Skip to main content

Advertisement

Log in

Role of Non-Receptor-Type Tyrosine Phosphatases in Brain-Related Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The non-receptor protein tyrosine phosphatase is a class of enzymes that catalyze the dephosphorylation of phosphotyrosines in protein molecules. They are involved in cellular signaling by regulating the phosphorylation status of a variety of receptors and signaling molecules within the cell, thereby influencing cellular physiological and pathological processes. In this article, we detail multiple non-receptor tyrosine phosphatase and non-receptor tyrosine phosphatase genes involved in the pathological process of brain disease. These include PTPN6, PTPN11, and PTPN13, which are involved in glioma signaling; PTPN1, PTPN5, and PTPN13, which are involved in the pathogenesis of Alzheimer’s disease Tau protein lesions, PTPN23, which may be involved in the pathogenesis of Epilepsy and PTPN1, which is involved in the pathogenesis of Parkinson’s disease. The role of mitochondrial tyrosine phosphatase in brain diseases was also discussed. Non-receptor tyrosine phosphatases have great potential for targeted therapies in brain diseases and are highly promising research areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AMPR :

α-amino-3-hydroxy-5-methyl-4-isoxazolidinepropanoic acid receptor

AD :

Alzheimer's disease

:

Amyloid-beta

CNS :

Central nervous system

CTE :

Chronic traumatic encephalopathy

EGFR :

Epidermal growth factor receptor

EGFRvIII :

Epidermal growth factor receptor variant III

FAS :

Fas-ligand

FXS :

Fragile X syndrome

GCS :

Glasgow coma scale

GBM :

Glioblastoma

GSK-3β :

Glycogen synthase kinase-3beta

HePTP :

Hematopoietic tyrosine phosphatase

HD :

Huntington's disease

HIF-1/2α :

Hypoxia-inducible factors 1 and 2alpha

KIM :

Kinase interaction motif

LGG :

Low-grade gliomas

MAPK :

Mitogenactivated protein kinase

NFTs :

Neurofibrillary tangles

NMDA :

n-methyl- d -aspartate receptor

NMDAR :

n-methyl-d-aspartate receptor

N-SH2 :

N-terminal domain

PHF :

Paired helical filament

PD :

Parkinson's disease

PI3K :

Phosphoinositide 3-kinase

PPFIBP1 :

PPFIA binding protein 1

pi-miR-124 :

primary-miR-124

PSP :

Progressive supranuclear palsy

PP2A :

Protein phosphatase 2A

PTK :

Protein tyrosine kinase

PTPL1 :

Protein tyrosine phosphatase L1

PTPMT1 :

Protein Tyrosine Phosphatase localized to the Mitochondrion 1

PTPN :

Protein tyrosine phosphatase non-receptor type

PTPN1 :

Tyrosine-protein phosphatase non-receptor type 1

PTPN6 :

Tyrosine-protein phosphatase non-receptor type 6

PTPN11 :

Tyrosine-protein phosphatase non-receptor type 11

PTPN13 :

Tyrosine-protein phosphatase non-receptor type 13

PTPN23 :

Tyrosine-protein phosphatase non-receptor type 23

PTPs :

Protein tyrosine phosphatase

PTP1B :

Protein Tyrosine Phosphatase 1B

RTK :

Receptor tyrosine kinase

RISC :

RNA-induced silencing complex

STAT3 :

Signal transducer and activator of transcription-3

SHP1 :

Src homology domain-containing PTPs 1

SHP2 :

Src homology domain-containing PTPs 2

STEP :

Striatal enriched protein tyrosine phosphatase

STEP46 :

Striatal enriched protein tyrosine phosphatase 46

STEP61 :

Striatal enriched protein tyrosine phosphatase 61

TBI :

Traumatic brain injury

References

  1. Ostrom QT et al (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol 16(7):896–913. https://doi.org/10.1093/neuonc/nou087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alexander BM, Cloughesy TF (2017) Adult Glioblastoma. J Clin Oncol 35(21):2402–2409. https://doi.org/10.1200/JCO.2017.73.0119

    Article  CAS  PubMed  Google Scholar 

  3. Dai C, Holland EC (2001) Glioma models. Biochim Biophys Acta 1551(1):M19-27. https://doi.org/10.1016/s0304-419x(01)00027-0

