Skip to main content

Advertisement

Log in

Neuronal Store-Operated Calcium Channels

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The endoplasmic reticulum (ER) is the major intracellular calcium (Ca2+) storage compartment in eukaryotic cells. In most instances, the mobilization of Ca2+ from this store is followed by a delayed and sustained uptake of Ca2+ through Ca2+-permeable channels of the cell surface named store-operated Ca2+ channels (SOCCs). This gives rise to a store-operated Ca2+ entry (SOCE) that has been thoroughly investigated in electrically non-excitable cells where it is the principal regulated Ca2+ entry pathway. The existence of this Ca2+ route in neurons has long been a matter of debate. However, a growing body of experimental evidence indicates that the recruitment of Ca2+ from neuronal ER Ca2+ stores generates a SOCE. The present review summarizes the main studies supporting the presence of a depletion-dependent Ca2+ entry in neurons. It also addresses the question of the molecular composition of neuronal SOCCs, their expression, pharmacological properties, as well as their physiological relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Notes

  1. Throughout this study, the following acronyms will be used: SOCE and SOCCs (store-operated Ca2+ entry, store-operated Ca2+ channels).

References

  1. Bootman MD, Berridge MJ, Roderick HL (2002) Calcium signalling: more messengers, more channels, more complexity. Curr Biol 12(16):R563–R565

    CAS  PubMed  Google Scholar 

  2. Fasolato C, Innocenti B, Pozzan T (1994) Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends Pharmacol Sci 15(3):77–83

    CAS  PubMed  Google Scholar 

  3. Barritt GJ (1999) Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J 337(Pt 2):153–169

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    CAS  PubMed  Google Scholar 

  5. Lambert DG, Nahorski SR (1992) Carbachol-stimulated calcium entry in SH-SY5Y human neuroblastoma cells: which route? J Physiol Paris 86(1-3):77–82

    CAS  PubMed  Google Scholar 

  6. Clementi E, Scheer H, Zacchetti D, Fasolato C, Pozzan T, Meldolesi J (1992) Receptor-activated Ca2+ influx. Two independently regulated mechanisms of influx stimulation coexist in neurosecretory PC12 cells. J Biol Chem 267(4):2164–2172

    CAS  PubMed  Google Scholar 

  7. Lu B, Fivaz M (2016) Neuronal SOCE: myth or reality? Trends Cell Biol 26(12):890–893. https://doi.org/10.1016/j.tcb.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  8. Putney JW (1997) Capacitative calcium entry. Landes Biochemichal Publishing, Austin Texas

    Google Scholar 

  9. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77(4):901–930

    CAS  PubMed  Google Scholar 

  10. Somasundaram A, Shum AK, McBride HJ, Kessler JA, Feske S, Miller RJ, Prakriya M (2014) Store-operated CRAC channels regulate gene expression and proliferation in neural progenitor cells. J Neurosci 34(27):9107–9123. https://doi.org/10.1523/JNEUROSCI.0263-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Domenichini F, Terrie E, Arnault P, Harnois T, Magaud C, Bois P, Constantin B, Coronas V (2018) Store-operated calcium entries control neural stem cell self-renewal in the adult brain subventricular zone. Stem cells 36(5):761–774. https://doi.org/10.1002/stem.2786

    Article  CAS  PubMed  Google Scholar 

  12. Gopurappilly R, Deb BK, Chakraborty P, Hasan G (2018) Stable STIM1 knockdown in self-renewing human neural precursors promotes premature neural differentiation. Front Mol Neurosci 11:178. https://doi.org/10.3389/fnmol.2018.00178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hao B, Lu Y, Wang Q, Guo W, Cheung KH, Yue J (2014) Role of STIM1 in survival and neural differentiation of mouse embryonic stem cells independent of Orai1-mediated Ca2+ entry. Stem cell res 12(2):452–466. https://doi.org/10.1016/j.scr.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  14. Li M, Chen C, Zhou Z, Xu S, Yu Z (2012) A TRPC1-mediated increase in store-operated Ca2+ entry is required for the proliferation of adult hippocampal neural progenitor cells. Cell Calcium 51(6):486–496. https://doi.org/10.1016/j.ceca.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  15. Rizo T, Gebhardt L, Riedlberger J, Eberhardt E, Fester L, Alansary D, Winkler J, Turan S, Arnold P, Niemeyer BA, Fischer MJM, Winner B (2022) Store-operated calcium entry is reduced in spastin-linked hereditary spastic paraplegia. Brain : a j of neuro 145(9):3131–3146. https://doi.org/10.1093/brain/awac122

    Article  Google Scholar 

  16. Nielsen SP, Petersen OH (1972) Transport of calcium in the perfused submandibular gland of the cat. Physiol J 223(3):685–697

    CAS  Google Scholar 

  17. Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 212(3):849–858. https://doi.org/10.1042/bj2120849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuba K (1980) Release of calcium ions linked to the activation of potassium conductance in a caffeine-treated sympathetic neurone. Physiol J 298:251–269. https://doi.org/10.1113/jphysiol.1980.sp013079

    Article  CAS  Google Scholar 

  19. Lipscombe D, Madison DV, Poenie M, Reuter H, Tsien RW, Tsien RY (1988) Imaging of cytosolic Ca2+ transients arising from Ca2+ stores and Ca2+ channels in sympathetic neurons. Neuron 1(5):355–365

    CAS  PubMed  Google Scholar 

  20. Thayer SA, Perney TM, Miller RJ (1988) Regulation of calcium homeostasis in sensory neurons by bradykinin. J Neurosci 8(11):4089–4097

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L (2011) Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol 3:6. https://doi.org/10.1101/cshperspect.a004317

    Article  CAS  Google Scholar 

  22. Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85(1):201–279

    CAS  PubMed  Google Scholar 

  23. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21

    CAS  PubMed  Google Scholar 

  24. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21(1):13–26

    CAS  PubMed  Google Scholar 

  25. Putney JW Jr (1990) Capacitative calcium entry revisited. Cell Calcium 11(10):611–624

    CAS  PubMed  Google Scholar 

  26. Holda JR, Klishin A, Sedova M, Huser J, Blatter LA (1998) Capacitative calcium entry. News Physiol Sci 13:157–163

    CAS  PubMed  Google Scholar 

  27. Wu X, Zagranichnaya TK, Gurda GT, Eves EM, Villereal ML (2004) A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells. J Biol Chem 279(42):43392–43402

    CAS  PubMed  Google Scholar 

  28. Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 67(4):821–870. https://doi.org/10.1124/pr.114.009654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Slesinger PA, Lansman JB (1991) Reopening of Ca2+ channels in mouse cerebellar neurons at resting membrane potentials during recovery from inactivation. Neuron 7(5):755–762

    CAS  PubMed  Google Scholar 

  30. Magee JC, Avery RB, Christie BR, Johnston D (1996) Dihydropyridine-sensitive, voltage-gated Ca2+ channels contribute to the resting intracellular Ca2+ concentration of hippocampal CA1 pyramidal neurons. J Neurophysiol 76(5):3460–3470

    CAS  PubMed  Google Scholar 

  31. Rae MG, Martin DJ, Collingridge GL, Irving AJ (2000) Role of Ca2+ stores in metabotropic L-glutamate receptor-mediated supralinear Ca2+ signaling in rat hippocampal neurons. J Neurosci 20(23):8628–8636

