Skip to main content

Advertisement

Log in

Mechanistic Insights and Potential Therapeutic Implications of NRF2 in Diabetic Encephalopathy

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Diabetic encephalopathy (DE) is a complication of diabetes, especially type 2 diabetes (T2D), characterized by damage in the central nervous system and cognitive impairment, which has gained global attention. Despite the extensive research aimed at enhancing our understanding of DE, the underlying mechanism of occurrence and development of DE has not been established. Mounting evidence has demonstrated a close correlation between DE and various factors, such as Alzheimer’s disease-like pathological changes, insulin resistance, inflammation, and oxidative stress. Of interest, nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor with antioxidant properties that is crucial in maintaining redox homeostasis and regulating inflammatory responses. The activation and regulatory mechanisms of NRF2 are a relatively complex process. NRF2 is involved in the regulation of multiple metabolic pathways and confers neuroprotective functions. Multiple studies have provided evidence demonstrating the significant involvement of NRF2 as a critical transcription factor in the progression of DE. Additionally, various molecules capable of activating NRF2 expression have shown potential in ameliorating DE. Therefore, it is intriguing to consider NRF2 as a potential target for the treatment of DE. In this review, we aim to shed light on the role and the possible underlying mechanism of NRF2 in DE. Furthermore, we provide an overview of the current research landscape and address the challenges associated with using NRF2 activators as potential treatment options for DE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

DE:

Diabetic encephalopathy

T2D:

Type 2 diabetes

NRF2:

Nuclear factor erythroid 2-related factor 2

IR:

Insulin resistance

NFE2L2:

Nuclear factor erythroid 2-like 2

ARE:

Antioxidant response element

KEAP1:

Kelch-like-ECH-associated protein 1

CBP:

CAMP response element binding protein

βTrCP:

β-Transducin repeat protein

RARα:

Retinoic acid receptor alpha

CTR:

C-terminal region

NTR:

N-terminal region

ROS:

Reactive oxygen species

MAF:

Musculoaponeurotic fibrosarcoma

NQO1:

NAD(P)H: quinone dehydrogenase 1

HO-1:

Heme oxygenase 1

G6PD:

Carbohydrate metabolism gene: glucose-6-phosphate dehydrogenase

GCLC:

Glutamate-cysteine ligase catalytic subunit

GCLM:

Glutamate-cysteine ligase modifier subunit

LC3:

Microtubule-associated protein 1A/1B-light chain 3

ER:

Endoplasmic reticulum

MAPK:

P38-mitogen-activated protein kinase

GSK-3:

Glycogen synthase kinase 3

PI3K:

Phosphoinositide kinase

AMPK:

AMP-activated protein kinase

PKC:

Protein kinase C

NLS:

Nuclear localization sequence

NF-κB:

Nuclear factor kappa B

HDAC3:

Histone deacetylase 3

Aβ:

Amyloid beta

BBB:

Blood-brain barrier

TNF-α:

Tumor necrosis factor-alpha

IL-6:

Interleukin-6

GPX4:

Glutathione peroxidation Enzyme 4

SLC7A11:

Solute carrier family 7 member 11

BACE1:

Beta-site APP cleaving enzyme 1

APP:

Amyloid precursor protein

NDP52:

Nuclear point protein 52

SFN:

Sulforaphane

SOD:

Superoxide dismutase

GSTA2:

Glutathione S-transferase A2

ZDF:

Zucker diabetic fatty

MGO:

Methylglyoxal

FTL:

Ferritin light chain

FTH1:

Ferritin heavy chain 1

SLC40A1:

Solute carrier family 40 member 1

PPAR:

Peroxisome proliferator-activated receptor

cav-1:

Caveolin-1

PCr:

Phosphocreatine

NGR1:

Notoginsenoside R1

BBR:

Berberine

SiPE:

S. inappendiculata Polyphenol-rich extract

QCSPIONs:

Quercetin-conjugated superparamagnetic iron oxide nanoparticles

Trx-1:

Thioredoxin-1

References

  1. Gregg EW, Li Y, Wang J, Rios Burrows N, Ali MK, Rolka D, Williams DE, Geiss L (2014) Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med 370(16):1514–1523

    Article  CAS  PubMed  Google Scholar 

  2. Gregg EW, Sattar N, Ali MK (2016) The changing face of diabetes complications. Lancet Diabetes Endocrinol 4(6):537–547

    Article  PubMed  Google Scholar 

  3. Magliano DJ, Boyko EJ (2021) IDF Diabetes Atlas 10th edition scientific committee. 10th ed. Brussels: International Diabetes Federation

  4. Miles W, Root H (1922) Psychologic tests applied to diabetic patients. Arch Intern Med 30(6):767–777

    Article  Google Scholar 

  5. McCrimmon RJ, Ryan CM, Frier BM (2012) Diabetes and cognitive dysfunction. The Lancet 379(9833):2291–2299

    Article  Google Scholar 

  6. Ali MK, Pearson-Stuttard J, Selvin E, Gregg EW (2021) Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia 65(1):3–13

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dejong RN (1950) The nervous system complications of diabetes mellitus, with special reference to cerebrovascular changes. J Nerv Ment Dis 111(3):181–206

    Article  Google Scholar 

  8. Biessels GJ, Despa F (2018) Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 14(10):591–604

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ennis GE, Saelzler U, Umpierrez GE, Moffat SD (2020) Prediabetes and working memory in older adults. Brain Neurosci adv 4:2398212820961725

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marseglia A, Dahl Aslan AK, Fratiglioni L, Santoni G, Pedersen NL, Xu W (2018) Cognitive trajectories of older adults with prediabetes and diabetes: a population-based cohort study. J Gerontol: Series A 73(3):400–406

    Article  Google Scholar 

  11. Marseglia A, Fratiglioni L, Kalpouzos G, Wang R, Bäckman L, Xu W (2019) Prediabetes and diabetes accelerate cognitive decline and predict microvascular lesions: a population-based cohort study. Alzheimers Dement 15(1):25–33

    Article  PubMed  Google Scholar 

  12. Luo A, Xie Z, Wang Y, Wang X, Li S, Yan J, Zhan G, Zhou Z et al (2022) Type 2 diabetes mellitus-associated cognitive dysfunction: advances in potential mechanisms and therapies. Neurosci Biobehav Rev, 104642

  13. He F, Ru X, Wen T (2020) NRF2, a transcription factor for stress response and beyond. Int J Mol Sci 21(13):4777. https://doi.org/10.3390/ijms21134777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tonelli C, Chio IIC, Tuveson DA (2018) Transcriptional regulation by Nrf2. Antioxid Redox Signal 29(17):1727–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kerins MJ, Ooi A (2018) The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal 29(17):1756–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song X, Long D (2020) Nrf2 and ferroptosis: a new research direction for neurodegenerative diseases. Front Neurosci 14:267

    Article  PubMed  PubMed Central  Google Scholar 

  17. Johnson DA, Johnson JA (2015) Nrf2—a therapeutic target for the treatment of neurodegenerative diseases. Free Radical Biol Med 88:253–267

    Article  CAS  Google Scholar 

  18. Hirotsu Y, Katsuoka F, Funayama R, Nagashima T, Nishida Y, Nakayama K, Engel JD, Yamamoto M (2012) Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res 40(20):10228–10239. https://doi.org/10.1093/nar/gks827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fukutomi T, Takagi K, Mizushima T, Ohuchi N, Yamamoto M (2014) Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1. Mol Cell Biol 34(5):832–846. https://doi.org/10.1128/mcb.01191-13

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nioi P, Nguyen T, Sherratt PJ, Pickett CB (2005) The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol Cell Biol 25(24):10895–10906. https://doi.org/10.1128/mcb.25.24.10895-10906.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Canning P, Sorrell FJ, Bullock AN (2015) Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med 88(Pt B):101–107. https://doi.org/10.1016/j.freeradbiomed.2015.05.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD (2004) Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J Biol Chem 279(30):31556–31567. https://doi.org/10.1074/jbc.M403061200

    Article  CAS  PubMed  Google Scholar 

  23. Wang H, Liu K, Geng M, Gao P, Wu X, Hai Y, Li Y, Li Y et al (2013) RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res 73(10):3097–3108. https://doi.org/10.1158/0008-5472.Can-12-3386

    Article  CAS  PubMed  Google Scholar 

  24. Taguchi K, Yamamoto M (2017) The KEAP1-NRF2 system in cancer. Front Oncol 7:85. https://doi.org/10.3389/fonc.2017.00085

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, Hayes JD (2013) Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 32(32):3765–3781. https://doi.org/10.1038/onc.2012.388