    Article  CAS  PubMed  Google Scholar 

  4. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. https://doi.org/10.1038/nature07385

    Article  CAS  Google Scholar 

  5. Wang Q et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32(1):42-56.e6. https://doi.org/10.1016/j.ccell.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brennan CW et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. https://doi.org/10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barzegar Behrooz A, Talaie Z, Jusheghani F, Łos MJ, Klonisch T, Ghavami S (2022) Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in Glioblastoma. Int J Mol Sci 23(3):1353. https://doi.org/10.3390/ijms23031353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong C et al (2021) PPFIBP1 induces glioma cell migration and invasion through FAK/Src/JNK signaling pathway. Cell Death Dis 12(9):827. https://doi.org/10.1038/s41419-021-04107-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma C, Zhao G, Cruz MH, Siden A, Yakisich JS (2014) Translational gap in glioma research. Anticancer Agents Med Chem 14(8):1110–1120. https://doi.org/10.2174/1871520614666140825110907

    Article  CAS  PubMed  Google Scholar 

  10. Guishard AF, Yakisich JS, Azad N, Iyer AKV (2018) Translational gap in ongoing clinical trials for glioma. J Clin Neurosci 47:28–42. https://doi.org/10.1016/j.jocn.2017.10.001

    Article  PubMed  Google Scholar 

  11. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s Disease: causes and treatment. Molecules 25(24):5789. https://doi.org/10.3390/molecules25245789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pavlovic D, Pekic S, Stojanovic M, Popovic V (2019) Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae’. Pituitary 22(3):270–282. https://doi.org/10.1007/s11102-019-00957-9

    Article  PubMed  Google Scholar 

  13. He R-J, Yu Z-H, Zhang R-Y, Zhang Z-Y (2014) Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 35(10):1227–1246. https://doi.org/10.1038/aps.2014.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thijs RD, Surges R, O’Brien TJ, Sander JW (2019) Epilepsy in adults. Lancet 393(10172):689–701. https://doi.org/10.1016/S0140-6736(18)32596-0

    Article  PubMed  Google Scholar 

  15. Frontiers | Neuroimaging Advances in Parkinson’s Disease and Atypical Parkinsonian Syndromes’ (2020) https://www.frontiersin.org/articles/10.3389/fneur.572976/full.  Accessed 16 May 2023

  16. Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80(2):225–236. https://doi.org/10.1016/0092-8674(95)90405-0

    Article  CAS  PubMed  Google Scholar 

  17. Dempke WCM, Uciechowski P, Fenchel K, Chevassut T (2018) Targeting SHP-1, 2 and SHIP pathways: a novel strategy for cancer treatment? Oncology 95(5):257–269. https://doi.org/10.1159/000490106

    Article  CAS  PubMed  Google Scholar 

  18. Liu Q, Qu J, Zhao M, Xu Q, Sun Y (2020) Targeting SHP2 as a promising strategy for cancer immunotherapy. Pharmacol Res 152:104595. https://doi.org/10.1016/j.phrs.2019.104595

    Article  CAS  PubMed  Google Scholar 

  19. Freiss G, Chalbos D (2011) PTPN13/PTPL1: an important regulator of tumor aggressiveness. Anticancer Agents Med Chem 11(1):78–88. https://doi.org/10.2174/187152011794941262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kostrzewa T, Styszko J, Gorska-Ponikowska M, Sledzinski T, Kuban-Jankowska A (2019) Inhibitors of Protein Tyrosine Phosphatase PTP1B with anticancer potential. Anticancer Res 39(7):3379–3384. https://doi.org/10.21873/anticanres.13481

  21. Kumar A, Rana D, Rana R, Bhatia R (2020) Protein tyrosine phosphatase (PTP1B): a promising drug target against life-threatening ailments. Curr Mol Pharmacol 13(1):17–30. https://doi.org/10.2174/1874467212666190724150723

    Article  CAS  PubMed  Google Scholar 

  22. Chen P-J, Zhang Y-T (2022) Protein tyrosine phosphatase 1B (PTP1B): insights into its new implications in tumorigenesis. Curr Cancer Drug Targets 22(3):181–194. https://doi.org/10.2174/1568009622666220128113400

