Skip to main content

Advertisement

Log in

Mechanism of Efferocytosis in Determining Ischaemic Stroke Resolution—Diving into Microglia/Macrophage Functions and Therapeutic Modality

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

After ischaemic cerebral vascular injury, efferocytosis—a process known as the efficient clearance of apoptotic cells (ACs) by various phagocytes in both physiological and pathological states—is crucial for maintaining central nervous system (CNS) homeostasis and regaining prognosis. The mechanisms of efferocytosis in ischaemic stroke and its influence on preventing inflammation progression from secondary injury were still not fully understood, despite the fact that the fundamental process of efferocytosis has been described in a series of phases, including AC recognition, phagocyte engulfment, and subsequent degradation. The genetic reprogramming of macrophages and brain-resident microglia after an ischaemic stroke has been equated by some researchers to that of the peripheral blood and brain. Based on previous studies, some molecules, such as signal transducer and activator of transcription 6 (STAT6), peroxisome proliferator-activated receptor γ (PPARG), CD300A, and sigma non-opioid intracellular receptor 1 (SIGMAR1), were discovered to be largely associated with aspects of apoptotic cell elimination and accompanying neuroinflammation, such as inflammatory cytokine release, phenotype transformation, and suppressing of antigen presentation. Exacerbated stroke outcomes are brought on by defective efferocytosis and improper modulation of pertinent signalling pathways in blood-borne macrophages and brain microglia, which also results in subsequent tissue inflammatory damage. This review focuses on recent researches which contain a number of recently discovered mechanisms, such as studies on the relationship between benign efferocytosis and the regulation of inflammation in ischaemic stroke, the roles of some risk factors in disease progression, and current immune approaches that aim to promote efferocytosis to treat some autoimmune diseases. Understanding these pathways provides insight into novel pathophysiological processes and fresh characteristics, which can be used to build cerebral ischaemia targeting techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Walter K (2022) What is acute ischemic stroke? JAMA 327:885

    Article  PubMed  Google Scholar 

  2. Parvez S, Kaushik M, Ali M, Alam MM, Ali J, Tabassum H et al (2022) Dodging blood brain barrier with “nano” warriors: novel strategy against ischemic stroke. Theranostics 12:689–719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wang L, Zhu T, Xu HB, Pu XP, Zhao X, Tian F et al (2021) Effects of notoginseng leaf triterpenes on small molecule metabolism after cerebral ischemia/reperfusion injury assessed using MALDI-MS imaging. Ann Transl Med 9:246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Yu H, Chen X, Guo X, Chen D, Jiang L, Qi Y et al (2023) The clinical value of serum xanthine oxidase levels in patients with acute ischemic stroke. Redox Biol 60:102623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nakahashi-Oda C, Fujiyama S, Nakazawa Y, Kanemaru K, Wang Y, Lyu W et al (2021) CD300a blockade enhances efferocytosis by infiltrating myeloid cells and ameliorates neuronal deficit after ischemic stroke. Sci Immunol 6:eabe7915

    Article  PubMed  CAS  Google Scholar 

  6. An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA et al (2014) Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol 115:6–24

    Article  PubMed  CAS  Google Scholar 

  7. Cai W, Dai X, Chen J, Zhao J, Xu M, Zhang L et al (2019) STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight 4(20):e131355

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jian Z, Liu R, Zhu X, Smerin D, Zhong Y, Gu L et al (2019) The involvement and therapy target of immune cells after ischemic stroke. Front Immunol 10:2167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wang R, Liu Y, Ye Q, Hassan SH, Zhao J, Li S et al (2020) RNA sequencing reveals novel macrophage transcriptome favoring neurovascular plasticity after ischemic stroke. J Cereb Blood Flow Metab 40:720–738

    Article  PubMed  CAS  Google Scholar 

  10. Boada-Romero E, Martinez J, Heckmann BL, Green DR (2020) The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 21:398–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Doran AC, Yurdagul A Jr, Tabas I (2020) Efferocytosis in health and disease. Nat Rev Immunol 20:254–267

    Article  PubMed  CAS  Google Scholar 

  12. Arandjelovic S, Ravichandran KS (2015) Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 16:907–917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Patel AR, Ritzel R, McCullough LD, Liu F (2013) Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol 5:73–90

    PubMed  PubMed Central  Google Scholar 

  14. García-Culebras A, Durán-Laforet V, Peña-Martínez C, Ballesteros I, Pradillo JM, Díaz-Guzmán J et al (2018) Myeloid cells as therapeutic targets in neuroinflammation after stroke: specific roles of neutrophils and neutrophil-platelet interactions. J Cereb Blood Flow Metab 38:2150–2164

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sharma M, Schlegel MP, Afonso MS, Brown EJ, Rahman K, Weinstock A et al (2020) Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ Res 127:335–353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhang J, Ding W, Zhao M, Liu J, Xu Y, Wan J et al (2022) Mechanisms of efferocytosis in determining inflammation resolution: therapeutic potential and the association with cardiovascular disease. Br J Pharmacol 179:5151–5171

    Article  PubMed  CAS  Google Scholar 

  17. Mehrotra P, Ravichandran KS (2022) Drugging the efferocytosis process: concepts and opportunities. Nat Rev Drug Discov 21:601–620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhao J, Zhang W, Wu T, Wang H, Mao J, Liu J et al (2021) Efferocytosis in the central nervous system. Front Cell Dev Biol 9:773344

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lauber K, Bohn E, Kröber SM, Xiao YJ, Blumenthal SG, Lindemann RK et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113:717–730

    Article  PubMed  CAS  Google Scholar 

  20. Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ, Dumitriu IE et al (2008) CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112:5026–5036

    Article  PubMed  CAS  Google Scholar 

  21. Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R et al (2008) Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. Faseb j 22:2629–2638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER et al (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467:863–867

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  23. Marques-da-Silva C, Burnstock G, Ojcius DM, Coutinho-Silva R (2011) Purinergic receptor agonists modulate phagocytosis and clearance of apoptotic cells in macrophages. Immunobiology 216:1–11