    Article  CAS  PubMed  Google Scholar 

  26. Hayes JD, Chowdhry S, Dinkova-Kostova AT, Sutherland C (2015) Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3. Biochem Soc Trans 43(4):611–620. https://doi.org/10.1042/bst20150011

    Article  CAS  PubMed  Google Scholar 

  27. Lo JY, Spatola BN, Curran SP (2017) WDR23 regulates NRF2 independently of KEAP1. PLoS Genet 13(4):e1006762. https://doi.org/10.1371/journal.pgen.1006762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McMahon M, Lamont DJ, Beattie KA, Hayes JD (2010) Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci U S A 107(44):18838–18843. https://doi.org/10.1073/pnas.1007387107

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  29. Nioi P, McMahon M, Itoh K, Yamamoto M, Hayes JD (2003) Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem J 374(Pt 2):337–348. https://doi.org/10.1042/bj20030754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fão L, Mota SI, Rego AC (2019) Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s diseases. Ageing Res Rev 54:100942. https://doi.org/10.1016/j.arr.2019.100942

    Article  CAS  PubMed  Google Scholar 

  31. Hast BE, Goldfarb D, Mulvaney KM, Hast MA, Siesser PF, Yan F, Hayes DN, Major MB (2013) Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res 73(7):2199–2210. https://doi.org/10.1158/0008-5472.Can-12-4400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Itoh K, Wakabayashi N, Katoh Y, Ishii T, O’Connor T, Yamamoto M (2003) Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8(4):379–391. https://doi.org/10.1046/j.1365-2443.2003.00640.x

    Article  CAS  PubMed  Google Scholar 

  33. Taniguchi K, Yamachika S, He F, Karin M (2016) p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Lett 590(15):2375–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Umemura A, He F, Taniguchi K, Nakagawa H, Yamachika S, Font-Burgada J, Zhong Z, Subramaniam S et al (2016) p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 29(6):935–948. https://doi.org/10.1016/j.ccell.2016.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12(3):213–223. https://doi.org/10.1038/ncb2021

    Article  CAS  PubMed  Google Scholar 

  36. Camp ND, James RG, Dawson DW, Yan F, Davison JM, Houck SA, Tang X, Zheng N et al (2012) Wilms tumor gene on X chromosome (WTX) inhibits degradation of NRF2 protein through competitive binding to KEAP1 protein. J Biol Chem 287(9):6539–6550. https://doi.org/10.1074/jbc.M111.316471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu T, Zhao F, Gao B, Tan C, Yagishita N, Nakajima T, Wong PK, Chapman E et al (2014) Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev 28(7):708–722. https://doi.org/10.1101/gad.238246.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun Z, Huang Z, Zhang DD (2009) Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS ONE 4(8):e6588

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  39. Joo MS, Kim WD, Lee KY, Kim JH, Koo JH, Kim SG (2016) AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550. Mol Cell Biol 36(14):1931–1942. https://doi.org/10.1128/mcb.00118-16

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang HC, Nguyen T, Pickett CB (2002) Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277(45):42769–42774. https://doi.org/10.1074/jbc.M206911200

    Article  CAS  PubMed  Google Scholar 

  41. Apopa PL, He X, Ma Q (2008) Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells. J Biochem Mol Toxicol 22(1):63–76. https://doi.org/10.1002/jbt.20212

    Article  CAS  PubMed  Google Scholar 

  42. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23(20):7198–7209. https://doi.org/10.1128/mcb.23.20.7198-7209.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M (2001) Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 6(10):857–868. https://doi.org/10.1046/j.1365-2443.2001.00469.x

    Article  CAS  PubMed  Google Scholar 

  44. Theodore M, Kawai Y, Yang J, Kleshchenko Y, Reddy SP, Villalta F, Arinze IJ (2008) Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J Biol Chem 283(14):8984–8994. https://doi.org/10.1074/jbc.M709040200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li W, Jain MR, Chen C, Yue X, Hebbar V, Zhou R, Kong AN (2005) Nrf2 Possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif. J Biol Chem 280(31):28430–28438. https://doi.org/10.1074/jbc.M410601200

    Article  CAS  PubMed  Google Scholar 

  46. Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM, MacEwan DJ (2012) The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance. Blood 120(26):5188–5198. https://doi.org/10.1182/blood-2012-04-422121

    Article  CAS  PubMed  Google Scholar 

  47. Liu GH, Qu J, Shen X (2008) NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta 1783(5):713–727. https://doi.org/10.1016/j.bbamcr.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  48. Jain AK, Jaiswal AK (2007) GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem 282(22):16502–16510. https://doi.org/10.1074/jbc.M611336200

    Article  CAS  PubMed  Google Scholar 

  49. Sangokoya C, Telen MJ, Chi JT (2010) microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 116(20):4338–4348. https://doi.org/10.1182/blood-2009-04-214817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang M, Yao Y, Eades G, Zhang Y, Zhou Q (2011) MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res Treat 129(3):983–991. https://doi.org/10.1007/s10549-011-1604-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li N, Muthusamy S, Liang R, Sarojini H, Wang E (2011) Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech Ageing Dev 132(3):75–85. https://doi.org/10.1016/j.mad.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  52. Srikanth V, Sinclair AJ, Hill-Briggs F, Moran C, Biessels GJ (2020) Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities. Lancet Diabetes Endocrinol 8(6):535–545. https://doi.org/10.1016/s2213-8587(20)30118-2

    Article  PubMed  Google Scholar 

  53. Sanjari Moghaddam H, Ghazi Sherbaf F, Aarabi MH (2019) Brain microstructural abnormalities in type 2 diabetes mellitus: a systematic review of diffusion tensor imaging studies. Front Neuroendocrinol 55:100782. https://doi.org/10.1016/j.yfrne.2019.100782

    Article  PubMed  Google Scholar 

  54. Moran C, Beare R, Wang W, Callisaya M, Srikanth V (2019) Type 2 diabetes mellitus, brain atrophy, and cognitive decline. Neurology 92(8):e823–e830. https://doi.org/10.1212/wnl.0000000000006955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Espeland MA, Bryan RN, Goveas JS, Robinson JG, Siddiqui MS, Liu S, Hogan PE, Casanova R et al (2013) Influence of type 2 diabetes on brain volumes and changes in brain volumes: results from the Women’s Health Initiative Magnetic Resonance Imaging studies. Diabetes Care 36(1):90–97. https://doi.org/10.2337/dc12-0555

    Article  PubMed  Google Scholar 

  56. Kooistra M, Geerlings MI, Mali WP, Vincken KL, van der Graaf Y, Biessels GJ (2013) Diabetes mellitus and progression of vascular brain lesions and brain atrophy in patients with symptomatic atherosclerotic disease. The SMART-MR study J Neurol Sci 332(1–2):69–74. https://doi.org/10.1016/j.jns.2013.06.019

    Article  CAS  PubMed  Google Scholar 

  57. Vergoossen LW, Schram MT, de Jong JJ, Stehouwer CD, Schaper NC, Henry RM, van der Kallen CJ, Dagnelie PC et al (2020) White matter connectivity abnormalities in prediabetes and type 2 diabetes: the Maastricht study. Diabetes Care 43(1):201–208. https://doi.org/10.2337/dc19-0762

    Article  CAS  PubMed  Google Scholar 

  58. Wang DQ, Wang L, Wei MM, Xia XS, Tian XL, Cui XH, Li X (2020) Relationship between type 2 diabetes and white matter hyperintensity: a systematic review. Front Endocrinol (Lausanne) 11:595962. https://doi.org/10.3389/fendo.2020.595962

    Article  PubMed  Google Scholar 

  59. Liu J, Liu T, Wang W, Ma L, Ma X, Shi S, Gong Q, Wang M (2017) Reduced gray matter volume in patients with type 2 diabetes mellitus. Front Aging Neurosci 9:161. https://doi.org/10.3389/fnagi.2017.00161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roy B, Ehlert L, Mullur R, Freeby MJ, Woo MA, Kumar R, Choi S (2020) Regional brain gray matter changes in patients with type 2 diabetes mellitus. Sci Rep 10(1):9925. https://doi.org/10.1038/s41598-020-67022-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Zhao H, Wang F, Luo GH, Lei H, Peng F, Ren QP, Chen W, Wu YF et al (2022) Assessment of structural brain changes in patients with type 2 diabetes mellitus using the MRI-based brain atrophy and lesion index. Neural Regen Res 17(3):618–624. https://doi.org/10.4103/1673-5374.320996

    Article  PubMed  Google Scholar 

  62. Gold S, Dziobek I, Sweat V, Tirsi A, Rogers K, Bruehl H, Tsui W, Richardson S et al (2007) Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia 50(4):711–719

