Skip to main content
Log in

Recent excitements in protein NMR: Large proteins and biologically relevant dynamics

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The advent of Transverse Relaxation Optimized SpectroscopY (TROSY) and perdeuteration allowed biomolecular NMR spectroscopists to overcome the size limitation barrier (~20 kDa) in de novo structure determination of proteins. The utility of these techniques was immediately demonstrated on large proteins and protein complexes (e.g. GroEL-GroES, ClpP protease, Hsp90-p53, 20S proteasome, etc.). Further, recent methodological developments such as Residual Dipolar Couplings and Paramagnetic Relaxation Enhancement allowed accurate measurement of long-range structural restraints. Additionally, Carr-Purcell-Meiboom-Gill (CPMG), rotating frame relaxation experiments (R1ρ) and saturation transfer experiments (CEST and DEST) created never-before accessibility to the μs–ms timescale dynamic parameters that led to the deeper understanding of biological processes. Meanwhile, the excitement in the field continued with a series of developments in the fast data acquisition methods allowing rapid structural studies on less stable proteins. This review aims to discuss important developments in the field of biomolecular NMR spectroscopy in the recent past, i.e., in the post TROSY era. These developments not only gave access to the structural studies of large protein assemblies, but also revolutionized tools in the arsenal of today’s biomolecular NMR and point to a bright future of biomolecular NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Allegrozzi M, Bertini I, Janik MBL, Lee YM, Liu G and Luchinat C 2000 Lanthanide-induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 Å from the metal ion. J. Am. Chem. Soc. 122 4154–4161

    Article  CAS  Google Scholar 

  • Alvey HS, Gottardo FL, Nikolova EN and Al-Hashimi HM 2014 Widespread transient Hoogsteen base pairs in canonical duplex DNA with variable energetics. Nat. Commun. 5 4786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arano Y, Uezono T, Akizawa H, Ono M, Wakisaka K, Nakayama M, Sakahara H, Konishi J, et al. 1996 Reassessment of diethylenetriaminepentaacetic acid (DTPA) as a chelating agent for indium-111 labeling of polypeptides using a newly synthesized monoreactive DTPA derivative. J. Med. Chem. 39 3451–3460

    Article  CAS  PubMed  Google Scholar 

  • Arkin MR and Wells JA 2004 Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug Discov. 3 301–317

    Article  CAS  PubMed  Google Scholar 

  • Arora A, Abildgaard F, Bushweller JH and Tamm LK 2001 Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat. Struct. Biol. 8 334–338

    Article  CAS  PubMed  Google Scholar 

  • Baldwin AJ and Kay LE 2009 NMR spectroscopy brings invisible protein states into focus. Nat. Chem. Biol. 5 808–814

    Article  CAS  PubMed  Google Scholar 

  • Battiste JL and Wagner G 2000 Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry. 39 5355–5365

    Article  CAS  PubMed  Google Scholar 

  • Bertini I, Janik MBL, Lee YM, Luchinat C and Rosato A 2001 Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix. J. Am. Chem. Soc. 123 4181–4188

    Article  CAS  PubMed  Google Scholar 

  • Bertini I, Luchinat C and Parigi G 2002 Magnetic susceptibility in paramagnetic NMR. Prog. Nucl. Magn. Reson. Spectrosc. 40 249–273

    Article  CAS  Google Scholar 

  • Bertini I, Del Bianco C, Gelis I, Katsaros N, Luchinat C, Parigi G, Peana M, Provenzani A, et al. 2004 Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proc. Natl. Acad. Sci. U. S. A. 101 6841–6846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertini I, Gupta YK, Luchinat C, Parigi G, Peana M, Sgheri L and Yuan J 2007 Paramagnetism-based NMR restraints provide maximum allowed probabilities for the different conformations of partially independent protein domains. J. Am. Chem. Soc. 129 12786–12794

    Article  CAS  PubMed  Google Scholar 

  • Bertini I, Luchinat C, Parigi G and Pierattelli R 2008 Perspectives in paramagnetic NMR of metalloproteins. Dalton Trans. 3782–3790

  • Bloembergen N and Morgan LO 1961 Proton relaxation times in paramagnetic solutions. Effects of electron spin relaxation. J. Chem. Phys. 34 842

    Article  CAS  Google Scholar 

  • Boehr DD, McElheny D, Dyson HJ and Wright PE 2006 The dynamic energy landscape of dihydrofolate reductase catalysis. Science. 313 1638–1642

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh J, Fairbrother W, Palmer AG, Rance M and Skelton N 2007 Protein NMR spectroscopy. Principles and Practice.