    Article  PubMed  CAS  Google Scholar 

  24. Lutz SE, González-Fernández E, Ventura JC, Pérez-Samartín A, Tarassishin L, Negoro H et al (2013) Contribution of pannexin1 to experimental autoimmune encephalomyelitis. PLoS ONE 8:e66657

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  25. Elliott MR, Ravichandran KS (2016) The Dynamics of Apoptotic Cell Clearance. Dev Cell 38:147–160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kelley SM, Ravichandran KS (2021) Putting the brakes on phagocytosis: “don’t-eat-me” signaling in physiology and disease. EMBO Rep 22:e52564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Segawa K, Yanagihashi Y, Yamada K, Suzuki C, Uchiyama Y, Nagata S (2018) Phospholipid flippases enable precursor B cells to flee engulfment by macrophages. Proc Natl Acad Sci U S A 115:12212–12217

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  28. Brelstaff J, Tolkovsky AM, Ghetti B, Goedert M, Spillantini MG (2018) Living neurons with tau filaments aberrantly expose phosphatidylserine and are phagocytosed by microglia. Cell Rep 24:1939–48.e4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z et al (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430–434

    Article  ADS  PubMed  CAS  Google Scholar 

  30. Park D, Hochreiter-Hufford A, Ravichandran KS (2009) The phosphatidylserine receptor TIM-4 does not mediate direct signaling. Curr Biol 19:346–351

    Article  PubMed  Google Scholar 

  31. Kourtzelis I, Li X, Mitroulis I, Grosser D, Kajikawa T, Wang B et al (2019) DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat Immunol 20:40–49

    Article  PubMed  CAS  Google Scholar 

  32. Bradley CA (2019) CD24 - a novel ‘don’t eat me’ signal. Nat Rev Cancer 19:541

    Article  PubMed  CAS  Google Scholar 

  33. Gardai SJ, Bratton DL, Ogden CA, Henson PM (2006) Recognition ligands on apoptotic cells: a perspective. J Leukoc Biol 79:896–903

    Article  PubMed  CAS  Google Scholar 

  34. Poon IK, Lucas CD, Rossi AG, Ravichandran KS (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14:166–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY et al (2018) Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol 19:76–84

    Article  PubMed  CAS  Google Scholar 

  36. Elward K, Griffiths M, Mizuno M, Harris CL, Neal JW, Morgan BP et al (2005) CD46 plays a key role in tailoring innate immune recognition of apoptotic and necrotic cells. J Biol Chem 280:36342–36354

    Article  PubMed  CAS  Google Scholar 

  37. Ma Z, Thomas KS, Webb DJ, Moravec R, Salicioni AM, Mars WM et al (2002) Regulation of Rac1 activation by the low density lipoprotein receptor-related protein. J Cell Biol 159:1061–1070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7:964–974

    Article  PubMed  CAS  Google Scholar 

  39. Samejima K, Earnshaw WC (2005) Trashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol 6:677–688

    Article  PubMed  CAS  Google Scholar 

  40. Aderem A (2002) How to eat something bigger than your head. Cell 110:5–8

    Article  PubMed  CAS  Google Scholar 

  41. Becker T, Volchuk A, Rothman JE (2005) Differential use of endoplasmic reticulum membrane for phagocytosis in J774 macrophages. Proc Natl Acad Sci U S A 102:4022–4026

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  42. Campbell-Valois FX, Trost M, Chemali M, Dill BD, Laplante A, Duclos S et al (2012) Quantitative proteomics reveals that only a subset of the endoplasmic reticulum contributes to the phagosome. Mol Cell Proteomics 11:M111.016378

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Subramanian M, Yurdagul A Jr, Barbosa-Lorenzi VC, Cai B, de Juan-Sanz J et al (2017) Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171:331–45.e22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Czibener C, Sherer NM, Becker SM, Pypaert M, Hui E, Chapman ER et al (2006) Ca2+ and synaptotagmin VII-dependent delivery of lysosomal membrane to nascent phagosomes. J Cell Biol 174:997–1007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yin C, Kim Y, Argintaru D, Heit B (2016) Rab17 mediates differential antigen sorting following efferocytosis and phagocytosis. Cell Death Dis 7:e2529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Yin C, Heit B (2021) Cellular responses to the efferocytosis of apoptotic cells. Front Immunol 12:631714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yan Q, Lin M, Huang W, Teymournejad O, Johnson JM, Hays FA et al (2018) Ehrlichia type IV secretion system effector Etf-2 binds to active RAB5 and delays endosome maturation. Proc Natl Acad Sci U S A 115:E8977–E8986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Harrison RE, Bucci C, Vieira OV, Schroer TA, Grinstein S (2003) Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol Cell Biol 23:6494–6506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Heckmann BL, Green DR (2019) Correction: LC3-associated phagocytosis at a glance. J Cell Sci 132(5):jcs222984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Martinez J, Malireddi RK, Lu Q, Cunha LD, Pelletier S, Gingras S et al (2015) Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol 17:893–906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Fernández ÁF, López-Otín C (2015) The functional and pathologic relevance of autophagy proteases. J Clin Invest 125:33–41

    Article  PubMed  PubMed Central  Google Scholar 

  52. Villani A, Benjaminsen J, Moritz C, Henke K, Hartmann J, Norlin N et al (2019) Clearance by microglia depends on packaging of phagosomes into a unique cellular compartment. Dev Cell 49:77-88.e7

    Article  PubMed  CAS  Google Scholar 

  53. Lin W, Shen P, Song Y, Huang Y, Tu S (2021) Reactive oxygen species in autoimmune cells: function, differentiation, and metabolism. Front Immunol 12:635021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Cui D, Thorp E, Li Y, Wang N, Yvan-Charvet L, Tall AR et al (2007) Pivotal advance: macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells. J Leukoc Biol 82:1040–1050