    Article  CAS  PubMed  Google Scholar 

  63. Bruehl H, Wolf OT, Sweat V, Tirsi A, Richardson S, Convit A (2009) Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes mellitus. Brain Res 1280:186–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sadeghi A, Hami J, Razavi S, Esfandiary E, Hejazi Z (2016) The effect of diabetes mellitus on apoptosis in hippocampus: cellular and molecular aspects. Int J Prev Med 7:57

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sima AA, Kamiya H, Li ZG (2004) Insulin, C-peptide, hyperglycemia, and central nervous system complications in diabetes. Eur J Pharmacol 490(1–3):187–197

    Article  CAS  PubMed  Google Scholar 

  66. Li Z-G, Zhang W, Grunberger G, Sima AA (2002) Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res 946(2):221–231

    Article  CAS  PubMed  Google Scholar 

  67. Foghi K, Ahmadpour S (2014) Diabetes mellitus type1 and neuronal degeneration in ventral and dorsal hippocampus. Iran J Pathol 9(1):33–37

    Google Scholar 

  68. Yonguc GN, Dodurga Y, Adiguzel E, Gundogdu G, Kucukatay V, Ozbal S, Yilmaz I, Cankurt U et al (2015) Grape seed extract has superior beneficial effects than vitamin E on oxidative stress and apoptosis in the hippocampus of streptozotocin induced diabetic rats. Gene 555(2):119–126

    Article  CAS  PubMed  Google Scholar 

  69. Jafari Anarkooli I, Barzegar Ganji H, Pourheidar M (2014) The protective effects of insulin and natural honey against hippocampal cell death in streptozotocin-induced diabetic rats. J Diabetes Res 2014:491571

  70. Zhao C-H, Liu H-Q, Cao R, Ji A-L, Zhang L, Wang F, Yang R-H (2012) Effects of dietary fish oil on learning function and apoptosis of hippocampal pyramidal neurons in streptozotocin-diabetic rats. Brain Res 1457:33–43

    Article  CAS  PubMed  Google Scholar 

  71. Jafari Anarkooli I, Sankian M, Ahmadpour S, Varasteh A-R, Haghir H (2008) Evaluation of Bcl-2 family geneexpression and Caspase-3 activity in hippocampus STZ-induced diabetic rats. Exp Diabetes Res 2008:638467

  72. Riederer P, Korczyn AD, Ali SS, Bajenaru O, Choi MS, Chopp M, Dermanovic-Dobrota V, Grünblatt E et al (2017) The diabetic brain and cognition. J Neural Transm 124(11):1431–1454

    Article  PubMed  Google Scholar 

  73. Soares E, Nunes S, Reis F, Pereira FC (2012) Diabetic encephalopathy: the role of oxidative stress and inflammation in type 2 diabetes. Int J Interferon, Cytokine Mediat Res 4:75–85

    Google Scholar 

  74. Moran C, Beare R, Phan TG, Bruce DG, Callisaya ML, Srikanth V (2015) Type 2 diabetes mellitus and biomarkers of neurodegeneration. Neurology 85(13):1123–1130. https://doi.org/10.1212/wnl.0000000000001982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qu Z, Jiao Z, Sun X, Zhao Y, Ren J, Xu G (2011) Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. Brain Res 1383:300–306. https://doi.org/10.1016/j.brainres.2011.01.084

    Article  CAS  PubMed  Google Scholar 

  76. Adamo M, Raizada MK, LeRoith D (1989) Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol 3(1–2):71–100. https://doi.org/10.1007/bf02935589

    Article  CAS  PubMed  Google Scholar 

  77. Cardoso S, Correia S, Santos RX, Carvalho C, Santos MS, Oliveira CR, Perry G, Smith MA et al (2009) Insulin is a two-edged knife on the brain. J Alzheimers Dis 18(3):483–507. https://doi.org/10.3233/jad-2009-1155

    Article  CAS  PubMed  Google Scholar 

  78. Plum L, Schubert M, Brüning JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16(2):59–65. https://doi.org/10.1016/j.tem.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  79. Gasparini L, Xu H (2003) Potential roles of insulin and IGF-1 in Alzheimer’s disease. Trends Neurosci 26(8):404–406. https://doi.org/10.1016/s0166-2236(03)00163-2

    Article  CAS  PubMed  Google Scholar 

  80. Wada A, Yokoo H, Yanagita T, Kobayashi H (2005) New twist on neuronal insulin receptor signaling in health, disease, and therapeutics. J Pharmacol Sci 99(2):128–143. https://doi.org/10.1254/jphs.crj05006x

    Article  CAS  PubMed  Google Scholar 

  81. Heni M, Hennige AM, Peter A, Siegel-Axel D, Ordelheide AM, Krebs N, Machicao F, Fritsche A et al (2011) Insulin promotes glycogen storage and cell proliferation in primary human astrocytes. PLoS ONE 6(6):e21594. https://doi.org/10.1371/journal.pone.0021594

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  82. Banks WA, Jaspan JB, Huang W, Kastin AJ (1997) Transport of insulin across the blood-brain barrier: saturability at euglycemic doses of insulin. Peptides 18(9):1423–1429. https://doi.org/10.1016/s0196-9781(97)00231-3

    Article  CAS  PubMed  Google Scholar 

  83. Winocur G, Greenwood CE, Piroli GG, Grillo CA, Reznikov LR, Reagan LP, McEwen BS (2005) Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav Neurosci 119(5):1389–1395. https://doi.org/10.1037/0735-7044.119.5.1389

    Article  CAS  PubMed  Google Scholar 

  84. Kuwabara T, Kagalwala MN, Onuma Y, Ito Y, Warashina M, Terashima K, Sanosaka T, Nakashima K et al (2011) Insulin biosynthesis in neuronal progenitors derived from adult hippocampus and the olfactory bulb. EMBO Mol Med 3(12):742–754. https://doi.org/10.1002/emmm.201100177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mijnhout GS, Scheltens P, Diamant M, Biessels GJ, Wessels AM, Simsek S, Snoek FJ, Heine RJ (2006) Diabetic encephalopathy: a concept in need of a definition. Diabetologia 49(6):1447–1448. https://doi.org/10.1007/s00125-006-0221-8

    Article  CAS  PubMed  Google Scholar 

  86. Rudolph JD, de Graauw M, van de Water B, Geiger T, Sharan R (2016) Elucidation of signaling pathways from large-scale phosphoproteomic data using protein interaction networks. Cell Syst 3(6):585-593.e583. https://doi.org/10.1016/j.cels.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  87. Kyriakis JM, Avruch J (1996) Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 271(40):24313–24316

    Article  CAS  PubMed  Google Scholar 

  88. Hoyer S, Lee SK, Löffler T, Schliebs R (2000) Inhibition of the neuronal insulin receptor an in vivo model for sporadic Alzheimer disease? Ann N Y Acad Sci 920(1):256–258

    Article  CAS  PubMed  ADS  Google Scholar 

  89. Sonoda N, Inoguchi T (2012) Role of oxidative stress in pathogenesis of diabetic complications. Nihon Rinsho Jpn J Clin Med 70:231–235

    Google Scholar 

  90. Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J (2012) The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J 12(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  91. Van Dam PS, Van Asbeck BS, Erkelens DW, Marx JJ, Gispen W-H, Bravenboer B (1995) The role of oxidative stress in neuropathy and other diabetic complications. Diabetes Metab Rev 11:181–181

    Article  PubMed  Google Scholar 

  92. Schenk S, Horowitz JF (2007) Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid–induced insulin resistance. J Clin Investig 117(6):1690–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23(5):599–622

    Article  CAS  PubMed  Google Scholar 

  94. Ceriello A (2000) Oxidative stress and glycemic regulation. Metabolism 49(2):27–29

    Article  CAS  PubMed  Google Scholar 

  95. Schmeichel AM, Schmelzer JD, Low PA (2003) Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 52(1):165–171

    Article  CAS  PubMed  Google Scholar 

  96. Chen G-J, Xu J, Lahousse SA, Caggiano NL, de la Monte SM (2003) Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection. J Alzheimers Dis 5(3):209–228

    Article  PubMed  Google Scholar 

  97. Sima AA (2010) Encephalopathies: the emerging diabetic complications. Acta Diabetol 47(4):279–293

    Article  CAS  PubMed  Google Scholar 

  98. Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93(1):137–188

    Article  CAS  PubMed  Google Scholar 

  99. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867

    Article  CAS  PubMed  ADS  Google Scholar 

  100. Prattichizzo F, De Nigris V, Spiga R, Mancuso E, La Sala L, Antonicelli R, Testa R, Procopio AD et al (2018) Inflammageing and metaflammation: the yin and yang of type 2 diabetes. Ageing Res Rev 41:1–17