    Article  CAS  PubMed  Google Scholar 

  23. Eleftheriou P, Geronikaki A, Petrou A (2019) PTP1b inhibition, a promising approach for the treatment of diabetes type II. Curr Top Med Chem 19(4):246–263. https://doi.org/10.2174/1568026619666190201152153

    Article  CAS  PubMed  Google Scholar 

  24. Sharma B et al (2020) Recent advance on PTP1B inhibitors and their biomedical applications. Eur J Med Chem 199:112376. https://doi.org/10.1016/j.ejmech.2020.112376

    Article  CAS  PubMed  Google Scholar 

  25. Kamceva M, Benedict J, Nairn AC, Lombroso PJ (2016) Role of striatal-enriched tyrosine phosphatase in neuronal function. Neural Plast :8136925. https://doi.org/10.1155/2016/8136925

  26. Karasawa T, Lombroso PJ (2014) Disruption of striatal-enriched protein tyrosine phosphatase (STEP) function in neuropsychiatric disorders. Neurosci Res 89:1–9. https://doi.org/10.1016/j.neures.2014.08.018

    Article  CAS  PubMed  Google Scholar 

  27. Xu J, Kurup P, Nairn AC, Lombroso PJ (2012) Striatal-enriched protein tyrosine phosphatase in Alzheimer’s disease. Adv Pharmacol 64:303–325. https://doi.org/10.1016/B978-0-12-394816-8.00009-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lombroso PJ, Murdoch G, Lerner M (1991) Molecular characterization of a protein-tyrosine-phosphatase enriched in striatum. Proc Natl Acad Sci U S A 88(16):7242–7246. https://doi.org/10.1073/pnas.88.16.7242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Venkitaramani DV et al (2009) Knockout of striatal enriched protein tyrosine phosphatase in mice results in increased ERK1/2 phosphorylation. Synapse 63(1):69–81. https://doi.org/10.1002/syn.20608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14(3):311–317. https://doi.org/10.1016/j.conb.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  31. Borders AS, de Almeida L, Van Eldik LJ, Watterson DM (2008) The p38alpha mitogen-activated protein kinase as a central nervous system drug discovery target. BMC Neurosci 9(Suppl 2):S12. https://doi.org/10.1186/1471-2202-9-S2-S12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu PH, Coultrap SJ, Browning MD, Proctor WR (2011) Functional adaptation of the N-methyl-D-aspartate receptor to inhibition by ethanol is modulated by striatal-enriched protein tyrosine phosphatase and p38 mitogen-activated protein kinase. Mol Pharmacol 80(3):529–537. https://doi.org/10.1124/mol.110.068643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Won S, Roche KW (2021) Regulation of glutamate receptors by striatal-enriched tyrosine phosphatase 61 (STEP61). J Physiol 599(2):443–451. https://doi.org/10.1113/JP278703

    Article  CAS  PubMed  Google Scholar 

  34. Snyder EM et al (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8(8):1051–1058. https://doi.org/10.1038/nn1503

    Article  CAS  PubMed  Google Scholar 

  35. Tautermann CS et al (2019) Allosteric activation of Striatal-Enriched protein tyrosine phosphatase (STEP, PTPN5) by a fragment-like molecule. J Med Chem 62(1):306–316. https://doi.org/10.1021/acs.jmedchem.8b00857

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen T-H, Liu J, Lombroso PJ (2002) Striatal enriched phosphatase 61 dephosphorylates Fyn at phosphotyrosine 420. J Biol Chem 277(27):24274–24279. https://doi.org/10.1074/jbc.M111683200

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y et al (2008) The tyrosine phosphatase STEP mediates AMPA receptor endocytosis after metabotropic glutamate receptor stimulation. J Neurosci 28(42):10561–10566. https://doi.org/10.1523/JNEUROSCI.2666-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Szedlacsek HS et al (2022) Designed peptide inhibitors of STEP Phosphatase-GluA2 AMPA receptor Interaction enhance the cognitive performance in rats. J Med Chem 65(1):217–233. https://doi.org/10.1021/acs.jmedchem.1c01303

    Article  CAS  PubMed  Google Scholar 

  39. Thakkar JP et al (2014) Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 23(10):1985–1996. https://doi.org/10.1158/1055-9965.EPI-14-0275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ostrom QT et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16(Suppl 4):iv1-63. https://doi.org/10.1093/neuonc/nou223