    Article  PubMed  CAS  Google Scholar 

  55. Kiss RS, Elliott MR, Ma Z, Marcel YL, Ravichandran KS (2006) Apoptotic cells induce a phosphatidylserine-dependent homeostatic response from phagocytes. Curr Biol 16:2252–2258

    Article  PubMed  CAS  Google Scholar 

  56. Xian X, Ding Y, Dieckmann M, Zhou L, Plattner F, Liu M et al (2017) LRP1 integrates murine macrophage cholesterol homeostasis and inflammatory responses in atherosclerosis. Elife 6:e29292

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yurdagul A Jr, Subramanian M, Wang X, Crown SB, Ilkayeva OR, Darville L et al (2020) Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab 31:518–33.e10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Morioka S, Perry JSA, Raymond MH, Medina CB, Zhu Y, Zhao L et al (2018) Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563:714–718

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  59. Park D, Han CZ, Elliott MR, Kinchen JM, Trampont PC, Das S et al (2011) Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein. Nature 477:220–224

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  60. Horst AK, Tiegs G, Diehl L (2019) Contribution of macrophage efferocytosis to liver homeostasis and disease. Front Immunol 10:2670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Fox S, Ryan KA, Berger AH, Petro K, Das S, Crowe SE et al (2015) The role of C1q in recognition of apoptotic epithelial cells and inflammatory cytokine production by phagocytes during Helicobacter pylori infection. J Inflamm (Lond) 12:51

    Article  PubMed  Google Scholar 

  62. Grau A, Tabib A, Grau I, Reiner I, Mevorach D (2015) Apoptotic cells induce NF-κB and inflammasome negative signaling. PLoS ONE 10:e0122440

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xie X, Wang L, Dong S, Ge S, Zhu T (2024) Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke. Neural Regen Res 19:519–528

    Article  PubMed  Google Scholar 

  64. Viaud M, Ivanov S, Vujic N, Duta-Mare M, Aira LE, Barouillet T et al (2018) Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxysterol production. Circ Res 122:1369–1384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Chistyakov DV, Astakhova AA, Goriainov SV, Sergeeva MG (2020) Comparison of PPAR ligands as modulators of resolution of inflammation, via their influence on cytokines and oxylipins release in astrocytes. Int J Mol Sci 21(24):9577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Cai B, Thorp EB, Doran AC, Subramanian M, Sansbury BE, Lin CS et al (2016) MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation. Proc Natl Acad Sci U S A 113:6526–6531

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhang S, Weinberg S, DeBerge M, Gainullina A, Schipma M, Kinchen JM et al (2019) Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab 29:443–56.e5

    Article  PubMed  CAS  Google Scholar 

  68. Zhao Y, Xiong Z, Lechner EJ, Klenotic PA, Hamburg BJ, Hulver M et al (2014) Thrombospondin-1 triggers macrophage IL-10 production and promotes resolution of experimental lung injury. Mucosal Immunol 7:440–448

    Article  PubMed  CAS  Google Scholar 

  69. DeBerge M, Yeap XY, Dehn S, Zhang S, Grigoryeva L, Misener S et al (2017) MerTK cleavage on resident cardiac macrophages compromises repair after myocardial ischemia reperfusion injury. Circ Res 121:930–940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sakhno LV, Shevela EY, Tikhonova MA, Maksimova AA, Tyrinova TV, Ostanin AA et al (2021) Efferocytosis modulates arginase-1 and tyrosine kinase Mer expression in GM-CSF-differentiated human macrophages. Bull Exp Biol Med 170:778–781

    Article  PubMed  CAS  Google Scholar 

  71. Pupjalis D, Goetsch J, Kottas DJ, Gerke V, Rescher U (2011) Annexin A1 released from apoptotic cells acts through formyl peptide receptors to dampen inflammatory monocyte activation via JAK/STAT/SOCS signalling. EMBO Mol Med 3:102–114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Rhys HI, Dell’Accio F, Pitzalis C, Moore A, Norling LV, Perretti M (2018) Neutrophil microvesicles from healthy control and rheumatoid arthritis patients prevent the inflammatory activation of macrophages. EBioMedicine 29:60–69

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li K, Chen G, Luo H, Li J, Liu A, Yang C et al (2021) MRP8/14 mediates macrophage efferocytosis through RAGE and Gas6/MFG-E8, and induces polarization via TLR4-dependent pathway. J Cell Physiol 236:1375–1390

    Article  PubMed  CAS  Google Scholar 

  74. Proto JD, Doran AC, Gusarova G, Yurdagul A Jr, Sozen E, Subramanian M et al (2018) Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity 49:666–77.e6

    Article  PubMed  CAS  Google Scholar 

  75. Canton J, Khezri R, Glogauer M, Grinstein S (2014) Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Mol Biol Cell 25:3330–3341

    Article  PubMed  PubMed Central  Google Scholar 

  76. Korns D, Frasch SC, Fernandez-Boyanapalli R, Henson PM, Bratton DL (2011) Modulation of macrophage efferocytosis in inflammation. Front Immunol 2:57

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhu F, Zhou Y, Jiang C, Zhang X (2015) Role of JAK-STAT signaling in maturation of phagosomes containing Staphylococcus aureus. Sci Rep 5:14854

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  78. Heo KS, Cushman HJ, Akaike M, Woo CH, Wang X, Qiu X et al (2014) ERK5 activation in macrophages promotes efferocytosis and inhibits atherosclerosis. Circulation 130:180–191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Jiang T, Zhang YD, Gao Q, Zhou JS, Zhu XC, Lu H et al (2016) TREM1 facilitates microglial phagocytosis of amyloid beta. Acta Neuropathol 132:667–683

    Article  PubMed  CAS  Google Scholar 

  80. Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C (2017) Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol 198:1006–1014

    Article  PubMed  CAS  Google Scholar 

  81. Mondal S, Ghosh-Roy S, Loison F, Li Y, Jia Y, Harris C et al (2011) PTEN negatively regulates engulfment of apoptotic cells by modulating activation of Rac GTPase. J Immunol 187:5783–5794

