Skip to main content
Log in

Dynamics of water and ions around DNA: What is so special about them?

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Water around biomolecules is special for behaving strangely – both in terms of structure and dynamics, while ions are found to control various interactions in biomolecules such as DNA, proteins and lipids. The questions that how water and ions around these biomolecules behave in terms of their structure and dynamics, and how they affect the biomolecular functions have triggered tremendous research activities worldwide. Such activities not only unfolded important static and dynamic properties of water and ions around these biomolecules, but also provoked heated debate regarding their explanation and role in biological functions. DNA, being negatively charged, interacts strongly with the surrounding dipolar water and positively charged counterions, leading to complex electrostatic coupling of water and ions with the DNA. Recent time-resolved fluorescence Stokes shift experiments and related computer simulation studies from our and other laboratories have unfolded some unique dynamic characteristics of water and ions near different structures of DNA. These results are discussed here to showcase the specialty of water and ion dynamics around DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Andreatta D, Pérez Lustres JL, Kovalenko SA, Ernsting NP, Murphy CJ, Coleman RS and Berg MA 2005 Power-law solvation dynamics in DNA over six decades in time. J. Am. Chem. Soc. 127 7270–7271

    Article  PubMed  CAS  Google Scholar 

  • Andreatta D, Sen S, Lustres JLP, Kovalenko SA, Ernsting NP, Murphy CJ, Coleman RS and Berg MA 2006 Ultrafast dynamics in DNA:  ‘fraying’ at the end of the helix. J. Am. Chem. Soc. 128 6885–6892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bader JS and Chandler D 1989 Computer simulation of photochemically induced electron transfer. Chem. Phys. Lett. 157 501–504

    Article  CAS  Google Scholar 

  • Bagchi B 2013 Water in biological and chemical processes: from structure and dynamics to function (Cambridge: United Kingdom Press)

    Book  Google Scholar 

  • Bagchi B 2005 Water dynamics in the hydration layer around proteins and micelles. Chem. Rev. 105 3197–3219

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian S, Hurley LH and Neidle S 2011 Targeting G-quadruplexes in gene promoters: a novel anticancer strategy. Nat. Rev. Drug Discovery 10 261–275

    Article  PubMed  CAS  Google Scholar 

  • Ball P 2008 Water as an active constituent in cell biology. Chem. Rev. 108 74–108

    Article  PubMed  CAS  Google Scholar 

  • Barnett RN, Cleveland CL, Joy A, Landman U and Schuster GB 2001 Charge migration in DNA: ion-gated transport. Science 294 567–571

    Article  PubMed  CAS  Google Scholar 

  • Barron LD, Hecht L and Wilson G 1997 The lubricant of life: a proposal that solvent water promotes extremely fast conformational fluctuations in mobile heteropolypeptide structure. Biochemistry 36 13143–13147

    Article  PubMed  CAS  Google Scholar 

  • Beratan DN, Liu C, Migliore A, Polizzi NF, Skourtis SS, Zhang P and Zhang Y 2015 Charge transfer in dynamical biosystem, or the treachery of (static) images. Acc. Chem. Res. 48 474–481

    Article  PubMed  CAS  Google Scholar 

  • Berg MA, Coleman RS and Murphy CJ 2008 Nanoscale structure and dynamics of DNA. Phys. Chem. Chem. Phys. 10 1229–1242

    Article  PubMed  CAS  Google Scholar 

  • Beveridge DL, Dixit SB, Barreiro G and Thayer KM 2004 Molecular dynamics simulations of DNA curvature and flexibility: helix phasing and premelting. Biopolymers 73 380–403

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya K 2008 Nature of biological water: a femtosecond study. Chem. Commun. 2848–2857

  • Bhattacharya PK, Cha J and Barton JK 2002 1H NMR determination of base-pair lifetimes in oligonucleotides containing single base mismatches. Nucleic Acids Res. 30 4740–4750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biffi G, Tannahill D, McCafferty J and Balasubramanian S 2013 Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5 182–186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blackburn GM and Gait MJ 1996 DNA and RNA structure. Nucleic acids in Chemistry and biology 2nd ed. (New York: Oxford University Press)