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Irving AJ, Collingridge GL (1998) A characterization of muscarinic receptor-mediated intracellular Ca2+ mobilization in cultured rat hippocampal neurones. J Physiol 511(Pt 3):747–759

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Power JM, Sah P (2005) Intracellular calcium store filling by an L-type calcium current in the basolateral amygdala at subthreshold membrane potentials. J Physiol 562(Pt 2):439–453

    CAS  PubMed  Google Scholar 

  34. Krizaj D, Bao JX, Schmitz Y, Witkovsky P, Copenhagen DR (1999) Caffeine-sensitive calcium stores regulate synaptic transmission from retinal rod photoreceptors. J Neurosci 19(17):7249–7261

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hartmann J, Karl RM, Alexander RP, Adelsberger H, Brill MS, Ruhlmann C, Ansel A, Sakimura K, Baba Y, Kurosaki T, Misgeld T, Konnerth A (2014) STIM1 controls neuronal Ca(2)(+) signaling, mGluR1-dependent synaptic transmission, and cerebellar motor behavior. Neuron 82(3):635–644. https://doi.org/10.1016/j.neuron.2014.03.027

    Article  CAS  PubMed  Google Scholar 

  36. Kayano T, Sasaki Y, Kitamura N, Harayama N, Moriya T, Dayanithi G, Verkhratsky A, Shibuya I (2019) Persistent Na(+) influx drives L-type channel resting Ca(2+) entry in rat melanotrophs. Cell Calcium 79:11–19. https://doi.org/10.1016/j.ceca.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  37. Maric D, Maric I, Barker JL (2000) Developmental changes in cell calcium homeostasis during neurogenesis of the embryonic rat cerebral cortex. Cereb Cortex 10(6):561–573

    CAS  PubMed  Google Scholar 

  38. Navedo MF, Amberg GC, Votaw VS, Santana LF (2005) Constitutively active L-type Ca2+ channels. Proc Natl Acad Sci U S A 102(31):11112–11117. https://doi.org/10.1073/pnas.0500360102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zinchenko VP, Antonov SA, Sergeev AI (2009) Constitutively active calcium channels in plasma membrane of T-lymphocytes. Biochemistry (Moscow) 3(3):286–290

    Google Scholar 

  40. Chen-Engerer HJ, Hartmann J, Karl RM, Yang J, Feske S, Konnerth A (2019) Two types of functionally distinct Ca(2+) stores in hippocampal neurons. Nat Commun 10(1):3223. https://doi.org/10.1038/s41467-019-11207-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lev S, Minke B (2010) Constitutive activity of TRP channels methods for measuring the activity and its outcome. Methods Enzymol 484:591–612

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamada H, Wakamori M, Hara Y, Takahashi Y, Konishi K, Imoto K, Mori Y (2000) Spontaneous single-channel activity of neuronal TRP5 channel recombinantly expressed in HEK293 cells. Neurosci Lett 285(2):111–114

    CAS  PubMed  Google Scholar 

  43. Albert AP, Pucovsky V, Prestwich SA, Large WA (2006) TRPC3 properties of a native constitutively active Ca2+-permeable cation channel in rabbit ear artery myocytes. J Physiol 571(Pt 2):361–369

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mignen O, Constantin B, Potier-Cartereau M, Penna A, Gautier M, Gueguinou M, Renaudineau Y, Shoji KF, Felix R, Bayet E, Buscaglia P, Debant M, Chantome A, Vandier C (2017) Constitutive calcium entry and cancer: updated views and insights. Eur Biophys J 46(5):395–413. https://doi.org/10.1007/s00249-017-1216-8

    Article  CAS  PubMed  Google Scholar 

  45. Abramov AY, Canevari L, Duchen MR (2003) Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 23(12):5088–5095

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Emptage N, Bliss TV, Fine A (1999) Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron 22(1):115–124

    CAS  PubMed  Google Scholar 

  47. Maneshi MM, Toth AB, Ishii T, Hori K, Tsujikawa S, Shum AK, Shrestha N, Yamashita M, Miller RJ, Radulovic J, Swanson GT, Prakriya M (2020) Orai1 Channels Are Essential for Amplification of Glutamate-Evoked Ca(2+) Signals in dendritic spines to regulate working and associative memory. Cell Rep 33(9):108464. https://doi.org/10.1016/j.celrep.2020.108464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsien RY (1989) Fluorescent probes of cell signaling. Annu Rev Neurosci 12:227–253. https://doi.org/10.1146/annurev.ne.12.030189.001303

    Article  CAS  PubMed  Google Scholar 

  49. Rudolf R, Mongillo M, Rizzuto R, Pozzan T (2003) Looking forward to seeing calcium. Nat Rev Mol Cell Biol 4(7):579–586

    CAS  PubMed  Google Scholar 

  50. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46(3):143–151

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100

    CAS  PubMed  Google Scholar 

  52. Putney JW Jr (2004) Store-operated calcium channels: how do we measure them, and why do we care? Sci STKE 2004(243):pe37

    PubMed  Google Scholar 

  53. Johnson M (2019) Calcium imaging of store-operated calcium (Ca(2+)) Entry (SOCE) in HEK293 cells using Fura-2. Methods mol biol 1925:163–172. https://doi.org/10.1007/978-1-4939-9018-4_15

    Article  CAS  PubMed  Google Scholar 

  54. Alansary D, Kilch T, Holzmann C, Peinelt C, Hoth M, Lis A (2014) The minimal requirements to use calcium imaging to analyze ICRAC. Cold Spring Harb Protoc 2014(6):638–642. https://doi.org/10.1101/pdb.prot073262

    Article  PubMed  Google Scholar 

  55. Gopurappilly R, Deb BK, Chakraborty P, Hasan G (2019) Measurement of store-operated calcium entry in human neural cells: from precursors to differentiated neurons. Methods mol biol 2029:257–271. https://doi.org/10.1007/978-1-4939-9631-5_20

    Article  CAS  PubMed  Google Scholar 

  56. Chanaday NL, Nosyreva E, Shin OH, Zhang H, Aklan I, Atasoy D, Bezprozvanny I, Kavalali ET (2021) Presynaptic store-operated Ca(2+) entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. Neuron 109(8):1314–1332. https://doi.org/10.1016/j.neuron.2021.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Korkotian E, Oni-Biton E, Segal M (2017) The role of the store-operated calcium entry channel Orai1 in cultured rat hippocampal synapse formation and plasticity. J Physiol 595(1):125–140. https://doi.org/10.1113/JP272645

    Article  CAS  PubMed  Google Scholar 

  58. Sun S, Zhang H, Liu J, Popugaeva E, Xu NJ, Feske S, White CL 3rd, Bezprozvanny I (2014) Reduced synaptic STIM2 expression and impaired store-operated calcium entry cause destabilization of mature spines in mutant presenilin mice. Neuron 82(1):79–93. https://doi.org/10.1016/j.neuron.2014.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang H, Wu L, Pchitskaya E, Zakharova O, Saito T, Saido T, Bezprozvanny I (2015) Neuronal store-operated calcium entry and mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer's disease. J Neurosci 35(39):13275–13286. https://doi.org/10.1523/JNEUROSCI.1034-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO rep 3(10):944–950. https://doi.org/10.1093/embo-reports/kvf202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bootman MD, Allman S, Rietdorf K, Bultynck G (2018) Deleterious effects of calcium indicators within cells; an inconvenient truth. Cell Calcium 73:82–87. https://doi.org/10.1016/j.ceca.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  62. Smith NA, Kress BT, Lu Y, Chandler-Militello D, Benraiss A, Nedergaard M (2018) Fluorescent Ca(2+) indicators directly inhibit the Na,K-ATPase and disrupt cellular functions. Sci Signal 11(515). https://doi.org/10.1126/scisignal.aal2039

