography (PET) allows repetitive almost non-invasive measurements. The aim of the study was the development and evaluation of easily synthesizable PET tracers for GFR measurements in small animals.

Procedures

Diethylenetriaminepentaacetic acid (DTPA) and ethylenediaminetetraacetic acid (EDTA) were labeled with Ga-68. The binding to blood cells and plasma proteins was tested in vitro. The distribution of the tracers in rats was analyzed by PET imaging and ex vivo measurements. From the time-activity-curve of the blood compartment (heart) and the total tracer mass excreted by the kidney, the GFR was calculated. These values were compared directly with the inulin clearance in the same animals.

Results

Both tracers did not bind to blood cells. [68Ga]DPTA but not [68Ga]EDTA showed strong binding to plasma proteins. For this reason, [68Ga]DPTA stayed much longer in the blood and only 30 % of the injected dose was eliminated by the kidney within 60 min whereas the excretion of [68Ga]EDTA was 89 ± 1 %. The calculated GFR using [68Ga]EDTA was comparable to the measured inulin clearance in the same animal. Using [68Ga]-DPTA, the measurements led to values which were 80 % below the normal GFR. The results also revealed that definition of the volume of interest for the blood compartment affects the calculation and may lead to a slight overestimation of the GFR.

Conclusions

[68Ga]EDTA is a suitable tracer for GFR calculation from PET imaging in small animals. It is easy to be labeled, and the results are in good accordance with the inulin clearance. [68Ga]DTPA led to a marked underestimation of GFR due to its strong binding to plasma proteins and is therefore not an appropriate tracer for GFR measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

DTPA:

Diethylenetriaminepentaacetic acid

EDTA:

Ethylenediaminetetraacetic acid

GFR:

Glomerular filtration rate

PBS:

Phosphate buffered saline

%ID:

Percent of injected dose

RBC:

Red blood cells (erythrocytes)

TAC:

Time-activity curve

VOI:

Volume of interest

References

  1. Beierwaltes WH, Harrison-Bernard LM, Sullivan JC, Mattson DL (2013) Assessment of renal function; clearance, the renal microcirculation, renal blood flow, and metabolic balance. Compr Physiol 3:165–200

    PubMed  Google Scholar 

  2. Schock-Kusch D, Geraci S, Ermeling E et al (2013) Reliability of transcutaneous measurement of renal function in various strains of conscious mice. PLoS One 8:e71519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Von Hendy-Willson VE, Pressler BM (2011) An overview of glomerular filtration rate testing in dogs and cats. Vet J 188:156–165

    Article  Google Scholar 

  4. Qi Z, Whitt I, Mehta A et al (2004) Serial determination of glomerular filtration rate in conscious mice using FITC-inulin clearance. Am J Physiol Renal Physiol 286:F590–F596

    Article  CAS  PubMed  Google Scholar 

  5. Henriksen UL, Henriksen JH (2015) The clearance concept with special reference to determination of glomerular filtration rate in patients with fluid retention. Clin Physiol Funct Imaging 35:7–16

    Article  CAS  PubMed  Google Scholar 

  6. Santos J, Martins LS (2015) Estimating glomerular filtration rate in kidney transplantation: still searching for the best marker. World J Nephrol 4:345–353

    Article  PubMed  PubMed Central  Google Scholar 

  7. Haufe SE, Riedmuller K, Haberkorn U (2006) Nuclear medicine procedures for the diagnosis of acute and chronic renal failure. Nephron Clin Pract 103:c77–c84

    Article  PubMed  Google Scholar 

  8. Debruyn K, Vandermeulen E, Saunders JH et al (2013) Effect of background region of interest and time-interval selection on glomerular filtration ratio estimation by percentage dose uptake of 99mTc-DTPA in comparison with 51Cr-EDTA clearance in healthy cats. J Feline Med Surg 15:698–705

    Article  PubMed  Google Scholar 

  9. Hecht S, Lawson SM, Lane IF et al (2010) 99mTc-DTPA diuretic renal scintigraphy in dogs with nephroureterolithiasis. Can Vet J 51:1360–1366

    PubMed  PubMed Central  Google Scholar 

  10. Schnöckel U, Reuter S, Stegger L et al (2008) Dynamic 18F-fluoride small animal PET to noninvasively assess renal function in rats. Eur J Nucl Med Mol Imaging 35:2267–2274