    Article  PubMed  CAS  Google Scholar 

  82. Elliott MR, Koster KM, Murphy PS (2017) Efferocytosis signaling in the regulation of macrophage inflammatory responses. J Immunol 198:1387–1394

    Article  PubMed  CAS  Google Scholar 

  83. Wu T, Jia Z, Dong S, Han B, Zhang R, Liang Y et al (2019) Panax notoginseng saponins ameliorate leukocyte adherence and cerebrovascular endothelial barrier breakdown upon ischemia-reperfusion in mice. J Vasc Res 56:1–10

    Article  PubMed  Google Scholar 

  84. Nagata S, Suzuki J, Segawa K, Fujii T (2016) Exposure of phosphatidylserine on the cell surface. Cell Death Differ 23:952–961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Li F, Zhao H, Han Z, Wang R, Tao Z, Fan Z et al (2019) Xuesaitong may protect against ischemic stroke by modulating microglial phenotypes and inhibiting neuronal cell apoptosis via the STAT3 signaling pathway. CNS Neurol Disord Drug Targets 18:115–123

    Article  PubMed  CAS  Google Scholar 

  86. Niizuma K, Tahara-Hanaoka S, Noguchi E, Shibuya A (2015) Identification and characterization of CD300H, a new member of the human CD300 immunoreceptor family. J Biol Chem 290:22298–22308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Yotsumoto K, Okoshi Y, Shibuya K, Yamazaki S, Tahara-Hanaoka S, Honda S et al (2003) Paired activating and inhibitory immunoglobulin-like receptors, MAIR-I and MAIR-II, regulate mast cell and macrophage activation. J Exp Med 198:223–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Okoshi Y, Tahara-Hanaoka S, Nakahashi C, Honda S, Miyamoto A, Kojima H et al (2005) Requirement of the tyrosines at residues 258 and 270 of MAIR-I in inhibitory effect on degranulation from basophilic leukemia RBL-2H3. Int Immunol 17:65–72

    Article  PubMed  CAS  Google Scholar 

  89. Goemaere J, Knoops B (2012) Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders. J Comp Neurol 520:258–280

    Article  PubMed  CAS  Google Scholar 

  90. Simhadri VR, Andersen JF, Calvo E, Choi SC, Coligan JE, Borrego F (2012) Human CD300a binds to phosphatidylethanolamine and phosphatidylserine, and modulates the phagocytosis of dead cells. Blood 119:2799–2809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Murakami Y, Tian L, Voss OH, Margulies DH, Krzewski K, Coligan JE (2014) CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition. Cell Death Differ 21:1746–1757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Pluvinage JV, Haney MS, Smith BAH, Sun J, Iram T, Bonanno L et al (2019) CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 568:187–192

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  93. Chen J, Zhong MC, Guo H, Davidson D, Mishel S, Lu Y et al (2017) SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 544:493–497

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  94. Stuart LM (2005) Ezekowitz RA. Phagocytosis: elegant complexity. Immunity 22:539–550

    Article  PubMed  CAS  Google Scholar 

  95. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–90.e17

    Article  PubMed  CAS  Google Scholar 

  96. Jia J, Cheng J, Wang C, Zhen X (2018) Sigma-1 receptor-modulated neuroinflammation in neurological diseases. Front Cell Neurosci 12:314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Wang M, Wan C, He T, Han C, Zhu K, Waddington JL et al (2021) Sigma-1 receptor regulates mitophagy in dopaminergic neurons and contributes to dopaminergic protection. Neuropharmacology 196:108360

    Article  PubMed  CAS  Google Scholar 

  98. Chen J, Li G, Qin P, Chen J, Ye N, Waddington JL et al (2022) Allosteric modulation of the sigma-1 receptor elicits antipsychotic-like effects. Schizophr Bull 48:474–484

    Article  PubMed  Google Scholar 

  99. Zhang G, Li Q, Tao W, Qin P, Chen J, Yang H et al (2023) Sigma-1 receptor-regulated efferocytosis by infiltrating circulating macrophages/microglial cells protects against neuronal impairments and promotes functional recovery in cerebral ischemic stroke. Theranostics 13:543–559

    Article  PubMed  PubMed Central  Google Scholar 

  100. Natsvlishvili N, Goguadze N, Zhuravliova E, Mikeladze D (2015) Sigma-1 receptor directly interacts with Rac1-GTPase in the brain mitochondria. BMC Biochem 16:11

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jung JE, Karatas H, Liu Y, Yalcin A, Montaner J, Lo EH et al (2015) STAT-dependent upregulation of 12/15-lipoxygenase contributes to neuronal injury after stroke. J Cereb Blood Flow Metab 35:2043–2051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Bushnell CD, Chaturvedi S, Gage KR, Herson PS, Hurn PD, Jiménez MC et al (2018) Sex differences in stroke: challenges and opportunities. J Cereb Blood Flow Metab 38:2179–2191

    Article  PubMed  PubMed Central  Google Scholar 

  103. Truettner JS, Bramlett HM, Dietrich WD (2017) Posttraumatic therapeutic hypothermia alters microglial and macrophage polarization toward a beneficial phenotype. J Cereb Blood Flow Metab 37:2952–2962

    Article  PubMed  CAS  Google Scholar 

  104. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S et al (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43:3063–3070

    Article  PubMed  CAS  Google Scholar 

  105. Fenn AM, Hall JC, Gensel JC, Popovich PG, Godbout JP (2014) IL-4 signaling drives a unique arginase+/IL-1β+ microglia phenotype and recruits macrophages to the inflammatory CNS: consequences of age-related deficits in IL-4Rα after traumatic spinal cord injury. J Neurosci 34:8904–8917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Zhang W, Zhao J, Wang R, Jiang M, Ye Q, Smith AD et al (2019) Macrophages reprogram after ischemic stroke and promote efferocytosis and inflammation resolution in the mouse brain. CNS Neurosci Ther 25:1329–1342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Nepal S, Tiruppathi C, Tsukasaki Y, Farahany J, Mittal M, Rehman J et al (2019) STAT6 induces expression of Gas6 in macrophages to clear apoptotic neutrophils and resolve inflammation. Proc Natl Acad Sci U S A 116:16513–16518