  63. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355(6358):353–356

    CAS  PubMed  Google Scholar 

  64. Luckhoff A, Clapham DE (1994) Calcium channels activated by depletion of internal calcium stores in A431 cells. Biophys J 67(1):177–182

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A 90(13):6295–6299

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810

    CAS  PubMed  Google Scholar 

  67. Cuddon P, Bootman MD, Richards GR, Smith AJ, Simpson PB, Roderick HL (2008) Methacholine and PDGF activate store-operated calcium entry in neuronal precursor cells via distinct calcium entry channels. Biol Res 41(2):183–195. https://doi.org/10.4067/S0716-97602008000200008

    Article  PubMed  Google Scholar 

  68. Kikuta S, Iguchi Y, Kakizaki T, Kobayashi K, Yanagawa Y, Takada M, Osanai M (2019) Store-operated calcium channels are involved in spontaneous slow calcium oscillations in striatal neurons. Front Cell Neurosci 13:547. https://doi.org/10.3389/fncel.2019.00547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Calvo-Rodriguez M, Garcia-Durillo M, Villalobos C, Nunez L (2016) In vitro aging promotes endoplasmic reticulum (ER)-mitochondria Ca(2+) cross talk and loss of store-operated Ca(2+) entry (SOCE) in rat hippocampal neurons. Biochim Biophys Acta 1863(11):2637–2649. https://doi.org/10.1016/j.bbamcr.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  70. Zernov N, Bezprozvanny I, Popugaeva E (2022) CaMKIIbeta knockdown decreases store-operated calcium entry in hippocampal dendritic spines. IBRO Neurosci Rep 12:90–97. https://doi.org/10.1016/j.ibneur.2022.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gruszczynska-Biegala J, Strucinska K, Maciag F, Majewski L, Sladowska M, Kuznicki J (2020) STIM protein-NMDA2 receptor interaction decreases NMDA-dependent calcium levels in cortical neurons. Cells 9(1). https://doi.org/10.3390/cells9010160

  72. Chernyuk D, Zernov N, Kabirova M, Bezprozvanny I, Popugaeva E (2019) Antagonist of neuronal store-operated calcium entry exerts beneficial effects in neurons expressing PSEN1DeltaE9 mutant linked to familial Alzheimer disease. Neuroscience 410:118–127. https://doi.org/10.1016/j.neuroscience.2019.04.043

    Article  CAS  PubMed  Google Scholar 

  73. Gonzalez-Sanchez P, Del Arco A, Esteban JA, Satrustegui J (2017) Store-operated calcium entry is required for mGluR-dependent long term depression in cortical neurons. Front Cell Neurosci 11:363. https://doi.org/10.3389/fncel.2017.00363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Abdel-Latif AA (1986) Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol Rev 38(3):227–272

    CAS  PubMed  Google Scholar 

  75. Treiman M, Caspersen C, Christensen SB (1998) A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPases. Trends Pharmacol Sci 19(4):131–135

    CAS  PubMed  Google Scholar 

  76. Jackson TR, Patterson SI, Thastrup O, Hanley MR (1988) A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115-401L neuronal cells. Biochem J 253(1):81–86

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bose DD, Rahimian R, Thomas DW (2005) Activation of ryanodine receptors induces calcium influx in a neuroblastoma cell line lacking calcium influx factor activity. Biochem J 386(Pt 2):291–296. https://doi.org/10.1042/BJ20040900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thomas D, Hanley MR (1995) Evaluation of calcium influx factors from stimulated Jurkat T-lymphocytes by microinjection into Xenopus oocytes. J Biol Chem 270(12):6429–6432

    CAS  PubMed  Google Scholar 

  79. Csutora P, Peter K, Kilic H, Park KM, Zarayskiy V, Gwozdz T, Bolotina VM (2008) Novel role for STIM1 as a trigger for calcium influx factor production. J Biol Chem 283(21):14524–14531. https://doi.org/10.1074/jbc.M709575200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Koizumi S, Inoue K (1998) Functional coupling of secretion and capacitative calcium entry in PC12 cells. Biochem Biophys Res Commun 247(2):293–298

    CAS  PubMed  Google Scholar 

  81. Ichikawa J, Fukuda Y, Yamashita M (1998) In vitro changes in capacitative Ca2+ entry in neuroblastoma X glioma NG108-15 cells. Neurosci Lett 246(2):120–122

    CAS  PubMed  Google Scholar 

  82. Fatatis A, Bassi A, Monsurro MR, Sorrentino G, Mita GD, Di Renzo GF, Annunziato L (1992) LAN-1: a human neuroblastoma cell line with M1 and M3 muscarinic receptor subtypes coupled to intracellular Ca2+ elevation and lacking Ca2+ channels activated by membrane depolarization. J Neurochem 59(1):1–9. https://doi.org/10.1111/j.1471-4159.1992.tb08868.x

    Article  CAS  PubMed  Google Scholar 

  83. Lo TM, Thayer SA (1993) Refilling the inositol 1,4,5-trisphosphate-sensitive Ca2+ store in neuroblastoma x glioma hybrid NG108-15 cells. Am J Physiol 264(3 Pt 1):C641–C653. https://doi.org/10.1152/ajpcell.1993.264.3.C641

    Article  CAS  PubMed  Google Scholar 

  84. Bennett DL, Bootman MD, Berridge MJ, Cheek TR (1998) Ca2+ entry into PC12 cells initiated by ryanodine receptors or inositol 1,4,5-trisphosphate receptors. Biochem J 329(Pt 2):349–357

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mathes C, Thompson SH (1994) Calcium current activated by muscarinic receptors and thapsigargin in neuronal cells. J Gen Physiol 104(1):107–121

    CAS  PubMed  Google Scholar 

  86. Razani-Boroujerdi S, Partridge LD, Sopori ML (1994) Intracellular calcium signaling induced by thapsigargin in excitable and inexcitable cells. Cell Calcium 16(6):467–474

    CAS  PubMed  Google Scholar 

  87. Garaschuk O, Yaari Y, Konnerth A (1997) Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J Physiol 502(Pt 1):13–30

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sakaki Y, Sugioka M, Fukuda Y, Yamashita M (1997) Capacitative Ca2+ influx in the neural retina of chick embryo. J Neurobiol 32(1):62–68

    CAS  PubMed  Google Scholar 

  89. Sugioka M, Yamashita M (2003) Calcium signaling to nucleus via store-operated system during cell cycle in retinal neuroepithelium. Neurosci Res 45(4):447–458

    CAS  PubMed  Google Scholar 

  90. Bouron A (2000) Activation of a capacitative Ca(2+) entry pathway by store depletion in cultured hippocampal neurones. FEBS Lett 470(3):269–272

    CAS  PubMed  Google Scholar 

  91. Scholz WK, Palfrey HC (1998) Activation of Ca2+/calmodulin-dependent protein kinase II by extracellular calcium in cultured hippocampal pyramidal neurons. J Neurochem 71(2):580–591