  • Clore GM and Iwahara J 2009 Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem. Rev. 109 4108–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC and Gronenborn AM 1990 Deviations from the simple two-parameter model-free approach to the interpretation of nitorgen-15 nuclear magnetic-relaxation of proteins. J. Am. Chem. Soc. 112 4989–4991

    Article  CAS  Google Scholar 

  • Crespi HL, Rosenberg RM and Katz JJ 1968 Proton magnetic resonance of proteins fully deuterated except for 1H-leucine side chains. Science. 161 795–796

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh MV, John M, Coles M, Peters J, Baumeister W and Kessler H 2006 Inter-domain orientation and motions in VAT-N explored by residual dipolar couplings and 15N backbone relaxation. Magn. Reson. Chem. 44 S89–S100

    Article  CAS  PubMed  Google Scholar 

  • Donaldson LW, Skrynnikov NR, Choy WY, Muhandiram DR, Sarkar B, Forman-Kay JD and Kay LE 2001 Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. J. Am. Chem. Soc. 123 9843–9847

    Article  CAS  PubMed  Google Scholar 

  • Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, et al. 1994 Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry. 33 5984–6003

    Article  CAS  PubMed  Google Scholar 

  • Farrow NA, Zhang OW, Szabo A, Torchia DA and Kay LE 1995 Spectral density-function mapping using 15N relaxation data exclusively. J. Biomol. NMR. 6 153–162

    Article  CAS  PubMed  Google Scholar 

  • Fawzi NL, Ying J, Ghirlando R, Torchia DA and Clore GM 2011 Atomic-resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR. Nature. 480 268–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawzi NL, Ying J, Torchia DA and Clore GM 2012 Probing exchange kinetics and atomic resolution dynamics in high-molecular-weight complexes using dark-state exchange saturation transfer NMR spectroscopy. Nat. Protoc. 7 1523–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsen S and Hoffman RA 1963 Study of moderately rapid chemical exchange reactions by means of Nuclear Magnetic Double Resonance. J. Chem. Phys. 39 2892

    Article  CAS  Google Scholar 

  • Gardner KH and Kay LE 1998 The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu. Rev. Biophys. Biomol. Struct. 27 357–406

    Article  CAS  PubMed  Google Scholar 

  • Gardner KH, Rosen MK and Kay LE 1997 Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry. 36 1389–1401

    Article  CAS  PubMed  Google Scholar 

  • Göbl C, Madl T, Simon B and Sattler M 2014 NMR approaches for structural analysis of multidomain proteins and complexes in solution. Prog. Nucl. Magn. Reson. Spectrosc. 80 26–63

    Article  PubMed  Google Scholar 

  • Griffith OH and McConnell HM 1966 A nitroxide-maleimide spin label. Proc. Natl. Acad. Sci. U. S. A. 55 8–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grzesiek S, Anglister J, Ren H and Bax A 1993 Carbon-13 line narrowing by deuterium decoupling in deuterium/carbon-13/nitrogen-15 enriched proteins. Application to triple resonance 4D J connectivity of sequential amides. J. Am. Chem. Soc. 115 4369–4370

    Article  CAS  Google Scholar 

  • Hansen MR, Mueller L and Pardi A 1998 Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5 1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Hardy JA and Wells JA 2004 Searching for new allosteric sites in enzymes. Curr. Opin. Struct. Biol. 14 706–715

    Article  CAS  PubMed  Google Scholar 

  • Haribabu A personal communication

  • Hennig J, Warner LR, Simon B, Geerlof A, Mackereth CD and Sattler M 2015 Structural analysis of protein-RNA complexes in solution using NMR paramagnetic relaxation enhancements. Methods Enzymol. 558 333–362

    Article  CAS  PubMed  Google Scholar 

  • Henzler-Wildman K and Kern D 2007 Dynamic personalities of proteins. Nature. 450 964–972

    Article  CAS  PubMed  Google Scholar 

  • Hubbell WL, Cafiso DS and Altenbach C 2000 Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7 735–739

    Article  CAS  PubMed  Google Scholar 

  • Hubbell WL, López CJ, Altenbach C and Yang Z 2013 Technological advances in site-directed spin labeling of proteins. Curr. Opin. Struct. Biol. 23 725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyberts SG, Milbradt AG, Wagner AB, Arthanari H and Wagner G 2012 Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. J. Biomol. NMR. 52 315–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyberts SG, Arthanari H, Robson SA and Wagner G 2014 Perspectives in magnetic resonance: NMR in the post-FFT era. J. Magn. Reson. 241 60–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishima R and Nagayama K 1995 Protein backbone dynamics revealed by quasi spectral density function analysis of amide N-15 nuclei. Biochemistry. 34 3162–3171