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  108. Seneviratne AN, Edsfeldt A, Cole JE, Kassiteridi C, Swart M, Park I et al (2017) Interferon regulatory factor 5 controls necrotic core formation in atherosclerotic lesions by impairing efferocytosis. Circulation 136:1140–1154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A et al (2010) STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells. Immunity 33:699–712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Zhao XR, Gonzales N, Aronowski J (2015) Pleiotropic role of PPARγ in intracerebral hemorrhage: an intricate system involving Nrf2, RXR, and NF-κB. CNS Neurosci Ther 21:357–366

    Article  PubMed  CAS  Google Scholar 

  111. Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98

    Article  PubMed  PubMed Central  Google Scholar 

  112. Quirié A, Demougeot C, Bertrand N, Mossiat C, Garnier P, Marie C et al (2013) Effect of stroke on arginase expression and localization in the rat brain. Eur J Neurosci 37:1193–1202

    Article  PubMed  Google Scholar 

  113. Zhu J, Guo L, Watson CJ, Hu-Li J, Paul WE (2001) Stat6 is necessary and sufficient for IL-4’s role in Th2 differentiation and cell expansion. J Immunol 166:7276–7281

    Article  PubMed  CAS  Google Scholar 

  114. Nakahashi-Oda C, Tahara-Hanaoka S, Honda S, Shibuya K, Shibuya A (2012) Identification of phosphatidylserine as a ligand for the CD300a immunoreceptor. Biochem Biophys Res Commun 417:646–650

    Article  PubMed  CAS  Google Scholar 

  115. Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH et al (2009) Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 29:1319–1330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Zaremba J, Losy J (2001) Early TNF-alpha levels correlate with ischaemic stroke severity. Acta Neurol Scand 104:288–295

    Article  PubMed  CAS  Google Scholar 

  117. Chu HX, Broughton BR, Kim HA, Lee S, Drummond GR, Sobey CG (2015) Evidence that Ly6C(hi) monocytes are protective in acute ischemic stroke by promoting M2 macrophage polarization. Stroke 46:1929–1937

    Article  PubMed  CAS  Google Scholar 

  118. Lim JJ, Grinstein S, Roth Z (2017) Diversity and versatility of phagocytosis: roles in innate immunity, tissue remodeling, and homeostasis. Front Cell Infect Microbiol 7:191

    Article  PubMed  PubMed Central  Google Scholar 

  119. Moreno JL, Mikhailenko I, Tondravi MM, Keegan AD (2007) IL-4 promotes the formation of multinucleated giant cells from macrophage precursors by a STAT6-dependent, homotypic mechanism: contribution of E-cadherin. J Leukoc Biol 82:1542–1553

    Article  PubMed  CAS  Google Scholar 

  120. Wang Z, Kawabori M, Houkin K (2020) FTY720 (fingolimod) ameliorates brain injury through multiple mechanisms and is a strong candidate for stroke treatment. Curr Med Chem 27:2979–2993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Rollini F, Franchi F, Angiolillo DJ (2017) Drug-drug interactions when switching between intravenous and oral P2Y(12) receptor inhibitors: how real is it? JACC Cardiovasc Interv 10:130–132

    Article  PubMed  Google Scholar 

  122. Kansakar U, Gambardella J, Varzideh F, Avvisato R, Jankauskas SS, Mone P et al (2022) miR-142 targets TIM-1 in human endothelial cells: potential implications for stroke, COVID-19, Zika, Ebola, dengue, and other viral infections. Int J Mol Sci 23(18):10242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Zheng L, Jia J, Chen Y, Liu R, Cao R, Duan M et al (2022) Pentoxifylline alleviates ischemic white matter injury through up-regulating Mertk-mediated myelin clearance. J Neuroinflammation 19:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Palakurti R, Biswas N, Roy S, Gnyawali SC, Sinha M, Singh K et al (2023) Inducible miR-1224 silences cerebrovascular Serpine1 and restores blood flow to the stroke-affected site of the brain. Mol Ther Nucleic Acids 31:276–292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Qin Y, He Y, Zhu YM, Li M, Ni Y, Liu J et al (2019) CID1067700, a late endosome GTPase Rab7 receptor antagonist, attenuates brain atrophy, improves neurologic deficits and inhibits reactive astrogliosis in rat ischemic stroke. Acta Pharmacol Sin 40:724–736

    Article  PubMed  CAS  Google Scholar 

  126. Fu C, Wu Y, Liu S, Luo C, Lu Y, Liu M et al (2022) Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J Ethnopharmacol 289:115021

    Article  PubMed  CAS  Google Scholar 

  127. Xian M, Cai J, Zheng K, Liu Q, Liu Y, Lin H et al (2021) Aloe-emodin prevents nerve injury and neuroinflammation caused by ischemic stroke via the PI3K/AKT/mTOR and NF-κB pathway. Food Funct 12:8056–8067

    Article  PubMed  CAS  Google Scholar 

  128. Wang HJ, Ran HF, Yin Y, Xu XG, Jiang BX, Yu SQ et al (2022) Catalpol improves impaired neurovascular unit in ischemic stroke rats via enhancing VEGF-PI3K/AKT and VEGF-MEK1/2/ERK1/2 signaling. Acta Pharmacol Sin 43:1670–1685

    Article  PubMed  CAS  Google Scholar 

  129. Li R, Zheng Y, Zhang J, Zhou Y, Fan X (2023) Gomisin N attenuated cerebral ischemia-reperfusion injury through inhibition of autophagy by activating the PI3K/AKT/mTOR pathway. Phytomedicine 110:154644