    CAS  PubMed  Google Scholar 

  92. Emptage NJ, Reid CA, Fine A (2001) Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 29(1):197–208

    CAS  PubMed  Google Scholar 

  93. Zufall F, Leinders-Zufall T, Greer CA (2000) Amplification of odor-induced Ca(2+) transients by store-operated Ca(2+) release and its role in olfactory signal transduction. J Neurophysiol 83(1):501–512

    CAS  PubMed  Google Scholar 

  94. Prothero LS, Mathie A, Richards CD (2000) Purinergic and muscarinic receptor activation activates a common calcium entry pathway in rat neocortical neurons and glial cells. Neuropharmacology 39(10):1768–1778

    CAS  PubMed  Google Scholar 

  95. Arakawa N, Sakaue M, Yokoyama I, Hashimoto H, Koyama Y, Baba A, Matsuda T (2000) KB-R7943 inhibits store-operated Ca(2+) entry in cultured neurons and astrocytes. Biochem Biophys Res Commun 279(2):354–357

    CAS  PubMed  Google Scholar 

  96. Yoo AS, Cheng I, Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G, Saunders AJ, Ding K, Frosch MP, Tanzi RE, Kim TW (2000) Presenilin-mediated modulation of capacitative calcium entry. Neuron 27(3):561–572

    CAS  PubMed  Google Scholar 

  97. Weber JT, Rzigalinski BA, Ellis EF (2001) Traumatic injury of cortical neurons causes changes in intracellular calcium stores and capacitative calcium influx. J Biol Chem 276(3):1800–1807

    CAS  PubMed  Google Scholar 

  98. Inglefield JR, Mundy WR, Shafer TJ (2001) Inositol 1,4,5-triphosphate receptor-sensitive Ca(2+) release, store-operated Ca(2+) entry, and cAMP responsive element binding protein phosphorylation in developing cortical cells following exposure to polychlorinated biphenyls. J Pharmacol Exp Ther 297(2):762–773

    CAS  PubMed  Google Scholar 

  99. Grimaldi M, Atzori M, Ray P, Alkon DL (2001) Mobilization of calcium from intracellular stores, potentiation of neurotransmitter-induced calcium transients, and capacitative calcium entry by 4-aminopyridine. J Neurosci 21(9):3135–3143

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Usachev YM, Thayer SA (1999) Ca2+ influx in resting rat sensory neurones that regulates and is regulated by ryanodine-sensitive Ca2+ stores. J Physiol 519(Pt 1):115–130

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bleakman D, Roback JD, Wainer BH, Miller RJ, Harrison NL (1993) Calcium homeostasis in rat septal neurons in tissue culture. Brain Res 600(2):257–267

    CAS  PubMed  Google Scholar 

  102. Pinilla PJ, Hernandez AT, Camello MC, Pozo MJ, Toescu EC, Camello PJ (2005) Non-stimulated Ca2+ leak pathway in cerebellar granule neurones. Biochem Pharmacol 70(5):786–793. https://doi.org/10.1016/j.bcp.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  103. Szikra T, Cusato K, Thoreson WB, Barabas P, Bartoletti TM, Krizaj D (2008) Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors. J Physiol 586(20):4859–4875. https://doi.org/10.1113/jphysiol.2008.160051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Park CY, Shcheglovitov A, Dolmetsch R (2010) The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science 330(6000):101–105. https://doi.org/10.1126/science.1191027

    Article  CAS  PubMed  Google Scholar 

  105. Shmigol A, Kirischuk S, Kostyuk P, Verkhratsky A (1994) Different properties of caffeine-sensitive Ca2+ stores in peripheral and central mammalian neurones. Pflugers Arch 426(1-2):174–176

    CAS  PubMed  Google Scholar 

  106. Pozzo Miller LD, Petrozzino JJ, Golarai G, Connor JA (1996) Ca2+ release from intracellular stores induced by afferent stimulation of CA3 pyramidal neurons in hippocampal slices. J Neurophysiol 76(1):554–562. https://doi.org/10.1152/jn.1996.76.1.554

    Article  CAS  PubMed  Google Scholar 

  107. Ross WN (2012) Understanding calcium waves and sparks in central neurons. Nat Rev Neurosci 13(3):157–168. https://doi.org/10.1038/nrn3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Borges S, Lindstrom S, Walters C, Warrier A, Wilson M (2008) Discrete influx events refill depleted Ca2+ stores in a chick retinal neuron. J Physiol 586(2):605–626. https://doi.org/10.1113/jphysiol.2007.143339

    Article  CAS  PubMed  Google Scholar 

  109. Lalonde J, Saia G, Gill G (2014) Store-operated calcium entry promotes the degradation of the transcription factor Sp4 in resting neurons. Sci Signal 7(328):ra51. https://doi.org/10.1126/scisignal.2005242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Samtleben S, Wachter B, Blum R (2015) Store-operated calcium entry compensates fast ER calcium loss in resting hippocampal neurons. Cell Calcium 58(2):147–159. https://doi.org/10.1016/j.ceca.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  111. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    CAS  PubMed  Google Scholar 

  114. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443(7108):226–229. https://doi.org/10.1038/nature05108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ong HL, de Souza LB, Ambudkar IS (2016) Role of TRPC channels in store-operated calcium entry. Adv Exp Med Biol 898:87–109. https://doi.org/10.1007/978-3-319-26974-0_5

    Article  CAS  PubMed  Google Scholar 

  117. Zhang H, Sun S, Wu L, Pchitskaya E, Zakharova O, Fon Tacer K, Bezprozvanny I (2016) Store-operated calcium channel complex in postsynaptic spines: a new therapeutic target for Alzheimer's disease treatment. J Neurosci 36(47):11837–11850. https://doi.org/10.1523/JNEUROSCI.1188-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, Eid JP, Senior PV, Kazenwadel JS, Shandala T, Saint R, Smith PJ, Dziadek MA (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357(Pt 3):673–685

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Thompson MA, Pabelick CM, Prakash YS (2009) Role of STIM1 in regulation of store-operated Ca2+ influx in pheochromocytoma cells. Cell Mol Neurobiol 29(2):193–202. https://doi.org/10.1007/s10571-008-9311-0

    Article  CAS  PubMed  Google Scholar 

  120. Li J, Yan B, Si H, Peng X, Zhang SL, Hu J (2017) Atlastin regulates store-operated calcium entry for nerve growth factor-induced neurite outgrowth. Scientific reports 7:43490. https://doi.org/10.1038/srep43490

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ramesh G, Jarzembowski L, Schwarz Y, Poth V, Konrad M, Knapp ML, Schwar G, Lauer AA, Grimm MOW, Alansary D, Bruns D, Niemeyer BA (2021) A short isoform of STIM1 confers frequency-dependent synaptic enhancement. Cell Rep 34(11):108844. https://doi.org/10.1016/j.celrep.2021.108844

    Article  CAS  PubMed  Google Scholar 

  122. Chen Z, Pan S, Yin K, Zhang Y, Yuan X, Wang S, Yang S, Shen Q, Tang Y, Li J, Wang Y, Lu Y, Zhang G (2021) Deficiency of ER Ca(2+) sensor STIM1 in AgRP neurons confers protection against dietary obesity. Cell Rep 37(3):109868. https://doi.org/10.1016/j.celrep.2021.109868