    Article  PubMed  Google Scholar 

  11. Wakabayashi H, Werner RA, Hayakawa N et al (2016) Initial preclinical evaluation of 18F-fluorodeoxysorbitol PET as a novel functional renal imaging agent. J Nucl Med 57:1625–1628

    Article  CAS  PubMed  Google Scholar 

  12. Goethals P, Volkaert A, Vandewielle C et al (2000) 55Co-EDTA for renal imaging using positron emission tomography (PET): a feasibility study. Nucl Med Biol 27:77–81

    Article  CAS  PubMed  Google Scholar 

  13. Hofman MS, Hicks RJ (2016) Gallium-68 EDTA PET/CT for renal imaging. Semin Nucl Med 46:448–461

    Article  PubMed  Google Scholar 

  14. Kaewput C, Vinjamuri S (2016) Comparison of renal uptake of 68Ga-DOTANOC PET/CT and estimated glomerular filtration rate before and after peptide receptor radionuclide therapy in patients with metastatic neuroendocrine tumours. Nucl Med Commun 37:1325–1332

    Article  CAS  PubMed  Google Scholar 

  15. Lee JY, Jeong JM, Kim YJ et al (2014) Preparation of Ga-68-NOTA as a renal PET agent and feasibility tests in mice. Nucl Med Biol 41:210–215

    Article  CAS  PubMed  Google Scholar 

  16. Mueller D, Breeman WA, Klette I et al (2016) Radiolabeling of DOTA-like conjugated peptides with generator-produced 68Ga and using NaCl-based cationic elution method. Nat Protoc 11:1057–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Basken NE, Mathias CJ, Lipka AE, Green MA (2008) Species dependence of [64Cu]Cu-Bis(thiosemicarbazone) radiopharmaceutical binding to serum albumins. Nucl Med Biol 35:281–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daniel GB, Mitchell SK, Mawby D et al (1999) Renal nuclear medicine: a review. Vet Radiol Ultrasound 40:572–587

    Article  CAS  PubMed  Google Scholar 

  19. Fleming JS, Zivanovic MA, Blake GM, Burniston M, Cosgriff PS, British Nuclear Medicine S (2004) Guidelines for the measurement of glomerular filtration rate using plasma sampling. Nucl Med Commun 25:759–769

    Article  PubMed  Google Scholar 

  20. Wanasundara SN, Wesolowski MJ, Barnfield MC et al (2016) Accurate and precise plasma clearance measurement using four 99mTc-DTPA plasma samples over 4 h. Nucl Med Commun 37:79–86

    CAS  PubMed  Google Scholar 

  21. Jobin J, Bonjour JP (1985) Measurement of glomerular filtration rate in conscious unrestrained rats with inulin infused by implanted osmotic pumps. Am J Phys 248:F734–F738

    CAS  Google Scholar 

  22. Rehling M, Nielsen LE, Marqversen J (2001) Protein binding of 99Tcm-DTPA compared with other GFR tracers. Nucl Med Commun 22:617–623

    Article  CAS  PubMed  Google Scholar 

  23. Russell CD, Bischoff PG, Rowell KL et al (1988) Estimation of extracellular fluid volume from plasma clearance on technetium-99m DTPA by a single-injection, two-sample method. J Nucl Med 29:255–258

    CAS  PubMed  Google Scholar 

  24. Hofman M, Binns D, Johnston V et al (2015) 68Ga-EDTA PET/CT imaging and plasma clearance for glomerular filtration rate quantification: comparison to conventional 51Cr-EDTA. J Nucl Med 56:405–409

    Article  CAS  PubMed  Google Scholar 

  25. Pedersen EB (2000) New tools in diagnosing renal artery stenosis. Kidney Int 57:2657–2677

    Article  CAS  PubMed  Google Scholar 

  26. Brøchner-Mortensen J (1985) Current status on assessment and measurement of glomerular filtration rate. Clin Physiol 5:1–17

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Gündel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gündel, D., Pohle, U., Prell, E. et al. Assessing Glomerular Filtration in Small Animals Using [68Ga]DTPA and [68Ga]EDTA with PET Imaging. Mol Imaging Biol 20, 457–464 (2018). https://doi.org/10.1007/s11307-017-1135-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1135-1

Key words

Navigation