    Article  PubMed  CAS  Google Scholar 

  130. Zhou Z, Xu N, Matei N, McBride DW, Ding Y, Liang H et al (2021) Sodium butyrate attenuated neuronal apoptosis via GPR41/Gβγ/PI3K/Akt pathway after MCAO in rats. J Cereb Blood Flow Metab 41:267–281

    Article  PubMed  CAS  Google Scholar 

  131. Cai J, Liang J, Zhang Y, Shen L, Lin H, Hu T et al (2022) Cyclo-(Phe-Tyr) as a novel cyclic dipeptide compound alleviates ischemic/reperfusion brain injury via JUNB/JNK/NF-κB and SOX5/PI3K/AKT pathways. Pharmacol Res 180:106230

    Article  PubMed  CAS  Google Scholar 

  132. Du Q, Deng R, Li W, Zhang D, Tsoi B, Shen J (2021) Baoyuan Capsule promotes neurogenesis and neurological functional recovery through improving mitochondrial function and modulating PI3K/Akt signaling pathway. Phytomedicine 93:153795

    Article  PubMed  CAS  Google Scholar 

  133. Lu T, Li H, Zhou Y, Wei W, Ding L, Zhan Z et al (2022) Neuroprotective effects of alisol A 24-acetate on cerebral ischaemia-reperfusion injury are mediated by regulating the PI3K/AKT pathway. J Neuroinflammation 19:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Li R, Zheng Y, Zhang J, Zhou Y, Fan X (2023) Gomisin N attenuated cerebral ischemia-reperfusion injury through inhibition of autophagy by activating the PI3K/AKT/mTOR pathway. Phytomedicine 110:154644

    Article  PubMed  CAS  Google Scholar 

  135. Li R, Zhao K, Ruan Q, Meng C, Yin F (2020) Bone marrow mesenchymal stem cell-derived exosomal microRNA-124-3p attenuates neurological damage in spinal cord ischemia-reperfusion injury by downregulating Ern1 and promoting M2 macrophage polarization. Arthritis Res Ther 22:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Chen HL, Yang L, Zhang XL, Jia QY, Duan ZD, Li JJ et al (2023) Scutellarin acts via MAPKs pathway to promote M2 polarization of microglial cells. Mol Neurobiol 60(8):4304–4323

  137. Shin JA, Lim SM, Jeong SI, Kang JL, Park EM (2014) Noggin improves ischemic brain tissue repair and promotes alternative activation of microglia in mice. Brain Behav Immun 40:143–154

    Article  PubMed  CAS  Google Scholar 

  138. Zheng K, Zhang Y, Zhang C, Ye W, Ye C, Tan X et al (2022) PRMT8 attenuates cerebral ischemia/reperfusion injury via modulating microglia activation and polarization to suppress neuroinflammation by upregulating Lin28a. ACS Chem Neurosci 13:1096–1104

    Article  PubMed  CAS  Google Scholar 

  139. Zhang Z, Wang Q, Zhao X, Shao L, Liu G, Zheng X et al (2020) YTHDC1 mitigates ischemic stroke by promoting Akt phosphorylation through destabilizing PTEN mRNA. Cell Death Dis 11:977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Pan R, Xie Y, Fang W, Liu Y, Zhang Y (2022) USP20 mitigates ischemic stroke in mice by suppressing neuroinflammation and neuron death via regulating PTEN signal. Int Immunopharmacol 103:107840

    Article  PubMed  CAS  Google Scholar 

  141. Zhang ZF, Chen J, Han X, Zhang Y, Liao HB, Lei RX et al (2017) Bisperoxovandium (pyridin-2-squaramide) targets both PTEN and ERK1/2 to confer neuroprotection. Br J Pharmacol 174:641–656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Zheng T, Shi Y, Zhang J, Peng J, Zhang X, Chen K et al (2019) MiR-130a exerts neuroprotective effects against ischemic stroke through PTEN/PI3K/AKT pathway. Biomed Pharmacother 117:109117

    Article  PubMed  CAS  Google Scholar 

  143. Pan J, Jin JL, Ge HM, Yin KL, Chen X, Han LJ et al (2015) Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARγ-dependent manner. J Neuroinflammation 12:51

    Article  PubMed  PubMed Central  Google Scholar 

  144. Liu C, Wu C, Yang Q, Gao J, Li L, Yang D et al (2016) Macrophages mediate the repair of brain vascular rupture through direct physical adhesion and mechanical traction. Immunity 44:1162–1176

    Article  PubMed  CAS  Google Scholar 

  145. Werner Y, Mass E, Ashok Kumar P, Ulas T, Händler K, Horne A et al (2020) Cxcr4 distinguishes HSC-derived monocytes from microglia and reveals monocyte immune responses to experimental stroke. Nat Neurosci 23:351–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885

    Article  ADS  PubMed  CAS  Google Scholar 

  147. Jacob MA, Ekker MS, Allach Y, Cai M, Aarnio K, Arauz A et al (2022) Global differences in risk factors, etiology, and outcome of ischemic stroke in young adults-a worldwide meta-analysis: the GOAL Initiative. Neurology 98:e573–e588

    Article  PubMed  PubMed Central  Google Scholar 

  148. Diener HC, Hankey GJ (2020) Primary and secondary prevention of ischemic stroke and cerebral hemorrhage: JACC Focus Seminar. J Am Coll Cardiol 75:1804–1818

    Article  PubMed  Google Scholar 

  149. Halade GV, Lee DH (2022) Inflammation and resolution signaling in cardiac repair and heart failure. EBioMedicine 79:103992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Watso JC, Fancher IS, Gomez DH, Hutchison ZJ, Gutiérrez OM, Robinson AT (2023) The damaging duo: Obesity and excess dietary salt contribute to hypertension and cardiovascular disease. Obes Rev 24:e13589