    Article  CAS  PubMed  Google Scholar 

  123. Vigont V, Kolobkova Y, Skopin A, Zimina O, Zenin V, Glushankova L, Kaznacheyeva E (2015) Both Orai1 and TRPC1 are involved in excessive store-operated calcium entry in striatal neurons expressing mutant Huntingtin exon 1. Front Physiol 6:337. https://doi.org/10.3389/fphys.2015.00337

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ryazantseva M, Skobeleva K, Glushankova L, Kaznacheyeva E (2016) Attenuated presenilin-1 endoproteolysis enhances store-operated calcium currents in neuronal cells. J Neurochem 136(5):1085–1095. https://doi.org/10.1111/jnc.13495

    Article  CAS  PubMed  Google Scholar 

  125. Henke N, Albrecht P, Bouchachia I, Ryazantseva M, Knoll K, Lewerenz J, Kaznacheyeva E, Maher P, Methner A (2013) The plasma membrane channel ORAI1 mediates detrimental calcium influx caused by endogenous oxidative stress. Cell Death Dis 4:e470. https://doi.org/10.1038/cddis.2012.216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rao W, Peng C, Zhang L, Su N, Wang K, Hui H, Dai SH, Yang YF, Luo P, Fei Z (2016) Homer1a attenuates glutamate-induced oxidative injury in HT-22 cells through regulation of store-operated calcium entry. Scientific rep 6:33975. https://doi.org/10.1038/srep33975

    Article  CAS  Google Scholar 

  127. Shim S, Zheng JQ, Ming GL (2013) A critical role for STIM1 in filopodial calcium entry and axon guidance. Mol brain 6:51. https://doi.org/10.1186/1756-6606-6-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pavez M, Thompson AC, Arnott HJ, Mitchell CB, D'Atri I, Don EK, Chilton JK, Scott EK, Lin JY, Young KM, Gasperini RJ, Foa L (2019) STIM1 is required for remodeling of the endoplasmic reticulum and microtubule cytoskeleton in steering growth cones. J Neurosci 39(26):5095–5114. https://doi.org/10.1523/JNEUROSCI.2496-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wasilewska I, Gupta RK, Palchevska O, Kuznicki J (2019) Identification of Zebrafish calcium toolkit genes and their expression in the brain. Genes 10(3). https://doi.org/10.3390/genes10030230

  130. Banerjee S, Lee J, Venkatesh K, Wu CF, Hasan G (2004) Loss of flight and associated neuronal rhythmicity in inositol 1,4,5-trisphosphate receptor mutants of Drosophila. J Neurosci 24(36):7869–7878. https://doi.org/10.1523/JNEUROSCI.0656-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Moccia F, Zuccolo E, Soda T, Tanzi F, Guerra G, Mapelli L, Lodola F, D'Angelo E (2015) Stim and Orai proteins in neuronal Ca(2+) signaling and excitability. Front Cell Neurosci 9:153. https://doi.org/10.3389/fncel.2015.00153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kraft R (2015) STIM and ORAI proteins in the nervous system. Channels (Austin) 9(5):245–252. https://doi.org/10.1080/19336950.2015.1071747

    Article  PubMed  Google Scholar 

  133. Klejman ME, Gruszczynska-Biegala J, Skibinska-Kijek A, Wisniewska MB, Misztal K, Blazejczyk M, Bojarski L, Kuznicki J (2009) Expression of STIM1 in brain and puncta-like co-localization of STIM1 and ORAI1 upon depletion of Ca(2+) store in neurons. Neurochem Int 54(1):49–55. https://doi.org/10.1016/j.neuint.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  134. Skibinska-Kijek A, Wisniewska MB, Gruszczynska-Biegala J, Methner A, Kuznicki J (2009) Immunolocalization of STIM1 in the mouse brain. Acta Neurobiol Exp 69(4):413–428

    Google Scholar 

  135. Berna-Erro A, Braun A, Kraft R, Kleinschnitz C, Schuhmann MK, Stegner D, Wultsch T, Eilers J, Meuth SG, Stoll G, Nieswandt B (2009) STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. Sci Signal 2(93):ra67

    PubMed  Google Scholar 

  136. Steinbeck JA, Henke N, Opatz J, Gruszczynska-Biegala J, Schneider L, Theiss S, Hamacher N, Steinfarz B, Golz S, Brustle O, Kuznicki J, Methner A (2011) Store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy. Exp Neurol 232(2):185–194. https://doi.org/10.1016/j.expneurol.2011.08.022

    Article  CAS  PubMed  Google Scholar 

  137. Gruszczynska-Biegala J, Pomorski P, Wisniewska MB, Kuznicki J (2011) Differential roles for STIM1 and STIM2 in store-operated calcium entry in rat neurons. PLoS One 6(4):e19285. https://doi.org/10.1371/journal.pone.0019285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chauvet S, Jarvis L, Chevallet M, Shrestha N, Groschner K, Bouron A (2016) Pharmacological characterization of the native store-operated calcium channels of cortical neurons from embryonic mouse brain. Front in Pharm 7:486. https://doi.org/10.3389/fphar.2016.00486

    Article  CAS  Google Scholar 

  139. Secondo A, Petrozziello T, Tedeschi V, Boscia F, Vinciguerra A, Ciccone R, Pannaccione A, Molinaro P, Pignataro G, Annunziato L (2019) ORAI1/STIM1 interaction intervenes in stroke and in neuroprotection induced by ischemic preconditioning through store-operated calcium entry. Stroke 50(5):1240–1249. https://doi.org/10.1161/STROKEAHA.118.024115

    Article  CAS  PubMed  Google Scholar 

  140. Wu J, Ryskamp DA, Liang X, Egorova P, Zakharova O, Hung G, Bezprozvanny I (2016) Enhanced store-operated calcium entry leads to striatal synaptic loss in a Huntington's disease mouse model. J Neurosci 36(1):125–141. https://doi.org/10.1523/JNEUROSCI.1038-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Garcia-Alvarez G, Lu B, Yap KA, Wong LC, Thevathasan JV, Lim L, Ji F, Tan KW, Mancuso JJ, Tang W, Poon SY, Augustine GJ, Fivaz M (2015) STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs. Mol Biol Cell 26(6):1141–1159. https://doi.org/10.1091/mbc.E14-07-1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gasperini R, Choi-Lundberg D, Thompson MJ, Mitchell CB, Foa L (2009) Homer regulates calcium signalling in growth cone turning. Neural dev 4:29. https://doi.org/10.1186/1749-8104-4-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gemes G, Bangaru ML, Wu HE, Tang Q, Weihrauch D, Koopmeiners AS, Cruikshank JM, Kwok WM, Hogan QH (2011) Store-operated Ca2+ entry in sensory neurons: functional role and the effect of painful nerve injury. J Neurosci 31(10):3536–3549. https://doi.org/10.1523/JNEUROSCI.5053-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wei D, Mei Y, Xia J, Hu H (2017) Orai1 and Orai3 mediate store-operated calcium entry contributing to neuronal excitability in dorsal root ganglion neurons. Front Cell Neurosci 11:400. https://doi.org/10.3389/fncel.2017.00400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dou Y, Xia J, Gao R, Gao X, Munoz FM, Wei D, Tian Y, Barrett JE, Ajit S, Meucci O, Putney JW Jr, Dai Y, Hu H (2018) Orai1 plays a crucial role in central sensitization by modulating neuronal excitability. J Neurosci 38(4):887–900. https://doi.org/10.1523/JNEUROSCI.3007-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xia J, Pan R, Gao X, Meucci O, Hu H (2014) Native store-operated calcium channels are functionally expressed in mouse spinal cord dorsal horn neurons and regulate resting calcium homeostasis. J Physiol 592(16):3443–3461. https://doi.org/10.1113/jphysiol.2014.275065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pascual-Caro C, Berrocal M, Lopez-Guerrero AM, Alvarez-Barrientos A, Pozo-Guisado E, Gutierrez-Merino C, Mata AM, Martin-Romero FJ (2018) STIM1 deficiency is linked to Alzheimer's disease and triggers cell death in SH-SY5Y cells by upregulation of L-type voltage-operated Ca(2+) entry. J Mol Med 96(10):1061–1079. https://doi.org/10.1007/s00109-018-1677-y