    Google Scholar 

  • Brauns EB, Madaras ML, Coleman RS, Murphy CJ and Berg MA 1999 Measurement of local DNA reorganization on the picosecond and nanosecond time scales. J. Am. Chem. Soc. 121 11644–11649

    Article  CAS  Google Scholar 

  • Brauns EB, Madaras ML, Coleman RS, Murphy CJ and Berg MA 2002 Complex dynamics in DNA on the picosecond and nanosecond time scales. Phys. Rev. Lett. 88 158101–158104

    Article  PubMed  CAS  Google Scholar 

  • Breusegem SY, Clegg RM and Loontiens FG 2002 Base-sequence specificity of Hoechst 33258 and DAPI binding to five (A/T)4 DNA sites with kinetic evidence for more than one high-affinity Hoechst 33258-AATT complex. J. Mol. Biol. 315 1049–1061

    Article  PubMed  CAS  Google Scholar 

  • Brown J, Brown T and Fox KR 2001 Affinity of mismatch-binding protein MutS for heteroduplexes containing different mismatches. Biochem. J. 354 627–633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dallmann A, Pfaffe M, Mügge C, Mahrwald R, Kovalenko SA and Ernsting NP 2009 Local thz time domain spectroscopy of duplex DNA via fluorescence of an embedded probe. J. Phys. Chem. B 113 15619–15628

    Article  PubMed  CAS  Google Scholar 

  • Denisov VP and Halle B 1996 Protein hydration dynamics in aqueous solution. Farad Discuss 103 227–244

    Article  CAS  Google Scholar 

  • Denisov VP, Carlström G, Venu K and Halle B 1997 Kinetics of DNA hydration. J. Mol. Biol. 268 118−136

    Article  PubMed  CAS  Google Scholar 

  • Drew HR and Dickerson RE 1981 Structure of a B-DNA dodecamer. III. Geometry of hydration. J. Mol. Biol. 151 535–556

    Article  PubMed  CAS  Google Scholar 

  • Furse KE, Lindquist BA and Corcelli SA 2008 Solvation dynamics of Hoechst 33258 in water: an equilibrium and nonequilibrium molecular dynamics study. J. Phys. Chem. B 112 3231–3239

    Article  PubMed  CAS  Google Scholar 

  • Furse KE and Corcelli SA 2008 The dynamics of water at DNA interfaces: computational studies of Hoechst 33258 bound to DNA. J. Am. Chem. Soc. 130 13103–13109

    Article  PubMed  CAS  Google Scholar 

  • Genereux JC and Barton JK 2010 Mechanisms for DNA charge transport. Chem. Rev. 110 1642–1662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerstein M and Levitt M 1998 Simulating water and the molecules of life. Sci. Am. 279 100–105

    Article  PubMed  CAS  Google Scholar 

  • Graves DE and Velea LM 2000 Intercalative binding of small molecules to nucleic acids. Curr. Org. Chem. 4 915–929

    Article  CAS  Google Scholar 

  • Grossman M, Born B, Heyden M, Tworowski D, Fields GB, Sagi I and Havenith M 2011 Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site. Nat. Struct. Mol. Biol. 18 1102–1108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haldar S, Chaudhuri A and Chattopadhyay A 2011 Organization and dynamics of membrane probes and proteins utilizing the red edge excitation shift. J. Phys. Chem. B 115 5693–5706

    Article  PubMed  CAS  Google Scholar 

  • Halle B and Nilsson L 2009 Does the dynamic Stokes shift report on slow protein hydration dynamics? J. Phys. Chem. B 113 8210–8213

  • Jacobi J 1979 Paracelsus: selected writings (Princeton University Press)

  • Jana B, Pal S and Bagchi B 2010 Enhanced tetrahedral ordering of water molecules in AT minor grooves of DNA: relative role of DNA rigidity, nanoconfinement and surface specific interactions. J. Phys. Chem. B 114 3633–3638

    Article  PubMed  CAS  Google Scholar 

  • Jayaram B and Jain T 2004 The role of water in protein–DNA recognition. Annu. Rev. Biophys. Biomol. Struct. 33 343–361