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Muto Y, Green MR and Yokoyama S 1999 Solution structures of the first end second RNA-binding domains of human U2 small nuclear ribonucleoprotein particle auxiliary factor (U2AF65). EMBO J. 18 4523–4534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaremko Ł, Jaremko M, Giller K, Becker S and Zweckstetter M 2014 Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science. 343 1363–1366

    Article  CAS  PubMed  Google Scholar 

  • Jaremko M, Jaremko Ł, Giller K, Becker S and Zweckstetter M 2015a Structural integrity of the A147T polymorph of mammalian TSPO. ChemBioChem. 16 1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Jaremko M, Jaremko Ł, Jaipuria G, Becker S and Zweckstetter M 2015b Structure of the mammalian TSPO/PBR protein. Biochem. Soc. Trans. 43 566–571

    Article  CAS  PubMed  Google Scholar 

  • Jaremko Ł, Jaremko M, Nowakowski M and Ejchart A 2015c The quest for simplicity: remarks on the free-approach models. J. Phys. Chem. B. 119 11978–11987

    Article  CAS  PubMed  Google Scholar 

  • Jensen MR, Lauritzen C, Dahl SW, Pedersen J and Led JJ 2004 Binding ability of a HHP-tagged protein towards Ni2+ studied by paramagnetic NMR relaxation: The possibility of obtaining long-range structure information. J. Biomol. NMR. 29 175–185

    Article  CAS  PubMed  Google Scholar 

  • Jeschke G 2013 Conformational dynamics and distribution of nitroxide spin labels. Prog. Nucl. Magn. Reson. Spectrosc. 72 42–60

    Article  CAS  PubMed  Google Scholar 

  • Keizers PHJ and Ubbink M 2011 Paramagnetic tagging for protein structure and dynamics analysis. Prog. Nucl. Magn. Reson. Spectrosc. 58 88–96

    Article  CAS  PubMed  Google Scholar 

  • Keizers PHJ, Desreux JF, Overhand M and Ubbink M 2007 Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. J. Am. Chem. Soc. 129 9292–9293

    Article  CAS  PubMed  Google Scholar 

  • Keizers PHJ, Saragliadis A, Hiruma Y, Overhand M and Ubbink M 2008 Design, synthesis, and evaluation of a lanthanide chelating protein probe: CLaNP-5 yields predictable paramagnetic effects independent of environment. J. Am. Chem. Soc. 130 14802–14812

    Article  CAS  PubMed  Google Scholar 

  • Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson CM and Kay LE 2004 Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature. 430 586–590

    Article  CAS  PubMed  Google Scholar 

  • Kramer F, Deshmukh MV, Kessler H and Glaser SJ 2004 Residual dipolar coupling constants: an elementary derivation of key equations. Concepts Magn. Reson. Part A. 21 10–21

    Article  Google Scholar 

  • Kupče E and Freeman R 2004 Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J. Am. Chem. Soc. 126 6429–6440

    Article  PubMed  Google Scholar 

  • Lauffer RB and Brady TJ 1985 Preparation and water relaxation properties of proteins labeled with paramagnetic metal chelates. Magn. Reson. Imaging. 3 11–16

    Article  CAS  PubMed  Google Scholar 

  • Lee GM and Craik CS 2009 Trapping moving targets with small molecules. Science. 324 213–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefèvre JF, Dayie KT, Peng JW and Wagner G 1996 Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions. Biochemistry. 35 2674–2686

    Article  PubMed  Google Scholar 

  • Lewis MR and Shively JE 1998 Maleimidocysteineamido-DOTA derivatives: New reagents for radiometal chelate conjugation to antibody sulfhydryl groups undergo pH-dependent cleavage reactions. Bioconjug. Chem. 9 72–86

    Article  CAS  PubMed  Google Scholar 

  • Liang B and Tamm LK 2016 NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nat. Struct. Mol. Biol. 23 468–474

    Article  CAS  PubMed  Google Scholar 

  • Libich DS, Fawzi NL, Ying J and Clore GM 2013 Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR. Proc. Natl. Acad. Sci. 110 11361–11366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipari G and Szabo A 1982a Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules I. Theory and range of validity. J. Am. Chem. Soc. 104 4546–4559

    Article  CAS  Google Scholar 

  • Lipari G and Szabo A 1982b Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules II. Analysis of experimental results. J. Am. Chem. Soc. 104 4559–4570