    Article  PubMed  Google Scholar 

  151. Li X, Alu A, Wei Y, Wei X, Luo M (2022) The modulatory effect of high salt on immune cells and related diseases. Cell Prolif 55:e13250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Zhang T, Wang D, Li X, Jiang Y, Wang C, Zhang Y et al (2020) Excess salt intake promotes M1 microglia polarization via a p38/MAPK/AR-dependent pathway after cerebral ischemia in mice. Int Immunopharmacol 81:106176

    Article  PubMed  CAS  Google Scholar 

  153. Wang Y, Grainger DW (2012) RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Adv Drug Deliv Rev 64:1341–1357

    Article  PubMed  CAS  Google Scholar 

  154. Maida CD, Daidone M, Pacinella G, Norrito RL, Pinto A, Tuttolomondo A (2022) Diabetes and ischemic stroke: an old and new relationship an overview of the close interaction between these diseases. Int J Mol Sci 23(4):2397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Dhindsa S, Tripathy D, Mohanty P, Ghanim H, Syed T, Aljada A et al (2004) Differential effects of glucose and alcohol on reactive oxygen species generation and intranuclear nuclear factor-kappaB in mononuclear cells. Metabolism 53:330–334

    Article  PubMed  CAS  Google Scholar 

  156. Liu X, Liu H, Deng Y (2023) Efferocytosis: an emerging therapeutic strategy for type 2 diabetes mellitus and diabetes complications. J Inflamm Res 16:2801–2815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Govindappa PK, Elfar JC (2022) Erythropoietin promotes M2 macrophage phagocytosis of Schwann cells in peripheral nerve injury. Cell Death Dis 13:245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Cai W, Hu M, Li C, Wu R, Lu D, Xie C et al (2023) FOXP3+ macrophage represses acute ischemic stroke-induced neural inflammation. Autophagy 19:1144–1163

    Article  PubMed  CAS  Google Scholar 

  159. Finger CE, Moreno-Gonzalez I, Gutierrez A, Moruno-Manchon JF, McCullough LD (2022) Age-related immune alterations and cerebrovascular inflammation. Mol Psychiatry 27:803–818

    Article  PubMed  CAS  Google Scholar 

  160. De Maeyer RPH, van de Merwe RC, Louie R, Bracken OV, Devine OP, Goldstein DR et al (2020) Blocking elevated p38 MAPK restores efferocytosis and inflammatory resolution in the elderly. Nat Immunol 21:615–625

    Article  PubMed  PubMed Central  Google Scholar 

  161. Yang PC, Xing Z, Berin CM, Soderholm JD, Feng BS, Wu L et al (2007) TIM-4 expressed by mucosal dendritic cells plays a critical role in food antigen-specific Th2 differentiation and intestinal allergy. Gastroenterology 133:1522–1533

    Article  PubMed  CAS  Google Scholar 

  162. Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA et al (2002) Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A 99:7604–7609

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  163. Wang Y, Gao H, Huang X, Chen Z, Kang P, Zhou Y et al (2022) Cyclodextrin boostered-high density lipoprotein for antiatherosclerosis by regulating cholesterol efflux and efferocytosis. Carbohydr Polym 292:119632

    Article  PubMed  CAS  Google Scholar 

  164. Ye ZM, Yang S, Xia YP, Hu RT, Chen S, Li BW et al (2019) LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis 10:138

    Article  PubMed  PubMed Central  Google Scholar 

  165. Mueller PA, Kojima Y, Huynh KT, Maldonado RA, Ye J, Tavori H et al (2022) Macrophage LRP1 (Low-Density Lipoprotein Receptor-Related Protein 1) Is Required for the effect of CD47 blockade on efferocytosis and atherogenesis-brief report. Arterioscler Thromb Vasc Biol 42:e1–e9

    Article  PubMed  CAS  Google Scholar 

  166. McCubbrey AL, McManus SA, McClendon JD, Thomas SM, Chatwin HB, Reisz JA et al (2022) Polyamine import and accumulation causes immunomodulation in macrophages engulfing apoptotic cells. Cell Rep 38:110222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Chang HY, Lee HN, Kim W, Surh YJ (2015) Docosahexaenoic acid induces M2 macrophage polarization through peroxisome proliferator-activated receptor γ activation. Life Sci 120:39–47

    Article  PubMed  CAS  Google Scholar 

  168. Doddapattar P, Dev R, Ghatge M, Patel RB, Jain M, Dhanesha N et al (2022) Myeloid cell PKM2 deletion enhances efferocytosis and reduces atherosclerosis. Circ Res 130:1289–1305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Jin Y, Liu Y, Xu L, Xu J, Xiong Y, Peng Y et al (2022) Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis. Cell Death Dis 13:512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Zhang J, Zhao X, Guo Y, Liu Z, Wei S, Yuan Q et al (2022) Macrophage ALDH2 (aldehyde dehydrogenase 2) stabilizing Rac2 is required for efferocytosis internalization and reduction of atherosclerosis development. Arterioscler Thromb Vasc Biol 42:700–716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Lai YS, Putra R, Aui SP, Chang KT (2018) M2(C) polarization by baicalin enhances efferocytosis via upregulation of MERTK receptor. Am J Chin Med 46:1899–1914

    Article  PubMed  CAS  Google Scholar 

  172. Morimoto K, Janssen WJ, Fessler MB, McPhillips KA, Borges VM, Bowler RP et al (2006) Lovastatin enhances clearance of apoptotic cells (efferocytosis) with implications for chronic obstructive pulmonary disease. J Immunol 176:7657–7665

    Article  PubMed  CAS  Google Scholar 

  173. Hodge S, Matthews G, Dean MM, Ahern J, Djukic M, Hodge G et al (2010) Therapeutic role for mannose-binding lectin in cigarette smoke-induced lung inflammation? Evidence from a murine model. Am J Respir Cell Mol Biol 42:235–242