    Article  CAS  PubMed  Google Scholar 

  148. Dziadek MA, Johnstone LS (2007) Biochemical properties and cellular localisation of STIM proteins. Cell Calcium 42(2):123–132

    CAS  PubMed  Google Scholar 

  149. Keil JM, Shen Z, Briggs SP, Patrick GN (2010) Regulation of STIM1 and SOCE by the ubiquitin-proteasome system (UPS). PLoS One 5(10):e13465. https://doi.org/10.1371/journal.pone.0013465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. de Juan-Sanz J, Holt GT, Schreiter ER, de Juan F, Kim DS, Ryan TA (2017) Axonal endoplasmic reticulum Ca(2+) content controls release probability in CNS nerve terminals. Neuron 93(4):867–881 e866. https://doi.org/10.1016/j.neuron.2017.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pchitskaya E, Kraskovskaya N, Chernyuk D, Popugaeva E, Zhang H, Vlasova O, Bezprozvanny I (2017) Stim2-Eb3 association and morphology of dendritic spines in hippocampal neurons. Sci rep 7(1):17625. https://doi.org/10.1038/s41598-017-17762-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131(7):1327–1339. https://doi.org/10.1016/j.cell.2007.11.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-hora M, Neems DS, Hogan PG, Rao A (2007) Biochemical and functional characterization of Orai proteins. J Biol Chem 282(22):16232–16243. https://doi.org/10.1074/jbc.M609630200

    Article  CAS  PubMed  Google Scholar 

  154. Wissenbach U, Philipp SE, Gross SA, Cavalie A, Flockerzi V (2007) Primary structure, chromosomal localization and expression in immune cells of the murine ORAI and STIM genes. Cell Calcium 42(4-5):439–446. https://doi.org/10.1016/j.ceca.2007.05.014

    Article  CAS  PubMed  Google Scholar 

  155. Gross SA, Wissenbach U, Philipp SE, Freichel M, Cavalie A, Flockerzi V (2007) Murine ORAI2 splice variants form functional Ca2+ release-activated Ca2+ (CRAC) channels. J Biol Chem 282(27):19375–19384. https://doi.org/10.1074/jbc.M701962200

    Article  CAS  PubMed  Google Scholar 

  156. Stegner D, Hofmann S, Schuhmann MK, Kraft P, Herrmann AM, Popp S, Hohn M, Popp M, Klaus V, Post A, Kleinschnitz C, Braun A, Meuth SG, Lesch KP, Stoll G, Kraft R, Nieswandt B (2019) Loss of Orai2-mediated capacitative Ca(2+) entry is neuroprotective in acute ischemic stroke. Stroke 50(11):3238–3245. https://doi.org/10.1161/STROKEAHA.119.025357

    Article  CAS  PubMed  Google Scholar 

  157. Tsvilovskyy V, Solis-Lopez A, Schumacher D, Medert R, Roers A, Kriebs U, Freichel M (2018) Deletion of Orai2 augments endogenous CRAC currents and degranulation in mast cells leading to enhanced anaphylaxis. Cell Calcium 71:24–33. https://doi.org/10.1016/j.ceca.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  158. Guzman R, Valente EG, Pretorius J, Pacheco E, Qi M, Bennett BD, Fong DH, Lin FF, Bi V, McBride HJ (2014) Expression of ORAII, a plasma membrane resident subunit of the CRAC channel, in rodent and non-rodent species. J Histochem Cytochem 62(12):864–878. https://doi.org/10.1369/0022155414554926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Maciag F, Majewski L, Boguszewski PM, Gupta RK, Wasilewska I, Wojtas B, Kuznicki J (2019) Behavioral and electrophysiological changes in female mice overexpressing ORAI1 in neurons. Biochim Biophys Acta - Mol Cell Res 1866(7):1137–1150. https://doi.org/10.1016/j.bbamcr.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  160. Gruszczynska-Biegala J, Kuznicki J (2013) Native STIM2 and ORAI1 proteins form a calcium-sensitive and thapsigargin-insensitive complex in cortical neurons. J Neurochem 126(6):727–738. https://doi.org/10.1111/jnc.12320

    Article  CAS  PubMed  Google Scholar 

  161. Zhou Z, Mao M, Cai X, Zhu W, Sun J (2021) Store-operated calcium channels contribute to Remifentanil-induced postoperative hyperalgesia via phosphorylation of CaMKIIalpha in rats. J of pain res 14:3289–3299. https://doi.org/10.2147/JPR.S333297

    Article  CAS  Google Scholar 

  162. Shuttleworth TJ, Thompson JL, Mignen O (2007) STIM1 and the noncapacitative ARC channels. Cell Calcium 42(2):183–191

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Shuttleworth TJ (2012) STIM and Orai proteins and the non-capacitative ARC channels. Front Biosci (Landmark Ed) 17(3):847–860. https://doi.org/10.2741/3960

    Article  CAS  PubMed  Google Scholar 

  164. Venkiteswaran G, Hasan G (2009) Intracellular Ca2+ signaling and store-operated Ca2+ entry are required in Drosophila neurons for flight. Proc Natl Acad Sci U S A 106(25):10326–10331. https://doi.org/10.1073/pnas.0902982106

    Article  PubMed  PubMed Central  Google Scholar 

  165. Hui L, Geiger NH, Bloor-Young D, Churchill GC, Geiger JD, Chen X (2015) Release of calcium from endolysosomes increases calcium influx through N-type calcium channels: evidence for acidic store-operated calcium entry in neurons. Cell Calcium 58(6):617–627. https://doi.org/10.1016/j.ceca.2015.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tedeschi V, Sisalli MJ, Pannaccione A, Piccialli I, Molinaro P, Annunziato L, Secondo A (2022) Na(+)/Ca(2+) exchanger isoform 1 (NCX1) and canonical transient receptor potential channel 6 (TRPC6) are recruited by STIM1 to mediate store-operated calcium entry in primary cortical neurons. Cell Calcium 101:102525. https://doi.org/10.1016/j.ceca.2021.102525