    Article  PubMed  CAS  Google Scholar 

  • Jimenez R, Fleming GR, Kumar PV and Maroncelli M 1994 Femtosecond solvation dynamics of water. Nature 369 471–473

    Article  CAS  Google Scholar 

  • Jungwrith P 2015 Biological water or rather water in biology? J. Phys. Chem. Lett. 6 2449–2451

    Article  CAS  Google Scholar 

  • Kim SJ, Born B, Havenith M and Gruebele M 2008 Real-time detection of protein-water dynamics upon protein folding by terahertz absorption spectroscopy. Angew. Chem. Int. Ed. 47 6486–6489

    Article  CAS  Google Scholar 

  • Kubo R 1966 The fluctuation-dissipation theorem. Rep. Prog. Phys. 29 255–284

    Article  CAS  Google Scholar 

  • Kunkel TA and Erie DA 2005 DNA mismatch repair. Annu. Rev. Biochem. 74 681–710

    Article  PubMed  CAS  Google Scholar 

  • Laage D, Elsaesser T and Hynes JT 2017 Water dynamics in the hydration shells of biomolecules. Chem. Rev. 117 10694–10725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larsen TA, Goodsell DS, Cascio D, Grzeskowiak K and Dickerson RE 1989 The structure of DAPI bound to DNA. J. Biomol. Struct. Dyn. 7 477–491

    Article  PubMed  CAS  Google Scholar 

  • Majhi B and Bhattacharyya S 2014 Advances in the molecular design of potential anticancer agents via targeting of human telomeric DNA. Chem. Commun. 50 6422–6438

    Article  Google Scholar 

  • Manning GS and Ray J 1998 Counterion condensation revisited. J. Biomol. Struct. Dyn. 16 461–476

    Article  PubMed  CAS  Google Scholar 

  • Maroncelli M and Fleming GR 1988 Computer simulation of the dynamics of aqueous solvation; J. Chem. Phys. 89 5044–5069

    Article  CAS  Google Scholar 

  • McDermott ML, Vanselous H, Corcelli SA and Petersen PB 2017 DNA’s chiral spine of hydration. ACS Cent. Sci. 3 708–714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller MC, Buscaglia R, Chaires JB, Lane AN and Trent JO 2010 Hydration is a major determinant of the g-quadruplex stability and conformation of the human telomere 3’ sequence of d(AG3(TTAG3)3). J. Am. Chem. Soc. 132 17105–17107

    Article  PubMed  CAS  Google Scholar 

  • Modrich P 1987 DNA mismatch correction. Annu. Rev. Biochem. 56 435–466

    Article  PubMed  CAS  Google Scholar 

  • Mol CD, Izumi T, Mitra S and Tainer JA 2000 DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination. Nature 403 451–456

    Article  PubMed  CAS  Google Scholar 

  • Mondal S, Mukherjee S and Bagchi B 2017 Protein hydration dynamics: much ado about nothing? J. Phys. Chem. Lett. 8 4878–4882

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A, Lavery R, Bagchi B and Hynes JT 2008 On the molecular mechanism of drug intercalation onto DNA: a simulation study of the intercalation pathway, free energy, and DNA structural changes. J. Am. Chem. Soc. 130 9747–9755

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A 2011 Entropy balance in the intercalation process of an anti-cancer drug daunomycin. J. Phys. Chem. Lett. 2 3021–3026

    Article  CAS  Google Scholar 

  • Nilson L and Halle B 2005 Molecular origin of time-dependent fluorescence shifts in proteins. Proc. Natl. Acad. Sci. USA 102 13867–13872

    Article  CAS  Google Scholar 

  • Oglivie JP, Plazanet M, Dadusc G and Miller RJD 2002 Dynamics of ligand escape in myoglobin:  Q-band transient absorption and four-wave mixing studies. J. Phys. Chem. B 106 10460–10467

    Article  CAS  Google Scholar 

  • Oguey C, Foloppe N and Hartmann B 2010 Understanding the sequence-dependence of DNA groove dimensions: implications for DNA interactions. PLoS ONE 5 e15931(1–8)