    Article  CAS  PubMed  Google Scholar 

  101. Pabreja K, Dua K, Sharma S, Padi SS, Kulkarni SK (2011) Minocycline attenuates the development of diabetic neuropathic pain: possible anti-inflammatory and anti-oxidant mechanisms. Eur J Pharmacol 661(1–3):15–21

    Article  CAS  PubMed  Google Scholar 

  102. Dyer AH, McKenna L, Batten I, Jones K, Widdowson M, Dunne J, Conlon N, Reilly R et al (2020) Peripheral inflammation and cognitive performance in middle-aged adults with and without type 2 diabetes: results from the ENBIND study. Front Aging Neurosci 12:605878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Niewczas MA, Pavkov ME, Skupien J, Smiles A, Md Dom ZI, Wilson JM, Park J, Nair V et al (2019) A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat Med 25(5):805–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dinel A-L, Andre C, Aubert A, Ferreira G, Laye S, Castanon N (2011) Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome. PLoS ONE 6(9):e24325

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  105. Liu Y, Li M, Zhang Z, Ye Y, Zhou J (2018) Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Res Rev 42:28–39

    Article  CAS  PubMed  Google Scholar 

  106. Hussain S, Mansouri S, Sjöholm Å, Patrone C, Darsalia V (2014) Evidence for cortical neuronal loss in male type 2 diabetic Goto-Kakizaki rats. J Alzheimers Dis 41(2):551–560

    Article  PubMed  Google Scholar 

  107. Barnes PJ, Karin M (1997) Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336(15):1066–1071

    Article  CAS  PubMed  Google Scholar 

  108. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ et al (2012) Fezrroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, Wang J (2019) Ferroptosis and its role in diverse brain diseases. Mol Neurobiol 56(7):4880–4893

    Article  CAS  PubMed  Google Scholar 

  110. Reichert CO, de Freitas FA, Sampaio-Silva J, Rokita-Rosa L, Barros PL, Levy D, Bydlowski SP (2020) Ferroptosis mechanisms involved in neurodegenerative diseases. Int J Mol Sci 21:22. https://doi.org/10.3390/ijms21228765

    Article  CAS  Google Scholar 

  111. Belaidi AA, Bush AI (2016) Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem 139:179–197

    Article  CAS  PubMed  Google Scholar 

  112. Daugherty AM, Raz N (2015) Appraising the role of iron in brain aging and cognition: promises and limitations of MRI methods. Neuropsychol Rev 25(3):272–287

    Article  PubMed  PubMed Central  Google Scholar 

  113. Rodrigue KM, Daugherty AM, Haacke EM, Raz N (2013) The role of hippocampal iron concentration and hippocampal volume in age-related differences in memory. Cereb Cortex 23(7):1533–1541

    Article  PubMed  Google Scholar 

  114. Reddy MB, Clark L (2004) Iron, oxidative stress, and disease risk. Nutr Rev 62(3):120

    Article  PubMed  Google Scholar 

  115. Sheu WHH, Chen YT, Lee WJ, Wang CW, Lin LY (2003) A relationship between serum ferritin and the insulin resistance syndrome is present in non-diabetic women but not in non-diabetic men. Clin Endocrinol 58(3):380–385

    Article  CAS  Google Scholar 

  116. Tuomainen T-P, Nyyssönen K, Salonen R, Tervahauta A, Korpela H, Lakka T, Kaplan GA, Salonen JT (1997) Body iron stores are associated with serum insulin and blood glucose concentrations: population study in 1,013 eastern Finnish men. Diabetes Care 20(3):426–428

    Article  CAS  PubMed  Google Scholar 

  117. Hambright WS, Fonseca RS, Chen L, Na R, Ran Q (2017) Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 12:8–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhou Y (2020) The protective effects of cryptochlorogenic acid on β-cells function in diabetes in vivo and vitro via inhibition of ferroptosis. Diabetes, Metab Syndr Obes: Targets Ther 13:1921

    Article  CAS  Google Scholar 

  119. Yang Q, Zhou L, Liu C, Liu D, Zhang Y, Li C, Shang Y, Wei X et al (2018) Brain iron deposition in type 2 diabetes mellitus with and without mild cognitive impairment—an in vivo susceptibility mapping study. Brain Imaging Behav 12(5):1479–1487

    Article  PubMed  Google Scholar 

  120. Hao L, Mi J, Song L, Guo Y, Li Y, Yin Y, Zhang C (2021) SLC40A1 mediates ferroptosis and cognitive dysfunction in type 1 diabetes. Neuroscience 463:216–226

    Article  CAS  PubMed  Google Scholar 

  121. An J-R, Su J-N, Sun G-Y, Wang Q-F, Fan Y-D, Jiang N, Yang Y-F, Shi Y (2022) Liraglutide alleviates cognitive deficit in db/db mice: involvement in oxidative stress, iron overload, and ferroptosis. Neurochem Res 47(2):279–294

    Article  CAS  PubMed  Google Scholar 

  122. Cheng L-z, Li W, Chen Y-x, Lin Y-j, Miao Y (2022) Autophagy and diabetic encephalopathy: mechanistic insights and potential therapeutic implications. Aging Dis 13(2):447

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chen J-L, Luo C, Pu D, Zhang G-Q, Zhao Y-X, Sun Y, Zhao K-X, Liao Z-Y et al (2019) Metformin attenuates diabetes-induced tau hyperphosphorylation in vitro and in vivo by enhancing autophagic clearance. Exp Neurol 311:44–56

    Article  CAS  PubMed  Google Scholar 

  124. Zhou W, Yao Y, Li J, Wu D, Zhao M, Yan Z, Pang A, Kong L (2019) TIGAR attenuates high glucose-induced neuronal apoptosis via an autophagy pathway. Front Mol Neurosci 12:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gao R, Penzes P (2015) Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med 15(2):146–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Madl J, Royer S (2000) Glutamate dependence of GABA levels in neurons of hypoxic and hypoglycemic rat hippocampal slices. Neuroscience 96(4):657–664

    Article  CAS  PubMed  Google Scholar 

  127. Alberto Yasin Wayhs C, Maria Tannhauser Barros H, Regla Vargas C (2015) GABAergic modulation in diabetic encephalopathy-related depression. Curr Pharm Des 21(34):4980–4988

    Article  Google Scholar 

  128. Wang Z, Chen W-H, Li S-X, He Z-M, Zhu W-L, Ji Y-B, Wang Z, Zhu X-M et al (2021) Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation. Mol Psychiatry 26(11):6277–6292

    Article  CAS  PubMed  Google Scholar 

  129. Xu Y, Zhou H, Zhu Q (2017) The impact of microbiota-gut-brain axis on diabetic cognition impairment. Front Aging Neurosci 9:106

    Article  PubMed  PubMed Central  Google Scholar 

  130. Li ZH, Jiang YY, Long CY, Peng Q, Yue RS (2023) The gut microbiota‐astrocyte axis: implications for type 2 diabetic cognitive dysfunction. CNS Neurosci Ther 29(Suppl 1):59–73

  131. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N (2020) Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51:102590

  132. Liu Z, Dai X, Zhang H, Shi R, Hui Y, Jin X, Zhang W, Wang L, Wang Q, Wang D (2020) Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat Commun 11(1):855

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  133. Zheng Y, Zhou X, Wang C, Zhang J, Chang D, Zhuang S, Xu W, Chen Y et al (2022) Effect of dendrobium mixture in alleviating diabetic cognitive impairment associated with regulating gut microbiota. Biomed Pharmacother 149:112891

    Article  CAS  PubMed  Google Scholar 

  134. Zhang Y, Lu S, Yang Y, Wang Z, Wang B, Zhang B, Yu J, Lu W et al (2021) The diversity of gut microbiota in type 2 diabetes with or without cognitive impairment. Aging Clin Exp Res 33:589–601

    Article  PubMed  Google Scholar 

  135. Zhang X, Song W (2013) The role of APP and BACE1 trafficking in APP processing and amyloid-β generation. Alzheimers Res Ther 5(5):46. https://doi.org/10.1186/alzrt211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bahn G, Park JS, Yun UJ, Lee YJ, Choi Y, Park JS, Baek SH, Choi BY et al (2019) NRF2/ARE pathway negatively regulates BACE1 expression and ameliorates cognitive deficits in mouse Alzheimer’s models. Proc Natl Acad Sci U S A 116(25):12516–12523. https://doi.org/10.1073/pnas.1819541116