    Article  PubMed  CAS  Google Scholar 

  174. Vago JP, Galvão I, Negreiros-Lima GL, Teixeira LCR, Lima KM, Sugimoto MA et al (2020) Glucocorticoid-induced leucine zipper modulates macrophage polarization and apoptotic cell clearance. Pharmacol Res 158:104842

    Article  PubMed  CAS  Google Scholar 

  175. Zhang M, Johnson-Stephenson TK, Wang W, Wang Y, Li J, Li L et al (2022) Mesenchymal stem cell-derived exosome-educated macrophages alleviate systemic lupus erythematosus by promoting efferocytosis and recruitment of IL-17(+) regulatory T cell. Stem Cell Res Ther 13:484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Caballero-García A, Córdova-Martínez A, Vicente-Salar N, Roche E, Pérez-Valdecantos D (2021) Vitamin D, its role in recovery after muscular damage following exercise. Nutrients 13(7):2336

    Article  PubMed  PubMed Central  Google Scholar 

  177. Sós L, Garabuczi É, Sághy T, Mocsár G, Szondy Z (2022) Palmitate inhibits mouse macrophage efferocytosis by activating an mTORC1-regulated rho kinase 1 pathway: therapeutic implications for the treatment of obesity. Cells 11(21):3502

    Article  PubMed  PubMed Central  Google Scholar 

  178. deCathelineau AM, Henson PM (2003) The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem 39:105–117

    Article  PubMed  CAS  Google Scholar 

  179. Iversen OH (1967) Kinetics of cellular proliferation and cell loss in human carcinomas. A discussion of methods available for in vivo studies. Eur J Cancer 3:389–94

    Article  CAS  Google Scholar 

  180. Gregory CD (2023) Hijacking homeostasis: regulation of the tumor microenvironment by apoptosis. Immunol Rev 319(1):100–127

    Article  PubMed  CAS  Google Scholar 

  181. Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2:965–975

    Article  PubMed  CAS  Google Scholar 

  182. Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197

    Article  PubMed  CAS  Google Scholar 

  183. Huang Q, Li F, Liu X, Li W, Shi W, Liu FF et al (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17:860–866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Morris RG, Hargreaves AD, Duvall E, Wyllie AH (1984) Hormone-induced cell death. 2. Surface changes in thymocytes undergoing apoptosis. Am J Pathol 115:426–36

    PubMed  PubMed Central  CAS  Google Scholar 

  185. Wu Y, Wang C, Yan Y, Hao Y, Liu B, Dong Z et al (2023) Efferocytosis nanoinhibitors to promote secondary necrosis and potentiate the immunogenicity of conventional cancer therapies for improved therapeutic benefits. ACS Nano 17:18089–18102

    Article  PubMed  CAS  Google Scholar 

  186. Chen Z, Li Z, Huang H, Shen G, Ren Y, Mao X et al (2023) Cancer immunotherapy based on cell membrane-coated nanocomposites augmenting cGAS/STING activation by efferocytosis blockade. Small 19(43):e2302758

    Article  PubMed  Google Scholar 

  187. Zhuang WR, Wang Y, Nie W, Lei Y, Liang C, He J et al (2023) Bacterial outer membrane vesicle based versatile nanosystem boosts the efferocytosis blockade triggered tumor-specific immunity. Nat Commun 14:1675

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  188. Shang Y, Lu H, Liao L, Li S, Xiong H, Yao J (2023) Bioengineered nanospores selectively blocking LC3-associated phagocytosis in tumor-associated macrophages potentiate antitumor immunity. ACS Nano 17:10872–10887

    Article  PubMed  CAS  Google Scholar 

  189. Perlman H, Pagliari LJ, Volin MV (2001) Regulation of apoptosis and cell cycle activity in rheumatoid arthritis. Curr Mol Med 1:597–608

    Article  PubMed  CAS  Google Scholar 

  190. Bonnefoy F, Daoui A, Valmary-Degano S, Toussirot E, Saas P, Perruche S (2016) Apoptotic cell infusion treats ongoing collagen-induced arthritis, even in the presence of methotrexate, and is synergic with anti-TNF therapy. Arthritis Res Ther 18:184

    Article  PubMed  PubMed Central  Google Scholar 

  191. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  192. da Silva JLG, Passos DF, Bernardes VM, Leal DBR (2019) ATP and adenosine: role in the immunopathogenesis of rheumatoid arthritis. Immunol Lett 214:55–64

    Article  PubMed  Google Scholar 

  193. Hasebe R, Murakami K, Harada M, Halaka N, Nakagawa H, Kawano F et al (2022) ATP spreads inflammation to other limbs through crosstalk between sensory neurons and interneurons. J Exp Med 219(6):e20212019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Schneider K, Arandjelovic S (2023) Apoptotic cell clearance components in inflammatory arthritis. Immunol Rev

  195. Lieffrig SA, Gyimesi G, Mao Y, Finnemann SC (2023) Clearance phagocytosis by the retinal pigment epithelial during photoreceptor outer segment renewal: Molecular mechanisms and relation to retinal inflammation. Immunol Rev 319(1):81–99

    Article  PubMed  CAS  Google Scholar 

  196. Neels JG, Gollentz C, Chinetti G (2023) Macrophage death in atherosclerosis: potential role in calcification. Front Immunol 14:1215612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Kumar D, Pandit R, Yurdagul A Jr (2023) Mechanisms of continual efferocytosis by macrophages and its role in mitigating atherosclerosis. Immunometabolism (Cobham) 5:e00017

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 82204663) and the Natural Science Foundation of Shandong Province (No. ZR2022QH058).

Author information

Authors and Affiliations

Authors

Contributions

Literature retrieval and manuscript writing: XDX; figure preparation: XDX, SSD, RJL; manuscript revision: SSD, LLS; review supervision: TZ. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Ting Zhu.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, XD., Dong, SS., Liu, RJ. et al. Mechanism of Efferocytosis in Determining Ischaemic Stroke Resolution—Diving into Microglia/Macrophage Functions and Therapeutic Modality. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04060-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04060-4

Keywords

Navigation