Skip to main content
Log in

Computational studies on energetic properties of nitrogen-rich energetic materials with ditetrazoles

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Based on the full optimized molecular geometric structures at B3LYP/6-311++G**level, the densities (ρ), heats of formation (HOFs), detonation velocities (D) and pressures (P) for a series of ditetrazoles derivatives, were investigated to look for high energy density materials (HEDMs). The results show that the influence of different substituted groups on HOFs has the order of -N3>-CN>-NH2>-NO2>-NF2>-ONO2>-H>-CH3>-CF3. The introduction of -CF3 groups is more favourable for increasing the density and the introduction of -CH3 groups is not favourable for increasing the density. In addition, all the series combined with -NF2 group except B-NF2 all have higher densities, larger D and P. F-NF2 may be regarded as the potential candidates of HEDMs because of the largest detonation velocity and pressure among these derivatives. The energy gaps between the HOMO and LUMO of the studied compounds are also investigated.

Computational results show that ditetrazoles combined with -NF2 group except B-NF2 have higher densities, larger D and P. F-NF2 may be regarded as the potential candidate of HEDMs because of the largest detonation velocity and pressure among these derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Huynh M H V, Hiskey M A, Pollard C J, Montoya D P, Hartline E L and Gilardi R D 2004 J. Energ. Mater. 22 217

  2. Huynh M H V, Hiskey M A, Chavez D E, Naud D L and Gilardi R D 2005 J. Am. Chem. Soc. 127 12537

  3. Gutowski K E, Rogers R D and Dixon D A 2007 J. Phys. Chem. B. 111 4788

  4. Talawar M B, Sivabalan R, Senthilkumar N, Prabhu G and Asthana S N 2004 J. Hazard. Mater. 113 11

  5. Chavez D E, Hiskey M A and Gilardi R D 2000 Angew. Chem. Int. Ed. 39 1791

  6. Kerth J and Lobbecke S 2002 Propellants Explos. Pyrotech. 27 111

  7. Neutz J, Grosshardt O, Schaufele S, Schuppler H and Schweikert W 2003 Propellants Explos. Pyrotech. 28 181

  8. Huynh M H V, Hiskey M A, Hartline E L, Montoya D P and Gilardi R D 2004 Angew. Chem. Int. Ed. 43 4924

  9. Churakov A M, Smirnov O Y, Ioffe S L, Strelenko Y A and Tartakovsky V A 2002 Eur. J. Org. Chem. 14 2342

  10. Joo Y H, Gao H X, Zhang Y Q and Shreeve J M 2010 Inorg. Chem. 49 3282

  11. Guo Y, Tao G H, Zeng Z, Gao H X, Parrish D A and Shreeve J M 2010 Chem. Eur. J. 16 3753

  12. Klapötke T M and Stierstorfer J 2009 J. Am. Chem. Soc. 131 1122

  13. Joo Y B and Shreeve J M 2009 Angew. Chem. Int. Ed. 48 564

  14. Li X H, Zhang R Z and Zhang X Z 2013 Struct. Chem. 24 393

  15. Li X H, Zhang R Z and Zhang X Z 2011 Struct. Chem. 224 577

  16. Zhang R Z, Li X H and Zhang X Z 2012 J. Chem. Sci. 124 995

  17. Alexander D, Thomas Klapke M and Franz Martin A 2011 Z. Anorg. Allg. Chem. 637 1181

  18. Ravi P, Girish Gore M, Surya Tewari P and Arun Sikder K 2012 Propellants Explos. Pyrotech. 37 52

  19. Zhang C, Zhu W and Xiao H 2011 Comput. Theor. Chem. 967 257

  20. Joo Y H and Shreeve J M 2009 Angew. Chem. Int. Ed. 48 564

  21. Wei T, Wu J, Zhu W, Zhang C and Xiao H 2012 J. Mol. Model. 18 3467

  22. Zhang X, Zhu W and Xiao H 2010 J. Phys. Chem. A. 114 603

  23. Becke D 1992 J. Chem. Phys. 97 9173

  24. Hariharan P C and Pople J A 1973 Theor. Chim. Acta. 28 213

  25. Li X H, Zhang R Z and Zhang X Z 2010 J. Hazard. Mater. 183 622

  26. Li X H, Cheng Q D and Zhang X Z 2010 J. Energ. Mater. 28 251

  27. Xu X J, Xiao H M, Ju X H, Gong X D and Zhu W H 2006 J. Phys. Chem. A. 110 5929

  28. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann R E, Burant J C, Dapprich S, Millam J. M, Daniels A. D, Kudin K N, Strain M. C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al- Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head Gordon M, Replogle E S and Pople J A 2003 GAUSSIAN 03, Revision B.02, Gaussian Inc.: Pittsburgh PA

  29. Hehre W J, Radom L and Schleyer P V R 1986 In Ab Initio molecular orbital theory (New York: Wiley) p 124

  30. Rice B M, Sahu S and Owens F J 2002 J. Mol. Struct. Theochem 583 69

  31. Kamlet M J and Jacobs S J 1968 J. Chem. Phys. 48 23

  32. Zhang X H and Yun Z H 1989 In Explosive Chemistry (Beijing: National Defense Industry Press) p 198

  33. Politzer P, Martinez J, Jane Murray S, Monica Concha C and Alejandro T 2009 Mol. Phys. 107 2095

  34. Lide DR 2004 In Handbook of chemistry and physics, 84th edn. (Boca Raton: CRC Press LLC) p 54

  35. NIST Standard Reference Data Base Number 69, (http://webbook.nist.gov/chemistry)

  36. Balepin A A, Lebedev V P, Miroshnichenko E A, Koldobskii G I, Ostovskii V A, Larionov B P, Gidaspov B V and Lebedev Yu A 1977 Svoistva Veshchestv Str Mol. 2 93

  37. Li X H, Tang Z X, Zhang X Z and Yang X D 2009 J. Hazard. Mater. 165 372

  38. Li X H, Yin G X and Zhang X Z 2012 Chinese J. Chem. Phys. 25 545

  39. Li X H, Fu Z M and Zhang X Z 2012 Struct Chem. 23 515

  40. Li X H, Zhang R Z and Zhang X Z 2010 J. Hazard. Mater. 183 622

  41. Talawar M B, Sivabalan R, Mukundan T, Muthurajan H, Sikder A K, Gandhe B R and Rao A S 2009 J. Hazard. Mater. 161 589

  42. Gilardi R, Flippen-Anderson J L and Evans R 2002 Acta Crystallogr. E58 o972

  43. Fleming I 1976 Frontier orbitals and organic chemical reactions (New York: John Wiley and Sons) p 157

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Grant U1304111), China Postdoctoral Science Foundation (No. 2013M531361) and Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1201015B) for their support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LI XIAO-HONG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

XIAO-HONG, L., RUI-ZHOU, Z. Computational studies on energetic properties of nitrogen-rich energetic materials with ditetrazoles. J Chem Sci 126, 1753–1762 (2014). https://doi.org/10.1007/s12039-014-0665-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-014-0665-1

Keywords

Navigation