  41. Young RM, Jamshidi A, Davis G, Sherman JH (2015) Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Med 3(9):121. https://doi.org/10.3978/j.issn.2305-5839.2015.05.10

    Article  PubMed  PubMed Central  Google Scholar 

  42. Louis DN et al (2016) The 2016 World Health Organization classification of tumors of the Central Nervous System: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  43. Tomiyama A, Kobayashi T, Mori K, Ichimura K (2019) Protein phosphatases-a touchy enemy in the battle against glioblastomas: a review. Cancers (Basel) 11(2):E241. https://doi.org/10.3390/cancers11020241

    Article  CAS  Google Scholar 

  44. Wang W et al (2011) Crystal structure of human protein tyrosine phosphatase SHP-1 in the open conformation. J Cell Biochem 112(8):2062–2071. https://doi.org/10.1002/jcb.23125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sooman L et al (2014) PTPN6 expression is epigenetically regulated and influences survival and response to chemotherapy in high-grade gliomas. Tumour Biol 35(5):4479–4488. https://doi.org/10.1007/s13277-013-1590-5

    Article  CAS  PubMed  Google Scholar 

  46. Myers DR et al (2020) Shp1 loss enhances macrophage effector function and promotes Anti-Tumor Immunity. Front Immunol 11:576310. https://doi.org/10.3389/fimmu.2020.576310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Banville D, Ahmad S, Stocco R, Shen SH (1994) A novel protein-tyrosine phosphatase with homology to both the cytoskeletal proteins of the band 4.1 family and junction-associated guanylate kinases. J Biol Chem 269(35):22320–22327

  48. Tajan M, de Rocca Serra A, Valet P, Edouard T, Yart A (2015) SHP2 sails from physiology to pathology. Eur J Med Genet 58(10):509–525. https://doi.org/10.1016/j.ejmg.2015.08.005

    Article  PubMed  Google Scholar 

  49. Zheng H, Yu W-M, Waclaw RR, Kontaridis MI, Neel BG, Qu C-K (2018) Gain-of-function mutations in the gene encoding the tyrosine phosphatase SHP2 induce hydrocephalus in a catalytically dependent manner. Sci Signal 11(522):eaao1591. https://doi.org/10.1126/scisignal.aao1591

  50. Ostman A, Hellberg C, Böhmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6(4):307–320. https://doi.org/10.1038/nrc1837

    Article  CAS  PubMed  Google Scholar 

  51. Hakak Y, Hsu YS, Martin GS (2000) Shp-2 mediates v-Src-induced morphological changes and activation of the anti-apoptotic protein kinase Akt. Oncogene 19(28):3164–3171. https://doi.org/10.1038/sj.onc.1203655

    Article  CAS  PubMed  Google Scholar 

  52. Ivins Zito C, Kontaridis MI, Fornaro M, Feng G-S, Bennett AM (2004) SHP-2 regulates the phosphatidylinositide 3’-kinase/Akt pathway and suppresses caspase 3-mediated apoptosis. J Cell Physiol 199(2):227–236. https://doi.org/10.1002/jcp.10446

    Article  CAS  PubMed  Google Scholar 

  53. Zhang W et al (2009) Negative regulation of Stat3 by activating PTPN11 mutants contributes to the pathogenesis of Noonan syndrome and juvenile myelomonocytic leukemia. J Biol Chem 284(33):22353–22363. https://doi.org/10.1074/jbc.M109.020495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chan G, Kalaitzidis D, Neel BG (2008) The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev 27(2):179–192. https://doi.org/10.1007/s10555-008-9126-y

    Article  CAS  PubMed  Google Scholar 

  55. Furcht CM et al (2014) Multivariate signaling regulation by SHP2 differentially controls proliferation and therapeutic response in glioma cells. J Cell Sci 127(Pt 16):3555–3567. https://doi.org/10.1242/jcs.150862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhan Y, Counelis GJ, O’Rourke DM (2009) The protein tyrosine phosphatase SHP-2 is required for EGFRvIII oncogenic transformation in human glioblastoma cells. Exp Cell Res 315:2343–2357. https://doi.org/10.1016/j.yexcr.2009.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Song Y, Zhao M, Wu Y, Yu B, Liu H-M (2021) A multifunctional cross-validation high-throughput screening protocol enabling the discovery of new SHP2 inhibitors. Acta Pharm Sin B 11(3):750–762. https://doi.org/10.1016/j.apsb.2020.10.021