  • O’Neill MA and Barton JK 2004 DNA-mediated charge transport requires conformational motion of the DNA bases: elimination of charge transport in rigid Glasses at 77 K. J. Am. Chem. Soc. 126 13234–13235

    Article  PubMed  CAS  Google Scholar 

  • Pal N, Verma SD and Sen S 2010 Probe position dependence of DNA dynamics: comparison of the time-resolved shift of groove-bound to base-stacked probes. J. Am. Chem. Soc. 132 9277–9279

    Article  PubMed  CAS  Google Scholar 

  • Pal N, Shweta H, Singh MK, Verma SD and Sen S 2015 Power-Law solvation dynamics in G-quadruplex DNA: role of hydration dynamics on ligand solvation inside DNA. J. Phys. Chem. Lett. 6 1754–1760

    Article  PubMed  CAS  Google Scholar 

  • Pal SK, Zhao L and Zewail AH 2003 Water at DNA surfaces: ultrafast dynamics in minor groove recognition. Proc. Natl. Acad. Sci. USA 100 8113–8118

    Article  CAS  Google Scholar 

  • Pal SK, Zhao L, Xia T and Zewail AH 2003 Site- and sequence-selective ultrafast hydration of DNA. Proc. Natl. Acad. Sci. USA 100 13746–13751

    Article  CAS  Google Scholar 

  • Pal S, Maiti PK, Bagchi B and Hynes JT 2006 Multiple time scales in solvation dynamics of DNA in aqueous solution:  the role of water, counterions, and cross-correlations. J. Phys. Chem. B 110 26396–26402

    Article  PubMed  CAS  Google Scholar 

  • Papoian GA, Ulander J and Wolynes PG 2003 Role of water mediated interactions in protein–protein recognition landscapes. J. Am. Chem. Soc. 125 9170–9178

    Article  PubMed  CAS  Google Scholar 

  • Passino SA, Nagasawa Y, Joo T and Fleming GR 1997 Three-pulse echo peak shift studies of polar solvation dynamics. J. Phys. Chem. A 101 725–731

    Article  CAS  Google Scholar 

  • Paul S, Ahmed T and Samanta A 2017 Influence of divalent counterions on the dynamics in DNA as probed by using a minor-groove binder. Chem. Phys. Chem. 18 2058–2064

    Article  PubMed  CAS  Google Scholar 

  • Ponomarev SY, Thayer KM and Beveridge DL 2004 Ion Motions in molecular dynamics simulations on DNA. Proc. Natl. Acad. Sci. USA 101 14771–14775

    Article  CAS  Google Scholar 

  • Qin Y, Wang L and Zhong D 2016 Dynamics and mechanism of ultrafast water–protein interactions. Proc. Natl. Acad. Sci. USA 113 8424–8429

    Article  CAS  Google Scholar 

  • Rasmussen BF, Stock AM, Ringe D and Petsko GA 1992 Crystalline ribonuclease a loses function below the dynamical transition at 220 K. Nature 357 423 – 424

    Article  PubMed  CAS  Google Scholar 

  • Reddy PBS, Sondhi SM and Lown JW 1999 Synthetic DNA minor groove-binding drugs. Pharmacol. Ther. 84 1–111

    Article  PubMed  CAS  Google Scholar 

  • Robinson CR and Sligar SG 1993 Molecular recognition mediated by bound water: a mechanism for star activity of the restriction endonuclease EcoRI. J. Mol. Biol. 234 302–306

    Article  PubMed  CAS  Google Scholar 

  • Rossetti G, Dans PD, Gomez PI, Ivani I, Gonzalez C and Orozco M 2015 The structural impact of DNA mismatches. Nucleic Acids Res. 43 4309–4321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rothschild LJ and Mancinelli RL 2001 Life in extreme environments. Nature 409 1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Rouzina I and Bloomfield VA 1998 DNA bending by small, mobile multivalent cations. Biophys. J. 74 3152–3164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saenger W, Hunter WN and Kennard O 1986 DNA conformation is determined by economics in the hydration of phosphate groups. Nature 324 385–388