    Article  CAS  PubMed  Google Scholar 

  167. Dhanya SK, Hasan G (2021) Purkinje neurons with loss of STIM1 exhibit age-dependent changes in gene expression and synaptic components. J Neurosci 41(17):3777–3798. https://doi.org/10.1523/JNEUROSCI.2401-20.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kyung T, Lee S, Kim JE, Cho T, Park H, Jeong YM, Kim D, Shin A, Kim S, Baek J, Kim J, Kim NY, Woo D, Chae S, Kim CH, Shin HS, Han YM, Kim D, Heo WD (2015) Optogenetic control of endogenous Ca(2+) channels in vivo. Nature biotech 33(10):1092–1096. https://doi.org/10.1038/nbt.3350

    Article  CAS  Google Scholar 

  169. Zhou J, Song J, Wu S (2019) Autophagic degradation of stromal interaction molecule 2 mediates disruption of neuronal dendrites by endoplasmic reticulum stress. J Neurochem 151(3):351–369. https://doi.org/10.1111/jnc.14712

    Article  CAS  PubMed  Google Scholar 

  170. Rao W, Zhang L, Peng C, Hui H, Wang K, Su N, Wang L, Dai SH, Yang YF, Chen T, Luo P, Fei Z (2015) Downregulation of STIM2 improves neuronal survival after traumatic brain injury by alleviating calcium overload and mitochondrial dysfunction. Biochim Biophys Acta 1852(11):2402–2413. https://doi.org/10.1016/j.bbadis.2015.08.014

    Article  CAS  PubMed  Google Scholar 

  171. Mitchell CB, Gasperini RJ, Small DH, Foa L (2012) STIM1 is necessary for store-operated calcium entry in turning growth cones. J Neurochem 122(6):1155–1166. https://doi.org/10.1111/j.1471-4159.2012.07840.x

    Article  CAS  PubMed  Google Scholar 

  172. Ryazantseva M, Goncharova A, Skobeleva K, Erokhin M, Methner A, Georgiev P, Kaznacheyeva E (2018) Presenilin-1 delta E9 mutant induces STIM1-driven store-operated calcium channel hyperactivation in hippocampal neurons. Mol Neurobiol 55(6):4667–4680. https://doi.org/10.1007/s12035-017-0674-4

    Article  CAS  PubMed  Google Scholar 

  173. Kushnireva L, Korkotian E, Segal M (2020) Calcium sensors STIM1 and STIM2 regulate different calcium functions in cultured hippocampal neurons. Front Synaptic Neurosci 12:573714. https://doi.org/10.3389/fnsyn.2020.573714

    Article  CAS  PubMed  Google Scholar 

  174. Hooper R, Samakai E, Kedra J, Soboloff J (2013) Multifaceted roles of STIM proteins. Pflugers Arch 465(10):1383–1396. https://doi.org/10.1007/s00424-013-1270-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Poth V, Knapp ML, Niemeyer BA (2020) STIM proteins at the intersection of signaling pathways. Current opinion in physiology 17:63–73. https://doi.org/10.1016/j.cophys.2020.07.007

    Article  Google Scholar 

  176. Bouron A (2022) Store-operated ion channels: A growing family ? Cell Calcium 107:102657. https://doi.org/10.1016/j.ceca.2022.102657

    Article  CAS  PubMed  Google Scholar 

  177. Dittmer PJ, Wild AR, Dell'Acqua ML, Sather WA (2017) STIM1 Ca(2+) sensor control of L-type Ca(2+)-channel-dependent dendritic spine structural plasticity and nuclear signaling. Cell Rep 19(2):321–334. https://doi.org/10.1016/j.celrep.2017.03.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Krapivinsky G, Krapivinsky L, Stotz SC, Manasian Y, Clapham DE (2011) POST, partner of stromal interaction molecule 1 (STIM1), targets STIM1 to multiple transporters. Proc Natl Acad Sci U S A 108(48):19234–19239. https://doi.org/10.1073/pnas.1117231108

    Article  PubMed  PubMed Central  Google Scholar 

  179. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8(9):1003–1010

    CAS  PubMed  Google Scholar 

  180. Worley PF, Zeng W, Huang GN, Yuan JP, Kim JY, Lee MG, Muallem S (2007) TRPC channels as STIM1-regulated store-operated channels. Cell Calcium 42(2):205–211. https://doi.org/10.1016/j.ceca.2007.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Choi S, Maleth J, Jha A, Lee KP, Kim MS, So I, Ahuja M, Muallem S (2014) The TRPCs-STIM1-Orai interaction. Handb Exp Pharmacol 223:1035–1054. https://doi.org/10.1007/978-3-319-05161-1_13

    Article  CAS  PubMed  Google Scholar 

  182. Patil CS, Li H, Lavine NE, Shi R, Bodalia A, Siddiqui TJ, Jackson MF (2022) ER-resident STIM1/2 couples Ca(2+) entry by NMDA receptors to pannexin-1 activation. Proc Natl Acad Sci U S A 119(36):e2112870119. https://doi.org/10.1073/pnas.2112870119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Garcia-Alvarez G, Shetty MS, Lu B, Yap KA, Oh-Hora M, Sajikumar S, Bichler Z, Fivaz M (2015) Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes. Front Behav Neurosci 9:180. https://doi.org/10.3389/fnbeh.2015.00180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Gruszczynska-Biegala J, Sladowska M, Kuznicki J (2016) AMPA receptors are involved in store-operated calcium entry and interact with STIM proteins in rat primary cortical neurons. Front Cell Neurosci 10:251. https://doi.org/10.3389/fncel.2016.00251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Liu X, Wang H, Jiang Y, Zheng Q, Petrus M, Zhang M, Zheng S, Schmedt C, Dong X, Xiao B (2019) STIM1 thermosensitivity defines the optimal preference temperature for warm sensation in mice. Cell res 29(2):95–109. https://doi.org/10.1038/s41422-018-0129-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Buijs TJ, Vilar B, Tan CH, McNaughton PA (2022) STIM1 and ORAI1 form a novel cold transduction mechanism in sensory and sympathetic neurons. EMBO J 42:e111348. https://doi.org/10.15252/embj.2022111348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Deb BK, Pathak T, Hasan G (2016) Store-independent modulation of Ca(2+) entry through Orai by Septin 7. Nat Commun 7:11751. https://doi.org/10.1038/ncomms11751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wu J, Ryskamp D, Birnbaumer L, Bezprozvanny I (2018) Inhibition of TRPC1-dependent store-operated calcium entry improves synaptic stability and motor performance in a mouse model of Huntington's disease. J Huntington's Dis 7(1):35–50. https://doi.org/10.3233/JHD-170266

    Article  CAS  Google Scholar 

  189. Tshuva RY, Korkotian E, Segal M (2017) ORAI1-dependent synaptic plasticity in rat hippocampal neurons. Neurobiol Learn Mem 140:1–10. https://doi.org/10.1016/j.nlm.2016.12.024

    Article  CAS  PubMed  Google Scholar 

  190. Majewski L, Wojtas B, Maciag F, Kuznicki J (2019) Changes in calcium homeostasis and gene expression implicated in epilepsy in hippocampi of mice overexpressing ORAI1. Int J Mol Sci 20:22. https://doi.org/10.3390/ijms20225539

    Article  CAS  Google Scholar 

  191. Majewski L, Maciag F, Boguszewski PM, Kuznicki J (2020) Transgenic mice overexpressing human STIM2 and ORAI1 in neurons exhibit changes in behavior and calcium homeostasis but show no signs of neurodegeneration. Int J Mol Sci 21:3. https://doi.org/10.3390/ijms21030842