    Article  CAS  PubMed  Google Scholar 

  58. Yu K et al (2020) Shp2 activation in bone marrow microenvironment mediates the drug resistance of B-cell acute lymphoblastic leukemia through enhancing the role of VCAM-1/VLA-4. Int Immunopharmacol 80:106008. https://doi.org/10.1016/j.intimp.2019.106008

    Article  CAS  PubMed  Google Scholar 

  59. Song Z et al (2021) Tyrosine phosphatase SHP2 inhibitors in tumor-targeted therapies. Acta Pharm Sin B 11(1):13–29. https://doi.org/10.1016/j.apsb.2020.07.010

    Article  CAS  PubMed  Google Scholar 

  60. Song M et al (2009) NSC-87877, inhibitor of SHP-1/2 PTPs, inhibits dual-specificity phosphatase 26 (DUSP26). Biochem Biophys Res Commun 381(4):491–495. https://doi.org/10.1016/j.bbrc.2009.02.069

    Article  CAS  PubMed  Google Scholar 

  61. Zhou L, Zuo Z, Chow MSS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45(12):1345–1359. https://doi.org/10.1177/0091270005282630

    Article  CAS  PubMed  Google Scholar 

  62. Yu X-Y et al (2007) Transport of cryptotanshinone, a major active triterpenoid in Salvia miltiorrhiza Bunge widely used in the treatment of stroke and Alzheimer’s disease, across the blood-brain barrier. Curr Drug Metab 8(4):365–378. https://doi.org/10.2174/138920007780655441

    Article  CAS  PubMed  Google Scholar 

  63. Lu L et al (2017) Cryptotanshinone inhibits human glioma cell proliferation in vitro and in vivo through SHP-2-dependent inhibition of STAT3 activation. Cell Death Dis 8(5):e2767. https://doi.org/10.1038/cddis.2017.174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang M, Lu J, Wang M, Yang C-Y, Wang S (2020) Discovery of SHP2-D26 as a First, Potent, and Effective PROTAC Degrader of SHP2 Protein. J Med Chem 63(14):7510–7528. https://doi.org/10.1021/acs.jmedchem.0c00471

    Article  CAS  PubMed  Google Scholar 

  65. Guo W, Xu Q (2020) Phosphatase-independent functions of SHP2 and its regulation by small molecule compounds. J Pharmacol Sci 144(3):139–146. https://doi.org/10.1016/j.jphs.2020.06.002

    Article  CAS  PubMed  Google Scholar 

  66. Y. X et al (2021)Discovery of thalidomide-based PROTAC small molecules as the highly efficient SHP2 degraders. Eur J Med Chem 218. https://doi.org/10.1016/j.ejmech.2021.113341

  67. Zheng M et al (2021) Novel PROTACs for degradation of SHP2 protein. Bioorg Chem 110:104788. https://doi.org/10.1016/j.bioorg.2021.104788

  68. Abaan OD, Levenson A, Khan O, Furth PA, Uren A, Toretsky JA (2005) PTPL1 is a direct transcriptional target of EWS-FLI1 and modulates Ewing’s Sarcoma tumorigenesis. Oncogene 24(16):2715–2722. https://doi.org/10.1038/sj.onc.1208247

    Article  CAS  PubMed  Google Scholar 

  69. Nakai Y, Irie S, Sato TA (2000) Identification of IkappaBalpha as a substrate of Fas-associated phosphatase-1. Eur J Biochem 267(24):7170–7175. https://doi.org/10.1046/j.1432-1327.2000.01818.x

    Article  CAS  PubMed  Google Scholar 

  70. Mcheik S, Aptecar L, Coopman P, D’Hondt V, Freiss G (2020) Dual role of the PTPN13 tyrosine phosphatase in cancer. Biomolecules 10(12):E1659. https://doi.org/10.3390/biom10121659