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  137. Joshi G, Gan KA, Johnson DA, Johnson JA (2015) Increased Alzheimer’s disease-like pathology in the APP/ PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging 36(2):664–679. https://doi.org/10.1016/j.neurobiolaging.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  138. Kerr F, Sofola-Adesakin O, Ivanov DK, Gatliff J, Gomez Perez-Nievas B, Bertrand HC, Martinez P, Callard R et al (2017) Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer’s disease. PLoS Genet 13(3):e1006593. https://doi.org/10.1371/journal.pgen.1006593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yu H, Yuan B, Chu Q, Wang C, Bi H (2019) Protective roles of isoastilbin against Alzheimer’s disease via Nrf2-mediated antioxidation and anti-apoptosis. Int J Mol Med 43(3):1406–1416. https://doi.org/10.3892/ijmm.2019.4058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GV (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5:3496. https://doi.org/10.1038/ncomms4496

    Article  CAS  PubMed  ADS  Google Scholar 

  141. Tapias V, Jainuddin S, Ahuja M, Stack C, Elipenahli C, Vignisse J, Gerges M, Starkova N et al (2018) Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy. Hum Mol Genet 27(16):2874–2892. https://doi.org/10.1093/hmg/ddy201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Murphy K, Llewellyn K, Wakser S, Pontasch J, Samanich N, Flemer M, Hensley K, Kim DS et al (2018) Mini-GAGR, an intranasally applied polysaccharide, activates the neuronal Nrf2-mediated antioxidant defense system. J Biol Chem 293(47):18242–18269. https://doi.org/10.1074/jbc.RA117.001245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Areosa Sastre A, Vernooij RW, González-Colaço Harmand M, Martínez G (2017) Effect of the treatment of type 2 diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst Rev 6(6):Cd003804. https://doi.org/10.1002/14651858.CD003804.pub2

    Article  PubMed  Google Scholar 

  144. FangFang LH, Qin T, Li M, Ma S (2017) Thymol improves high-fat diet-induced cognitive deficits in mice via ameliorating brain insulin resistance and upregulating NRF2/HO-1 pathway. Metab Brain Dis 32(2):385–393. https://doi.org/10.1007/s11011-016-9921-z

    Article  CAS  PubMed  Google Scholar 

  145. Pu D, Zhao Y, Chen J, Sun Y, Lv A, Zhu S, Luo C, Zhao K et al (2018) Protective effects of sulforaphane on cognitive impairments and AD-like lesions in diabetic mice are associated with the upregulation of Nrf2 transcription activity. Neuroscience 381:35–45. https://doi.org/10.1016/j.neuroscience.2018.04.017

    Article  CAS  PubMed  Google Scholar 

  146. Liu Z, Dou W, Ni Z, Wen Q, Zhang R, Qin M, Wang X, Tang H et al (2016) Deletion of Nrf2 leads to hepatic insulin resistance via the activation of NF-κB in mice fed a high-fat diet. Mol Med Rep 14(2):1323–1331. https://doi.org/10.3892/mmr.2016.5393

    Article  CAS  PubMed  Google Scholar 

  147. Meher AK, Sharma PR, Lira VA, Yamamoto M, Kensler TW, Yan Z, Leitinger N (2012) Nrf2 deficiency in myeloid cells is not sufficient to protect mice from high-fat diet-induced adipose tissue inflammation and insulin resistance. Free Radic Biol Med 52(9):1708–1715. https://doi.org/10.1016/j.freeradbiomed.2012.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Meakin PJ, Chowdhry S, Sharma RS, Ashford FB, Walsh SV, McCrimmon RJ, Dinkova-Kostova AT, Dillon JF et al (2014) Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance. Mol Cell Biol 34(17):3305–3320. https://doi.org/10.1128/mcb.00677-14

    Article  PubMed  PubMed Central  Google Scholar 

  149. Chartoumpekis DV, Palliyaguru DL, Wakabayashi N, Fazzari M, Khoo NKH, Schopfer FJ, Sipula I, Yagishita Y et al (2018) Nrf2 deletion from adipocytes, but not hepatocytes, potentiates systemic metabolic dysfunction after long-term high-fat diet-induced obesity in mice. Am J Physiol Endocrinol Metab 315(2):E180-e195. https://doi.org/10.1152/ajpendo.00311.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Xue P, Hou Y, Chen Y, Yang B, Fu J, Zheng H, Yarborough K, Woods CG et al (2013) Adipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome. Diabetes 62(3):845–854. https://doi.org/10.2337/db12-0584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xu J, Kulkarni SR, Donepudi AC, More VR, Slitt AL (2012) Enhanced Nrf2 activity worsens insulin resistance, impairs lipid accumulation in adipose tissue, and increases hepatic steatosis in leptin-deficient mice. Diabetes 61(12):3208–3218. https://doi.org/10.2337/db11-1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chartoumpekis DV, Yagishita Y, Fazzari M, Palliyaguru DL, Rao UN, Zaravinos A, Khoo NK, Schopfer FJ et al (2018) Nrf2 prevents Notch-induced insulin resistance and tumorigenesis in mice. JCI Insight 3 (5).https://doi.org/10.1172/jci.insight.97735

  153. Cheng AS, Cheng YH, Chiou CH, Chang TL (2012) Resveratrol upregulates Nrf2 expression to attenuate methylglyoxal-induced insulin resistance in Hep G2 cells. J Agric Food Chem 60(36):9180–9187. https://doi.org/10.1021/jf302831d

    Article  CAS  PubMed  Google Scholar 

  154. He HJ, Wang GY, Gao Y, Ling WH, Yu ZW, Jin TR (2012) Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabetes 3(5):94–104. https://doi.org/10.4239/wjd.v3.i5.94

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zhai Y, Meng X, Luo Y, Wu Y, Ye T, Zhou P, Ding S, Wang M et al (2018) Notoginsenoside R1 ameliorates diabetic encephalopathy by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Oncotarget 9(10):9344–9363. https://doi.org/10.18632/oncotarget.24295

    Article  PubMed  PubMed Central  Google Scholar 

  156. Li Z, Guo H, Li J, Ma T, Zhou S, Zhang Z, Miao L, Cai L (2020) Sulforaphane prevents type 2 diabetes-induced nephropathy via AMPK-mediated activation of lipid metabolic pathways and Nrf2 antioxidative function. Clin Sci 134(18):2469–2487

    Article  CAS  Google Scholar 

  157. Miller WP, Sunilkumar S, Giordano JF, Toro AL, Barber AJ, Dennis MD (2020) The stress response protein REDD1 promotes diabetes-induced oxidative stress in the retina by Keap1-independent Nrf2 degradation. J Biol Chem 295(21):7350–7361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ge Z-D, Lian Q, Mao X, Xia Z (2019) Current status and challenges of NRF2 as a potential therapeutic target for diabetic cardiomyopathy. Int Heart J 60(3):512–520

    Article  CAS  PubMed  Google Scholar 

  159. Li L, Luo W, Qian Y, Zhu W, Qian J, Li J, Jin Y, Xu X et al (2019) Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine 59:152774

    Article  CAS  PubMed  Google Scholar 

  160. Li R, Liu Y, Shan Y-g, Gao L, Wang F, Qiu C-g (2019) Bailcalin protects against diabetic cardiomyopathy through Keap1/Nrf2/AMPK-mediated antioxidative and lipid-lowering effects. Oxidative Med Cell Longev 2019:3206542

  161. Luo J, Yan D, Li S, Liu S, Zeng F, Cheung CW, Liu H, Irwin MG et al (2020) Allopurinol reduces oxidative stress and activates Nrf2/p62 to attenuate diabetic cardiomyopathy in rats. J Cell Mol Med 24(2):1760–1773

    Article  CAS  PubMed  Google Scholar 

  162. Muriach M, Flores-Bellver M, Romero FJ, Barcia JM (2014) Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxidative Med cell longev 2014:102158

  163. Rababa’h AM, Mardini AN, Alzoubi KH, Ababneh MA, Athamneh RY (2019) The effect of cilostazol on hippocampal memory and oxidative stress biomarkers in rat model of diabetes mellitus. Brain Res 1715:182–187

    Article  CAS  PubMed  Google Scholar 

  164. Ye T, Meng X, Zhai Y, Xie W, Wang R, Sun G, Sun X (2018) Gastrodin ameliorates cognitive dysfunction in diabetes rat model via the suppression of endoplasmic reticulum stress and NLRP3 inflammasome activation. Front Pharmacol 9:1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yang H, Fan S, Song D, Wang Z, Ma S, Li S, Li X, Xu M et al (2013) Long-term streptozotocin-induced diabetes in rats leads to severe damage of brain blood vessels and neurons via enhanced oxidative stress. Mol Med Rep 7(2):431–440

    Article  CAS  PubMed  Google Scholar 

  166. Kumar A, Mittal R (2017) Nrf2: a potential therapeutic target for diabetic neuropathy. Inflammopharmacology 25(4):393–402

    Article  CAS  PubMed  Google Scholar 

  167. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47(1):89–116

    Article  CAS  PubMed  Google Scholar 

  168. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322

    Article  CAS  PubMed  Google Scholar 

  169. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL (1999) Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274(37):26071–26078