    Article  CAS  Google Scholar 

  • Loria JP, Rance M and Palmer AG 1999 Transverse-relaxation-optimized (TROSY) gradient-enhanced triple-resonance NMR spectroscopy. J. Magn. Reson. 141 180–184

    Article  CAS  PubMed  Google Scholar 

  • Losonczi JA and Prestegard JH 1998 Improved dilute bicelle solutions for high-resolution NMR of biological macromolecules. J. Biomol. NMR. 12 447–451

    Article  CAS  PubMed  Google Scholar 

  • Mackereth CD, Madl T, Bonnal S, Simon B, Zanier K, Gasch A, Rybin V, Valcárcel J, et al. 2011 Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF. Nature. 475 408–411

    Article  CAS  PubMed  Google Scholar 

  • Madl T, Felli IC, Bertini I and Sattler M 2010 Structural analysis of protein interfaces from 13C direct-detected paramagnetic relaxation enhancements. J. Am. Chem. Soc. 132 7285–7287

    Article  CAS  PubMed  Google Scholar 

  • Maksay G 2011 Allostery in pharmacology: Thermodynamics, evolution and design. Prog. Biophys. Mol. Biol. 106 463–473

    Article  CAS  PubMed  Google Scholar 

  • Markley JL, Putter I and Jardetzky O 1968 High-resolution nuclear magnetic resonance spectra of selectively deuterated staphylococcal nuclease. Science. 161 1249–1251

    Article  CAS  PubMed  Google Scholar 

  • Mayer M and Meyer B 1999 Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. 38 1784–1788

    Article  CAS  Google Scholar 

  • Ottiger M and Bax A 1998 Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules. J. Biomol. NMR. 12 361–372

    Article  CAS  PubMed  Google Scholar 

  • Passner JM, Schultz SC and Steitz TA 2000 Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 Å resolution. J. Mol. Biol. 304 847–859

    Article  CAS  PubMed  Google Scholar 

  • Peng JW and Wagner G 1995 Frequency spectrum of NH bonds in eglin c from spectral density mapping at multiple fields. Biochemistry. 34 16733–16752

    Article  CAS  PubMed  Google Scholar 

  • Pervushin K 2000 Impact of transverse relaxation optimized spectroscopy (TROSY) on NMR as a technique in structural biology. Q. Rev. Biophys. 33 161–197

    Article  CAS  PubMed  Google Scholar 

  • Pervushin K, Riek R, Wider G and Wüthrich K 1997 Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. U. S. A. 94 12366–12371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pintacuda G, John M, Su XC and Otting G 2007 NMR structure determination of protein-ligand complexes by lanthanide labeling. Acc. Chem. Res. 40 206–212

    Article  CAS  PubMed  Google Scholar 

  • Prestegard J, Bougault C and Kishore A 2004 Residual Dipolar Couplings in structure determination of biomolecules. Chem. Rev. 104 3519–3540

    Article  CAS  PubMed  Google Scholar 

  • Salzmann M, Wider G, Pervushin K, Senn H and Wüthrich K 1999 TROSY-type triple-resonance experiments for sequential NMR assignments of large proteins. J. Am. Chem. Soc. 121 844–848

    Article  CAS  Google Scholar 

  • Schanda P and Brutscher B 2005 Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J. Am. Chem. Soc. 127 8014–8015

    Article  CAS  PubMed  Google Scholar 

  • Schulte-Herbrüggen T and Sørensen OW 2000 Clean TROSY: compensation for relaxation-induced artifacts. J. Magn. Reson. 144 123–128

  • Sekhar A, Rosenzweig R, Bouvignies G and Kay LE 2016 Hsp70 biases the folding pathways of client proteins. Proc. Natl. Acad. Sci. U. S. A. 113 E2794–E2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L and Kay LE 2014 Tracing an allosteric pathway regulating the activity of the HslV protease. Proc. Natl. Acad. Sci. U. S. A. 111 2140–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sickmier EA, Frato KE, Shen H, Paranawithana SR, Green MR and Kielkopf CL 2006 Structural basis for polypyrimidine tract recognition by the essential pre-mRNA aplicing factor U2AF65. Mol. Cell. 23 49–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skrynnikov NR, Goto NK, Yang D, Choy WY, Tolman JR, Mueller GA and Kay LE 2000 Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with beta-cyclodextrin. J. Mol. Biol. 295 1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Sprangers R and Kay LE 2007 Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature. 445 618–622

    Article  CAS  PubMed  Google Scholar 

  • Szyperski T and Atreya HS 2006 Principles and applications of GFT projection NMR spectroscopy. Magn. Reson. Chem. 44 S51–S60