    Article  CAS  Google Scholar 

  71. Nagata S (1994) Apoptosis regulated by a death factor and its receptor: Fas ligand and Fas. Philos Trans R Soc Lond B Biol Sci 345(1313):281–287. https://doi.org/10.1098/rstb.1994.0107

    Article  CAS  PubMed  Google Scholar 

  72. Bompard G, Puech C, Prébois C, Vignon F, Freiss G (2002) Protein-tyrosine phosphatase PTPL1/FAP-1 triggers apoptosis in human breast cancer cells. J Biol Chem 277(49):47861–47869. https://doi.org/10.1074/jbc.M208950200

    Article  CAS  PubMed  Google Scholar 

  73. Ungefroren H et al (2001) FAP-1 in pancreatic cancer cells: functional and mechanistic studies on its inhibitory role in CD95-mediated apoptosis. J Cell Sci 114(Pt 15):2735–2746. https://doi.org/10.1242/jcs.114.15.2735

    Article  CAS  PubMed  Google Scholar 

  74. Foehr ED, Lorente G, Vincent V, Nikolich K, Urfer R (2005) FAS associated phosphatase (FAP-1) blocks apoptosis of astrocytomas through dephosphorylation of FAS. J Neurooncol 74(3):241–248. https://doi.org/10.1007/s11060-004-7202-x

    Article  CAS  PubMed  Google Scholar 

  75. Navis AC, van den Eijnden M, Schepens JTG, Hooft R, van Huijsduijnen P, Wesseling Hendriks WJAJ (2010) Protein tyrosine phosphatases in glioma biology. Acta Neuropathol 119(2):157–175. https://doi.org/10.1007/s00401-009-0614-0

    Article  CAS  PubMed  Google Scholar 

  76. Hampel H et al (2021) The Amyloid-β Pathway in Alzheimer’s Disease. Mol Psychiatry 26(10):5481–5503. https://doi.org/10.1038/s41380-021-01249-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Braithwaite SP, Stock JB, Lombroso PJ, Nairn AC (2012) Protein phosphatases and Alzheimer’s disease. Prog Mol Biol Transl Sci 106:343–379. https://doi.org/10.1016/B978-0-12-396456-4.00012-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang J-Z, Xia Y-Y, Grundke-Iqbal I, Iqbal K (2013) Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis 33(1):123–139. https://doi.org/10.3233/JAD-2012-129031

    Article  CAS  Google Scholar 

  79. Hou T-Y et al (2020) Correcting abnormalities in miR-124/PTPN1 signaling rescues tau pathology in Alzheimer’s disease. J Neurochem 154(4):441–457. https://doi.org/10.1111/jnc.14961

    Article  CAS  PubMed  Google Scholar 

  80. Sanuki R, Yamamura T (2021) Tumor suppressive effects of miR-124 and its function in neuronal development. Int J Mol Sci 22(11):5919. https://doi.org/10.3390/ijms22115919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang X et al (2018) A novel MicroRNA-124/PTPN1 signal pathway mediates synaptic and memory deficits in Alzheimer’s Disease. Biol Psychiatry 83(5):395–405. https://doi.org/10.1016/j.biopsych.2017.07.023

    Article  CAS  PubMed  Google Scholar 

  82. Kanno T, Tsuchiya A, Tanaka A, Nishizaki T (2016) Combination of PKCε activation and PTP1B inhibition effectively suppresses Aβ-Induced GSK-3β activation and tau phosphorylation. Mol Neurobiol 53(7):4787–4797. https://doi.org/10.1007/s12035-015-9405-x

    Article  CAS  PubMed  Google Scholar 

  83. Jin N et al (2015) Truncation and activation of GSK-3β by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer’s disease. Sci Rep 5:8187. https://doi.org/10.1038/srep08187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ricke KM et al (2020) Neuronal protein tyrosine phosphatase 1B hastens amyloid β-Associated Alzheimer’s Disease in mice. J Neurosci 40(7):1581–1593. https://doi.org/10.1523/JNEUROSCI.2120-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kuga GK et al (2018) Impaired insulin signaling and spatial learning in middle-aged rats: The role of PTP1B. Exp Gerontol 104:66–71. https://doi.org/10.1016/j.exger.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  86. Ghalayini J (2020) Exploring the therapeutic potential of protein tyrosine phosphatase 1B in hAPP-J20 mouse model of Alzheimer’s Disease. J Neurosci 40:6100–6102. https://doi.org/10.1523/JNEUROSCI.0852-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liang X, Hou X, Fang H (2021) Structure, function and modulation of Striatal-enriched protein tyrosine phosphatase (STEP). Curr Med Chem 28(37):7714–7728. https://doi.org/10.2174/0929867328666210412123304