    Article  CAS  PubMed  Google Scholar 

  170. Ichimura Y, Waguri S, Sou Y-s, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y et al (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51(5):618–631

    Article  CAS  PubMed  Google Scholar 

  171. Talaei F, Van Praag VM, Shishavan MH, Landheer SW, Buikema H, Henning RH (2014) Increased protein aggregation in Zucker diabetic fatty rat brain: identification of key mechanistic targets and the therapeutic application of hydrogen sulfide. BMC Cell Biol 15(1):1–17

    Article  PubMed  PubMed Central  Google Scholar 

  172. Wang B-N, Wu C-B, Chen Z-M, Zheng P-P, Liu Y-Q, Xiong J, Xu J-Y, Li P-F et al (2021) DL-3-n-butylphthalide ameliorates diabetes-associated cognitive decline by enhancing PI3K/Akt signaling and suppressing oxidative stress. Acta Pharmacol Sin 42(3):347–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Li H, Tang Z, Chu P, Song Y, Yang Y, Sun B, Niu M, Qaed E et al (2018) Neuroprotective effect of phosphocreatine on oxidative stress and mitochondrial dysfunction induced apoptosis in vitro and in vivo: involvement of dual PI3K/Akt and Nrf2/HO-1 pathways. Free Radical Biol Med 120:228–238

    Article  Google Scholar 

  174. Wang S, Ding L, Ji H, Xu Z, Liu Q, Zheng Y (2016) The role of p38 MAPK in the development of diabetic cardiomyopathy. Int J Mol Sci 17(7):1037

    Article  PubMed  PubMed Central  Google Scholar 

  175. Li J-S, Ji T, Su S-l, Zhu Y, Chen X-l, Shang E-X, Guo S, Qian D-W et al (2022) Mulberry leaves ameliorate diabetes via regulating metabolic profiling and AGEs/RAGE and p38 MAPK/NF-κB pathway. J Ethnopharmacol 283:114713

    Article  CAS  PubMed  Google Scholar 

  176. Pang X, Makinde EA, Eze FN, Olatunji OJJ (2021) Securidaca inappendiculata polyphenol rich extract counteracts cognitive deficits, neuropathy, neuroinflammation and oxidative stress in diabetic encephalopathic rats via p38 MAPK/Nrf2/HO-1 pathways. Front Pharmacol 12:737764

  177. Luo Z, Wan Q, Han Y, Li Z, Li B (2021) CAPE-pNO2 ameliorates diabetic brain injury through modulating Alzheimer’s disease key proteins, oxidation, inflammation and autophagy via a Nrf2-dependent pathway. Life Sci 287:119929

    Article  CAS  PubMed  Google Scholar 

  178. Baker RG, Hayden MS, Ghosh S (2011) NF-κB, inflammation, and metabolic disease. Cell Metab 13(1):11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Xu T, Liu J, Li X-R, Yu Y, Luo X, Zheng X, Cheng Y, Yu P-Q et al (2021) The mTOR/NF-κB pathway mediates neuroinflammation and synaptic plasticity in diabetic encephalopathy. Mol Neurobiol 58(8):3848–3862

    Article  CAS  PubMed  Google Scholar 

  180. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta (BBA)-Mol Basis Dis 2:585–597

  181. Yu M, Li H, Liu Q, Liu F, Tang L, Li C, Yuan Y, Zhan Y et al (2011) Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cell Signal 23(5):883–892

    Article  CAS  PubMed  Google Scholar 

  182. Bellezza I, Tucci A, Galli F, Grottelli S, Mierla AL, Pilolli F, Minelli A (2012) Inhibition of NF-κB nuclear translocation via HO-1 activation underlies α-tocopheryl succinate toxicity. J Nutr Biochem 23(12):1583–1591

    Article  CAS  PubMed  Google Scholar 

  183. Liu G-H, Qu J, Shen X (2008) NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC to MafK. Biochim Biophys Acta (BBA)-Mol Cell Res 1783(5):713–727

    Article  CAS  Google Scholar 

  184. Ye J, Guan M, Lu Y, Zhang D, Li C, Zhou C (2019) Arbutin attenuates LPS-induced lung injury via Sirt1/Nrf2/NF-κBp65 pathway. Pulm Pharmacol Ther 54:53–59

    Article  CAS  PubMed  Google Scholar 

  185. Jiang T, Tian F, Zheng H, Whitman SA, Lin Y, Zhang Z, Zhang N, Zhang DD (2014) Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-κB-mediated inflammatory response. Kidney Int 85(2):333–343

    Article  CAS  PubMed  Google Scholar 

  186. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi T et al (2016) Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 7(1):1–14

    Article  Google Scholar 

  187. Khor TO, Huang M-T, Kwon KH, Chan JY, Reddy BS, Kong A-N (2006) Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium–induced colitis. Can Res 66(24):11580–11584

    Article  CAS  Google Scholar 

  188. Innamorato NG, Rojo AI, García-Yagüe ÁJ, Yamamoto M, De Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181(1):680–689

    Article  CAS  PubMed  Google Scholar 

  189. Tarantini S, Valcarcel-Ares MN, Yabluchanskiy A, Tucsek Z, Hertelendy P, Kiss T, Gautam T, Zhang XA et al (2018) Nrf2 deficiency exacerbates obesity-induced oxidative stress, neurovascular dysfunction, blood–brain barrier disruption, neuroinflammation, amyloidogenic gene expression, and cognitive decline in mice, mimicking the aging phenotype. J Gerontol: Ser A 73(7):853–863

    Article  CAS  Google Scholar 

  190. Liao S, Wu J, Liu R, Wang S, Luo J, Yang Y, Qin Y, Li T et al (2020) A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: role of Akt (Ser473)/GSK3β (Ser9)-mediated Nrf2 activation. Redox Biol 36:101644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Okorji UP, Velagapudi R, El-Bakoush A, Fiebich BL, Olajide OA (2016) Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms. Mol Neurobiol 53(9):6426–6443

    Article  CAS  PubMed  Google Scholar 

  192. Bian H, Wang G, Huang J, Liang L, Zheng Y, Wei Y, Wang H, Xiao L et al (2020) Dihydrolipoic acid protects against lipopolysaccharide-induced behavioral deficits and neuroinflammation via regulation of Nrf2/HO-1/NLRP3 signaling in rat. J Neuroinflammation 17(1):1–13

    Article  Google Scholar 

  193. Yu J, Wang W-N, Matei N, Li X, Pang J-W, Mo J, Chen S-P, Tang J-P et al (2020) Ezetimibe attenuates oxidative stress and neuroinflammation via the AMPK/Nrf2/TXNIP pathway after MCAO in rats. Oxidative Med Cell Longev 2020:4717258

  194. Zhao Q, Zhang F, Yu Z, Guo S, Liu N, Jiang Y, Lo EH, Xu Y et al (2019) HDAC3 inhibition prevents blood-brain barrier permeability through Nrf2 activation in type 2 diabetes male mice. J Neuroinflammation 16(1):1–15

    Article  Google Scholar 

  195. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13(1):91–98

    Article  CAS  PubMed  Google Scholar 

  196. Gao M, Jiang X (2018) To eat or not to eat—the metabolic flavor of ferroptosis. Curr Opin Cell Biol 51:58–64

    Article  CAS  PubMed  Google Scholar 

  197. Hassannia B, Vandenabeele P, Berghe TV (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35(6):830–849

    Article  CAS  PubMed  Google Scholar 

  198. Osburn WO, Wakabayashi N, Misra V, Nilles T, Biswal S, Trush MA, Kensler TW (2006) Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion. Arch Biochem Biophys 454(1):7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275(21):16023–16029

    Article  CAS  PubMed  Google Scholar 

  200. Kwak M-K, Itoh K, Yamamoto M, Kensler TW (2002) Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol 22(9):2883–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Can Res 62(18):5196–5203

    CAS  Google Scholar 

  202. Chang CF, Cho S, Wang J (2014) (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Ann Clin Transl Neurol 1(4):258–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Brissot P, Pietrangelo A, Adams PC, De Graaff B, McLaren CE, Loréal O (2018) Haemochromatosis. Nat Rev Dis Prim 4(1):1–15

    Google Scholar 

  204. Cataneo AHD, Tomiotto-Pellissier F, Miranda-Sapla MM, Assolini JP, Panis C, Kian D, Yamauchi LM, Simão ANC et al (2019) Quercetin promotes antipromastigote effect by increasing the ROS production and anti-amastigote by upregulating Nrf2/HO-1 expression, affecting iron availability. Biomed Pharmacother 113:108745