    Article  CAS  PubMed  Google Scholar 

  • Tei L, Baranyai Z, Botta M, Piscopo L, Aime S and Giovenzana GB 2008 Synthesis and solution thermodynamic study of rigidified and functionalised EGTA derivatives. Org. Biomol. Chem. 6 2361–2368

    Article  CAS  PubMed  Google Scholar 

  • Tjandra N and Bax A 1997 Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science. 278 1111–1114

    Article  CAS  PubMed  Google Scholar 

  • Tjandra N, Omichinski JG, Gronenborn AM, Clore GM and Bax A 1997 Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat. Struct. Biol. 4 732–738

    Article  CAS  PubMed  Google Scholar 

  • Todd AP, Cong J, Levinthal F, Levinthal C and Hubbell WL 1989 Site-directed mutagenesis of colicin E1 provides specific attachment sites for spin labels whose spectra are sensitive to local conformation. Proteins Struct. Funct. Genet. 6 294–305

    Article  CAS  PubMed  Google Scholar 

  • Tolman JR, Flanagan JM, Kennedy MA and Prestegard JH 1995 Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc. Natl. Acad. Sci. U. S. A. 92 9279–9283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tugarinov V and Kay LE 2003 Ile, Leu, and Val Methyl Assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J. Am. Chem. Soc. 125 13868–13878

    Article  CAS  PubMed  Google Scholar 

  • Tugarinov V, Hwang PM, Ollerenshaw JE and Kay LE 2003 Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J. Am. Chem. Soc. 125 10420–10428

    Article  CAS  PubMed  Google Scholar 

  • Tugarinov V, Hwang PM and Kay LE 2004 Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu. Rev. Biochem. 73 107–146

    Article  CAS  PubMed  Google Scholar 

  • Tzeng SR and Kalodimos CG 2011 Protein dynamics and allostery: An NMR view. Curr. Opin. Struct. Biol. 21 62–67

    Article  CAS  PubMed  Google Scholar 

  • Tzeng SR and Kalodimos CG 2013 Allosteric inhibition through suppression of transient conformational states. Nat. Chem. Biol. 9 462–465

    Article  CAS  PubMed  Google Scholar 

  • Ubbink M, Ejdebäck M, Karlsson BG and Bendall DS 1998 The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure. 6 323–335

    Article  CAS  PubMed  Google Scholar 

  • Vallurupalli P, Bouvignies G and Kay LE 2012 Studying “invisible” excited protein states in slow exchange with a major state conformation. J. Am. Chem. Soc. 134 8148–8161

    Article  CAS  PubMed  Google Scholar 

  • Venters RA, Farmer BT, Fierke CA and Spicer LD 1996 Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N and 1H assignments of human carbonic anhydrase II. J. Mol. Biol. 264 1101–1116

    Article  CAS  PubMed  Google Scholar 

  • Wallin E and Heijne G 1998 Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7 1029–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells JA and McClendon CL 2007 Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature. 450 1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Wöhnert J, Franz KJ, Nitz M, Imperiali B and Schwalbe H 2003 Protein alignment by a coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings. J. Am. Chem. Soc. 125 13338–13339

    Article  PubMed  Google Scholar 

  • Wüthrich K 1998 The second decade into the third millenium. Nat. Struct. Biol. 5 492–495

    Article  PubMed  Google Scholar 

  • Xu X, Keizers PHJ, Reinle W, Hannemann F, Bernhardt R and Ubbink M 2009 Intermolecular dynamics studied by paramagnetic tagging. J. Biomol. NMR. 43 247–254

    Article  CAS  PubMed  Google Scholar 

  • Youn H, Kerby RL, Conrad M and Roberts GP 2006 Study of highly constitutively active mutants suggests how cAMP activates cAMP receptor protein. J. Biol. Chem. 281 1119–1127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Council of Scientific and Industrial Research (CSIR) network projects GenCODE (BSC0123) and SplenDID (BSC0104). CSC acknowledges a PhD fellowship from the CSIR, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandar V Deshmukh.

Additional information

Corresponding editor: Durgadas P Kasbekar

[Chiliveri SC and Deshmukh MV 2016 Recent excitements in protein NMR: Large proteins and biologically relevant dynamics. J. Biosci.]

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 483 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiliveri, S.C., Deshmukh, M.V. Recent excitements in protein NMR: Large proteins and biologically relevant dynamics. J Biosci 41, 787–803 (2016). https://doi.org/10.1007/s12038-016-9640-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-016-9640-y

Keywords

Navigation