    Article  CAS  PubMed  Google Scholar 

  88. Li L, Liang J, Fu H (2021) An update on the association between traumatic brain injury and Alzheimer’s disease: focus on tau pathology and synaptic dysfunction. Neurosci Biobehav Rev 120:372–386. https://doi.org/10.1016/j.neubiorev.2020.10.020

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Hall RA, Lee M, Kamgar-parsi A, Bi X, Baudry M (2017) The tyrosine phosphatase PTPN13/FAP-1 links calpain-2, TBI and tau tyrosine phosphorylation. Sci Rep 7(1):11771. https://doi.org/10.1038/s41598-017-12236-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Santiago JA, Bottero V, Potashkin JA (2018) Evaluation of RNA blood biomarkers in the Parkinson’s disease biomarkers program. Front Aging Neurosci 10:157. https://doi.org/10.3389/fnagi.2018.00157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Feng C-W, Chen N-F, Chan T-F, Chen W-F (2020) Therapeutic role of protein tyrosine phosphatase 1B in Parkinson’s Disease via antineuroinflammation and neuroprotection in vitro and in vivo. Parkinson’s Disease :1–15. https://doi.org/10.1155/2020/8814236

  92. Bend R et al (2020) Phenotype and mutation expansion of the PTPN23 associated disorder characterized by neurodevelopmental delay and structural brain abnormalities. Eur J Hum Genet 28(1):76–87. https://doi.org/10.1038/s41431-019-0487-1

    Article  CAS  PubMed  Google Scholar 

  93. Sowada N et al (2017) Mutations of PTPN23 in developmental and epileptic encephalopathy. Hum Genet 136(11–12):1455–1461. https://doi.org/10.1007/s00439-017-1850-3

    Article  CAS  PubMed  Google Scholar 

  94. Meer Gv, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–24. https://doi.org/10.1038/nrm2330

  95. Falabella M, Vernon HJ, Hanna MG, Claypool SM, Pitceathly RDS (2021) Cardiolipin, Mitochondria, and neurological disease. Trends Endocrinol Metab 32(4):224–237. https://doi.org/10.1016/j.tem.2021.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kagan VE et al (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1(4):223–232. https://doi.org/10.1038/nchembio727

    Article  CAS  PubMed  Google Scholar 

  97. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. https://doi.org/10.1016/s0092-8674(00)81683-9

    Article  CAS  PubMed  Google Scholar 

  98. Pagliarini DJ et al (2005) Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic beta cells. Mol Cell 19(2):197–207. https://doi.org/10.1016/j.molcel.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  99. Niemi NM, Lanning NJ, Westrate LM, MacKeigan JP (2013) Downregulation of the mitochondrial phosphatase PTPMT1 is sufficient to promote cancer cell death. PLoS ONE 8(1):e53803. https://doi.org/10.1371/journal.pone.0053803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang J et al (2011) Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab 13(6):690–700. https://doi.org/10.1016/j.cmet.2011.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to forward our deepest gratitude to the editors and the anonymous referees for the effort they have invested in reviewing and critiquing our study.

Funding

This work was supported by the National Natural Science Foundation of China. This work was financially supported by the National Natural Science Foundation of China (81602327), and the Zhishan Scholars Programs of Southeast University (2242021R41070).

Author information

Authors and Affiliations

Authors

Contributions

YTH and DN collected the materials and wrote the manuscript. HMW designed the research and revised the manuscript.

Corresponding author

Correspondence to Hongmei Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable — no research involving human subjects is included in this manuscript.

Consent for Publication

Not applicable.

Competing Interests

Authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Nan, D. & Wang, H. Role of Non-Receptor-Type Tyrosine Phosphatases in Brain-Related Diseases. Mol Neurobiol 60, 6530–6541 (2023). https://doi.org/10.1007/s12035-023-03487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03487-5

Keywords

Navigation