    Article  CAS  PubMed  Google Scholar 

  205. Selvakumar GP, Ahmed ME, Raikwar SP, Thangavel R, Kempuraj D, Dubova I, Saeed D, Zahoor H et al (2019) CRISPR/Cas9 editing of glia maturation factor regulates mitochondrial dynamics by attenuation of the NRF2/HO-1 dependent ferritin activation in glial cells. J Neuroimmune Pharmacol 14(4):537–550

    Article  PubMed  PubMed Central  Google Scholar 

  206. Shin D, Kim EH, Lee J, Roh J-L (2018) Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radical Biol Med 129:454–462

    Article  CAS  Google Scholar 

  207. Sun X, Niu X, Chen R, He W, Chen D, Kang R, Tang D (2016) Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 64(2):488–500

    Article  CAS  PubMed  Google Scholar 

  208. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD (2014) Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510(7504):298–302

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  209. Shimada K, Hayano M, Pagano NC, Stockwell BR (2016) Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity. Cell Chem Biol 23(2):225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Abdalkader M, Lampinen R, Kanninen KM, Malm TM, Liddell JR (2018) Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front Neurosci 12:466

    Article  PubMed  PubMed Central  Google Scholar 

  211. Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H, Zhou Z (2022) Role and mechanism of ferroptosis in neurological diseases. Mol Metab 61:101502

  212. Wang X, Chen X, Zhou W, Men H, Bao T, Sun Y, Wang Q, Tan Y et al (2022) Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharmaceutica Sinica B 12(2):708–722

    Article  PubMed  Google Scholar 

  213. Li S, Zheng L, Zhang J, Liu X, Wu Z (2021) Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radical Biol Med 162:435–449

    Article  CAS  Google Scholar 

  214. Xing G, Meng L, Cao S, Liu S, Wu J, Li Q, Huang W, Zhang L (2022) PPARα alleviates iron overload-induced ferroptosis in mouse liver. EMBO Rep 23(8):e52280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Xiao Z, Shen D, Lan T, Wei C, Wu W, Sun Q, Luo Z, Chen W et al (2022) Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice. Redox Biol 50:102256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Abdul Y, Li W, Ward R, Abdelsaid M, Hafez S, Dong G, Jamil S, Wolf V et al (2021) Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: role of endothelial ferroptosis. Transl Stroke Res 12(4):615–630

    Article  CAS  PubMed  Google Scholar 

  217. Wei Z, Shaohuan Q, Pinfang K, Chao S (2022) Curcumin attenuates ferroptosis-induced myocardial injury in diabetic cardiomyopathy through the Nrf2 pathway. Cardiovasc Ther 2022:3159717

  218. Chen L, Dar NJ, Na R, McLane KD, Yoo K, Han X, Ran Q (2022) Enhanced defense against ferroptosis ameliorates cognitive impairment and reduces neurodegeneration in 5xFAD mice. Free Radical Biol Med 180:1–12

    Article  CAS  Google Scholar 

  219. Tang W, Li Y, He S, Jiang T, Wang N, Du M, Cheng B, Gao W et al (2022) Caveolin-1 alleviates diabetesassociated cognitive dysfunction through modulating neuronal ferroptosis-mediated mitochondrial homeostasis. Antioxid Redox Signal 37(13-15):867–886

  220. Zhao S, Zhang L, Xu Z, Chen W (2013) Neurotoxic effects of iron overload under high glucose concentration. Neural Regen Res 8(36):3423

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Iglseder B (1946) (2011) Diabetes mellitus and cognitive decline. Wien Med Wochenschr 161(21–22):524–530

    Google Scholar 

  222. Santos R, Correia SC, Alves M, Oliveira P, Cardoso S, Carvalho C, Duarte A, Santos M et al (2014) Insulin therapy modulates mitochondrial dynamics and biogenesis, autophagy and tau protein phosphorylation in the brain of type 1 diabetic rats. Biochim Biophys Acta (BBA)-Mol Basis Dis 7(1842):1154–1166

    Article  Google Scholar 

  223. Song Y, Ding W, Bei Y, Xiao Y, Tong HD, Wang LB, Ai LY (2018) Insulin is a potential antioxidant for diabetes-associated cognitive decline via regulating Nrf2 dependent antioxidant enzymes. Biomed Pharmacother 104:474–484. https://doi.org/10.1016/j.biopha.2018.04.097

    Article  CAS  PubMed  Google Scholar 

  224. Onaolapo OJ, Onaolapo AY (2018) Melatonin in drug addiction and addiction management: exploring an evolving multidimensional relationship. World J Psychiatr 8(2):64

    Article  PubMed  PubMed Central  Google Scholar 

  225. Zavodnik IB, Lapshina E, Cheshchevik V, Dremza I, Kujawa J, Zabrodskaya S, Reiter R (2011) Melatonin and succinate reduce rat liver mitochondrial dysfunction in diabetes. J Physiol Pharmacol 62(4):421–427

  226. Gürpınar T, Ekerbiçer N, Uysal N, Barut T, Tarakçı F, Tuglu MI (2012) The effects of the melatonin treatment on the oxidative stress and apoptosis in diabetic eye and brain. Sci World J 2012:498489

  227. Corpas R, Griñán-Ferré C, Palomera-Ávalos V, Porquet D, García de Frutos P, Franciscato Cozzolino SM, Rodríguez-Farré E, Pallàs M et al (2018) Melatonin induces mechanisms of brain resilience against neurodegeneration. J Pineal Res 65(4):e12515

    Article  PubMed  Google Scholar 

  228. Wongchitrat P, Lansubsakul N, Kamsrijai U, Sae-Ung K, Mukda S, Govitrapong P (2016) Melatonin attenuates the high-fat diet and streptozotocin-induced reduction in rat hippocampal neurogenesis. Neurochem Int 100:97–109

    Article  CAS  PubMed  Google Scholar 

  229. Kamsrijai U, Wongchitrat P, Nopparat C, Satayavivad J, Govitrapong P (2020) Melatonin attenuates streptozotocin-induced Alzheimer-like features in hyperglycemic rats. Neurochem Int 132:104601

    Article  PubMed  Google Scholar 

  230. Albazal A, Delshad AA, Roghani M (2021) Melatonin reverses cognitive deficits in streptozotocin-induced type 1 diabetes in the rat through attenuation of oxidative stress and inflammation. J Chem Neuroanat 112:101902. https://doi.org/10.1016/j.jchemneu.2020.101902

    Article  CAS  PubMed  Google Scholar 

  231. Bénard G, Massa F, Puente N, Lourenço J, Bellocchio L, Soria-Gómez E, Matias I, Delamarre A et al (2012) Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat Neurosci 15(4):558–564

    Article  PubMed  Google Scholar 

  232. Elmazoglu Z, Rangel-López E, Medina-Campos ON, Pedraza-Chaverri J, Túnez I, Aschner M, Santamaría A, Karasu Ç (2020) Cannabinoid-profiled agents improve cell survival via reduction of oxidative stress and inflammation, and Nrf2 activation in a toxic model combining hyperglycemia+Aβ(1–42) peptide in rat hippocampal neurons. Neurochem Int 140:104817. https://doi.org/10.1016/j.neuint.2020.104817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Galán-Ganga M, Del Río R, Jiménez-Moreno N, Díaz-Guerra M, Lastres-Becker I (2020) Cannabinoid CB2 receptor modulation by the transcription factor NRF2 is specific in microglial cells. Cell Mol Neurobiol 40(1):167–177

    Article  PubMed  Google Scholar 

  234. Guimarães-Ferreira L (2014) Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles. Einstein (Sao Paulo) 12(1):126–131. https://doi.org/10.1590/s1679-45082014rb2741

    Article  PubMed  Google Scholar 

  235. Ma C, Long H (2016) Protective effect of betulin on cognitive decline in streptozotocin (STZ)-induced diabetic rats. Neurotoxicology 57:104–111. https://doi.org/10.1016/j.neuro.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  236. Zhao J, Liu L, Li X, Zhang L, Lv J, Guo X, Chen H, Zhao T (2019) Neuroprotective effects of an Nrf2 agonist on high glucose-induced damage in HT22 cells. Biol Res 52(1):53. https://doi.org/10.1186/s40659-019-0258-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Hsu YY, Tseng YT, Lo YC (2013) Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth. Toxicol Appl Pharmacol 272(3):787–796. https://doi.org/10.1016/j.taap.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  238. Liu YW, Liu XL, Kong L, Zhang MY, Chen YJ, Zhu X, Hao YC (2019) Neuroprotection of quercetin on central neurons against chronic high glucose through enhancement of Nrf2/ARE/glyoxalase-1 pathway mediated by phosphorylation regulation. Biomed Pharmacother 109:2145–2154. https://doi.org/10.1016/j.biopha.2018.11.066