    Article  PubMed  CAS  Google Scholar 

  • Saif B, Mohr RK, Montrose CJ and Litovitz TA 1991 On the mechanism of dielectric relaxation in aqueous DNA solutions. Biopolymers 31 1171–1180

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Andreatta D, Ponomarev SY, Beveridge DL and Berg MA 2009 Dynamics of water and ions near DNA: comparison of simulation to time-resolved Stokes-shift experiments. J. Am. Chem. Soc. 131 1724–1735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sen S, Gearheart LA, Rivers E, Liu H, Coleman RS, Murphy CJ and Berg MA 2006 Role of monovalent counterions in the ultrafast solvation dynamics of DNA. J. Phys. Chem. B 110 13248–13255

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Paraggio NA, Gearheart LA, Connor EE, Issa A, Coleman RS, Wilson DM 3rd, Wyatt MD and Berg MA 2005 Effect of protein binding on ultrafast DNA dynamics: characterization of a DNA: APE1 complex. Biophys. J. 89 4129–4138

  • Shweta H, Singh MK, Yadav K, Verma SD, Pal N and Sen S 2017 Effect of TT mismatch on DNA dynamics probed by minor groove binders: comparison of dynamic Stokes shifts of Hoechst and DAPI. J. Phys. Chem. B 121 10735–10748

    Article  PubMed  CAS  Google Scholar 

  • Siebert T, Guchhait B, Liu Y, Fingerhut BP and Elsaesser T 2016 Range, magnitude, and ultrafast dynamics of electric fields at the hydrated DNA surface. J. Phys. Chem. Lett. 7 3131–3136

    Article  PubMed  CAS  Google Scholar 

  • Singh MK, Shweta H and Sen S 2016 Dispersed dynamics of solvation in g-quadruplex DNA: comparison of dynamic Stokes shifts of probes in parallel and antiparallel quadruplex structures. Methods Appl. Fluoresc. 4 034009(1–13)

  • Spolar RS and Record MT 1994 Coupling of local folding to site-specific binding of proteins to DNA. Science 263 777−784

    Article  PubMed  CAS  Google Scholar 

  • Subramanian PS, Ravishanker G and Beveridge DL 1988 Theoretical considerations on the ‘spine of hydration’ in the minor groove of d(CGCGAATTCGCG).d(GCGCTTAAGCGC): monte carlo computer simulation. Proc. Natl. Acad. Sci. USA 85 1836–1840

    Article  CAS  Google Scholar 

  • Trieb M, Rauch C, Wellenzohn B, Wibowo F, Loerting T and Liedl KR 2004 Dynamics of DNA: BI and BII phosphate backbone transitions. J. Phys. Chem. B 108 2470–2476

    Article  CAS  Google Scholar 

  • Verma SD, Pal N, Singh MK and Sen S 2012 Probe position-dependent counterion dynamics in DNA: comparison of time-resolved stokes shift of groove-bound to base- stacked probes in the presence of different monovalent counterions. J. Phys. Chem. Lett. 3 2621–2626

    Article  PubMed  CAS  Google Scholar 

  • Verma SD, Pal N, Singh MK and Sen S 2015 Sequence-dependent solvation dynamics of minor-groove bound ligand inside duplex-DNA. J. Phys. Chem. B 119 11019–11029

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto E, Akimoto T, Yasui M and Yasuoka K 2014 Origin of subdiffusion of water molecules on cell membrane surfaces. Sci. Rep. 4 4720(1–7)

  • Yang J, Wang Y, Wang L and Zhong D 2017 Mapping hydration dynamics around a β-barrel protein. J. Am. Chem. Soc. 139 4399–4408

    Article  PubMed  CAS  Google Scholar 

  • Zewail A 2011 Biological water: a critique. Chem. Phys. Lett. 503 1–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobhan Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shweta, H., Sen, S. Dynamics of water and ions around DNA: What is so special about them?. J Biosci 43, 499–518 (2018). https://doi.org/10.1007/s12038-018-9771-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9771-4

Keywords

Navigation