    Article  CAS  PubMed  Google Scholar 

  239. Liu YW, Cheng YQ, Liu XL, Hao YC, Li Y, Zhu X, Zhang F, Yin XX (2017) Mangiferin upregulates glyoxalase 1 through activation of Nrf2/ARE signaling in central neurons cultured with high glucose. Mol Neurobiol 54(6):4060–4070. https://doi.org/10.1007/s12035-016-9978-z

    Article  CAS  PubMed  Google Scholar 

  240. Xianchu L, Huan P, Kang L, Beiwang D, Ming L (2022) Protective effect of rutin against diabetes-associated cognitive decline in rats. Pak J Pharm Sci 35(3):769–775

    PubMed  Google Scholar 

  241. Zhang S, Yuan L, Zhang L, Li C, Li J (2018) Prophylactic use of troxerutin can delay the development of diabetic cognitive dysfunction and improve the expression of Nrf2 in the hippocampus on STZ diabetic rats. Behav Neurol 2018:8678539. https://doi.org/10.1155/2018/8678539

    Article  PubMed  PubMed Central  Google Scholar 

  242. Gao M, Kang Y, Zhang L, Li H, Qu C, Luan X, Liu L, Zhang S (2020) Troxerutin attenuates cognitive decline in the hippocampus of male diabetic rats by inhibiting NADPH oxidase and activating the Nrf2/ARE signaling pathway. Int J Mol Med 46(3):1239–1248. https://doi.org/10.3892/ijmm.2020.4653

    Article  CAS  PubMed  Google Scholar 

  243. Pang X, Makinde EA, Eze FN, Olatunji OJ (2021) Securidaca inappendiculata polyphenol rich extract counteracts cognitive deficits, neuropathy, neuroinflammation and oxidative stress in diabetic encephalopathic rats via p38 MAPK/Nrf2/HO-1 pathways. Front Pharmacol 12:737764. https://doi.org/10.3389/fphar.2021.737764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Chen YJ, Tang ZZ, Du L, Liu Y, Lu Q, Ma TF, Liu YW (2019) A novel compound AB-38b improves diabetes-associated cognitive decline in mice via activation of Nrf2/ARE pathway. Brain Res Bull 150:160–167. https://doi.org/10.1016/j.brainresbull.2019.05.010

    Article  CAS  PubMed  Google Scholar 

  245. Magistri M, Velmeshev D, Makhmutova M, Patel P, Sartor GC, Volmar CH, Wahlestedt C, Faghihi MA (2016) The BET-bromodomain inhibitor JQ1 reduces inflammation and tau phosphorylation at Ser396 in the brain of the 3xTg model of Alzheimer’s disease. Curr Alzheimer Res 13(9):985–995. https://doi.org/10.2174/1567205013666160427101832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Benito E, Ramachandran B, Schroeder H, Schmidt G, Urbanke H, Burkhardt S, Capece V, Dean C et al (2017) The BET/BRD inhibitor JQ1 improves brain plasticity in WT and APP mice. Transl Psychiatry 7(9):e1239. https://doi.org/10.1038/tp.2017.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Liang E, Ma M, Wang L, Liu X, Xu J, Zhang M, Yang R, Zhao Y (2018) The BET/BRD inhibitor JQ1 attenuates diabetes-induced cognitive impairment in rats by targeting Nox4-Nrf2 redox imbalance. Biochem Biophys Res Commun 495(1):204–211. https://doi.org/10.1016/j.bbrc.2017.11.020

    Article  CAS  PubMed  Google Scholar 

  248. Zhao J, Liu L, Zhang L, Lv J, Guo X, Li X, Zhao T (2019) Sodium ferulate attenuates high-glucose-induced oxidative injury in HT22 hippocampal cells. Exp Ther Med 18(3):2015–2020. https://doi.org/10.3892/etm.2019.7822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Ebrahimpour S, Shahidi SB, Abbasi M, Tavakoli Z, Esmaeili A (2020) Quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) increases Nrf2 expression via miR-27a mediation to prevent memory dysfunction in diabetic rats. Sci Rep 10(1):15957. https://doi.org/10.1038/s41598-020-71971-2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  250. Tang W, Li Y, Li Y, Wang Q (2021) Caveolin-1, a novel player in cognitive decline. Neurosci Biobehav Rev 129:95–106. https://doi.org/10.1016/j.neubiorev.2021.06.044

    Article  CAS  PubMed  Google Scholar 

  251. Malvaez M, McQuown SC, Rogge GA, Astarabadi M, Jacques V, Carreiro S, Rusche JR, Wood MA (2013) HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci U S A 110(7):2647–2652. https://doi.org/10.1073/pnas.1213364110

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  252. Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ (2007) Distribution of histone deacetylases 1–11 in the rat brain. J Mol Neurosci 31(1):47–58. https://doi.org/10.1007/bf02686117

    Article  CAS  PubMed  Google Scholar 

  253. Bai J, Nakamura H, Kwon YW, Tanito M, Ueda S, Tanaka T, Hattori I, Ban S et al (2007) Does thioredoxin-1 prevent mitochondria- and endoplasmic reticulum-mediated neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine? Antioxid Redox Signal 9(5):603–608. https://doi.org/10.1089/ars.2006.1513

    Article  CAS  PubMed  Google Scholar 

  254. Guo Y, Zhang C, Wang C, Huang Y, Liu J, Chu H, Ren X, Kong L et al (2021) Thioredoxin-1 is a target to attenuate Alzheimer-like pathology in diabetic encephalopathy by alleviating endoplasmic reticulum stress and oxidative stress. Front Physiol 12:651105. https://doi.org/10.3389/fphys.2021.651105

    Article  PubMed  PubMed Central  Google Scholar 

  255. Xianchu L, Kang L, Beiwan D, Huan P, Ming L (2021) Apocynin ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Bratisl Lek Listy 122(1):78–84

    CAS  PubMed  Google Scholar 

  256. Feng Y, Chu A, Luo Q, Wu M, Shi X, Chen Y (2018) The protective effect of astaxanthin on cognitive function via inhibition of oxidative stress and inflammation in the brains of chronic T2DM rats. Front Pharmacol 9:748. https://doi.org/10.3389/fphar.2018.00748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Yang Y, Fan C, Wang B, Ma Z, Wang D, Gong B, Di S, Jiang S et al (1863) Luo E (2017) Pterostilbene attenuates high glucose-induced oxidative injury in hippocampal neuronal cells by activating nuclear factor erythroid 2-related factor 2. Biochim Biophys Acta Mol Basis Dis 4:827–837. https://doi.org/10.1016/j.bbadis.2017.01.005

    Article  CAS  Google Scholar 

  258. Wang X, Fang H, Xu G, Yang Y, Xu R, Liu Q, Xue X, Liu J et al (2020) Resveratrol prevents cognitive impairment in type 2 diabetic mice by upregulating Nrf2 expression and transcriptional level. Diabetes Metab Syndr Obes 13:1061–1075. https://doi.org/10.2147/dmso.S243560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Ke B, Zhang T, An T, Lu R (2020) Soy isoflavones ameliorate the cognitive dysfunction of Goto-Kakizaki rats by activating the Nrf2-HO-1 signalling pathway. Aging (Albany NY) 12(21):21344–21354. https://doi.org/10.18632/aging.103877

    Article  CAS  PubMed  Google Scholar 

  260. Zhang L, Ma Q, Zhou Y (2020) Strawberry leaf extract treatment alleviates cognitive impairment by activating Nrf2/HO-1 signaling in rats with streptozotocin-induced diabetes. Front Aging Neurosci 12:201. https://doi.org/10.3389/fnagi.2020.00201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Bullet Edits Limited for the linguistic editing and proofreading of the manuscript.

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 81873169, 82104967), Hunan Youth Science and Technology Innovation Talent Project (No.2022RC1220), China Postdoctoral Science Foundation (No.2022M711733), Hunan Provincial Natural Science Foundation of China (No.2020JJ4803,2022JJ40728), Hunan Flagship Department of Integrated Traditional Chinese and Western Medicine, and Hunan Scientific Research Program of traditional Chinese Medicine (No.2021192), and the Scientific Research Launch Project for new employees of the Second Xiangya Hospital of Central South University.

Author information

Authors and Affiliations

Authors

Contributions

W.J.P and X.C conceived the study. X.C drafted the manuscript. Y.J.T and Z.Y.Z contributed to drafting the manuscript and interpreting the data. H.L.L and Z.Y.Z performed the literature search. Z.Z and S.H collected the data. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zheyu Zhang or Weijun Peng.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Tan, Y., Li, H. et al. Mechanistic Insights and Potential Therapeutic Implications of NRF2 in Diabetic Encephalopathy. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04097-5

Keywords

Navigation