    Article  CAS  Google Scholar 

  192. Hartmann J, Chen-Engerer HJ, Konnerth A (2021) Where have all the Orais gone? Commentary on "Orai1 channels are essential for amplification of glutamate-evoked Ca(2+) signals in dendritic spines to regulate working and associative memory". Cell Calcium 96:102372. https://doi.org/10.1016/j.ceca.2021.102372

    Article  CAS  PubMed  Google Scholar 

  193. Prakriya M (2021) Orai1 is in neurons: reply to "where have all the Orais gone?". Cell Calcium 96:102389. https://doi.org/10.1016/j.ceca.2021.102389

    Article  CAS  PubMed  Google Scholar 

  194. Tiscione SA, Vivas O, Ginsburg KS, Bers DM, Ory DS, Santana LF, Dixon RE, Dickson EJ (2019) Disease-associated mutations in Niemann-Pick type C1 alter ER calcium signaling and neuronal plasticity. J Cell Biol 218(12):4141–4156. https://doi.org/10.1083/jcb.201903018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Emrich SM, Yoast RE, Xin P, Arige V, Wagner LE, Hempel N, Gill DL, Sneyd J, Yule DI, Trebak M (2021) Omnitemporal choreographies of all five STIM/Orai and IP3Rs underlie the complexity of mammalian Ca(2+) signaling. Cell Rep 34(9):108760. https://doi.org/10.1016/j.celrep.2021.108760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hooper JS, Hadley SH, Mathews A, Taylor-Clark TE (2013) Store-operated calcium entry in vagal sensory nerves is independent of Orai channels. Brain Res 1503:7–15. https://doi.org/10.1016/j.brainres.2013.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sun Y, Zhang H, Selvaraj S, Sukumaran P, Lei S, Birnbaumer L, Singh BB (2017) Inhibition of L-type Ca(2+) channels by TRPC1-STIM1 complex is essential for the protection of dopaminergic neurons. J Neurosci 37(12):3364–3377. https://doi.org/10.1523/JNEUROSCI.3010-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Selvaraj S, Sun Y, Watt JA, Wang S, Lei S, Birnbaumer L, Singh BB (2012) Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J Clin Invest 122(4):1354–1367. https://doi.org/10.1172/JCI61332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Alkhani H, Ase AR, Grant R, O'Donnell D, Groschner K, Seguela P (2014) Contribution of TRPC3 to store-operated calcium entry and inflammatory transductions in primary nociceptors. Mol Pain 10:43. https://doi.org/10.1186/1744-8069-10-43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Putney JW Jr (2001) Pharmacology of capacitative calcium entry. Mol Interv 1(2):84–94

    CAS  PubMed  Google Scholar 

  201. Sweeney ZK, Minatti A, Button DC, Patrick S (2009) Small-molecule inhibitors of store-operated calcium entry. ChemMedChem 4(5):706–718

    CAS  PubMed  Google Scholar 

  202. Bogeski I, Al-Ansary D, Qu B, Niemeyer BA, Hoth M, Peinelt C (2010) Pharmacology of ORAI channels as a tool to understand their physiological functions. Expert Rev Clin Pharmacol 3(3):291–303. https://doi.org/10.1586/ecp.10.23

    Article  CAS  PubMed  Google Scholar 

  203. Jairaman A, Prakriya M (2013) Molecular pharmacology of store-operated CRAC channels. Channels (Austin) 7(5):402–414. https://doi.org/10.4161/chan.25292

    Article  CAS  PubMed  Google Scholar 

  204. Tian C, Du L, Zhou Y, Li M (2016) Store-operated CRAC channel inhibitors: opportunities and challenges. Future Med Chem 8(7):817–832. https://doi.org/10.4155/fmc-2016-0024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Rahman S, Rahman T (2017) Unveiling some FDA-approved drugs as inhibitors of the store-operated Ca(2+) entry pathway. Sci rep 7(1):12881. https://doi.org/10.1038/s41598-017-13343-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Stauderman KA (2018) CRAC channels as targets for drug discovery and development. Cell Calcium 74:147–159. https://doi.org/10.1016/j.ceca.2018.07.005

    Article  CAS  PubMed  Google Scholar 

  207. Bakowski D, Murray F, Parekh AB (2021) Store-Operated Ca(2+) Channels: mechanism, function, pharmacology, and therapeutic targets. Annu Rev Pharmacol Toxicol 61:629–654. https://doi.org/10.1146/annurev-pharmtox-031620-105135

    Article  CAS  PubMed  Google Scholar 

  208. Kachoei BA, Knox RJ, Uthuza D, Levy S, Kaczmarek LK, Magoski NS (2006) A store-operated Ca(2+) influx pathway in the bag cell neurons of Aplysia. J Neurophysiol 96(5):2688–2698. https://doi.org/10.1152/jn.00118.2006

    Article  CAS  PubMed  Google Scholar 

  209. Piper DR, Lucero MT (1999) Calcium signalling in squid olfactory receptor neurons. Biol signals and recep 8(6):329–337. https://doi.org/10.1159/000014606

    Article  CAS  Google Scholar 

  210. Yeromin AV, Roos J, Stauderman KA, Cahalan MD (2004) A store-operated calcium channel in Drosophila S2 cells. J Gen Physiol 123(2):167–182. https://doi.org/10.1085/jgp.200308982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Ross PE, Cahalan MD (1995) Ca2+ influx pathways mediated by swelling or stores depletion in mouse thymocytes. J Gen Physiol 106(3):415–444

    CAS  PubMed  Google Scholar 

  212. Koss DJ, Riedel G, Bence K, Platt B (2013) Store-operated Ca2+ entry in hippocampal neurons: Regulation by protein tyrosine phosphatase PTP1B. Cell Calcium 53(2):125–138. https://doi.org/10.1016/j.ceca.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  213. Adding LC, Bannenberg GL, Gustafsson LE (2001) Basic experimental studies and clinical aspects of gadolinium salts and chelates. Cardiovasc Drug Rev 19(1):41–56

    CAS  PubMed  Google Scholar 

  214. George SJ, Webb SM, Abraham JL, Cramer SP (2010) Synchrotron X-ray analyses demonstrate phosphate-bound gadolinium in skin in nephrogenic systemic fibrosis. Br J Dermatol 163(5):1077–1081. https://doi.org/10.1111/j.1365-2133.2010.09918.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Rydahl C, Thomsen HS, Marckmann P (2008) High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent. Invest Radiol 43(2):141–144. https://doi.org/10.1097/RLI.0b013e31815a3407

    Article  CAS  PubMed  Google Scholar 

  216. Xia D, Davis RL, Crawford JA, Abraham JL (2010) Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy. Acta Radiol 51(10):1126–1136

    PubMed  Google Scholar 

  217. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275(3):772–782. https://doi.org/10.1148/radiol.15150025

    Article  PubMed  Google Scholar 

  218. Karabulut N (2015) Gadolinium deposition in the brain: another concern regarding gadolinium-based contrast agents. Diagn Interv Radiol 21(4):269–270. https://doi.org/10.5152/dir.2015.001

    Article  PubMed  PubMed Central  Google Scholar 

  219. Merritt JE, Armstrong WP, Benham CD, Hallam TJ, Jacob R, Jaxa-Chamiec A, Leigh BK, McCarthy SA, Moores KE, Rink TJ (1990) SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J 271(2):515–522

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Baba A, Yasui T, Fujisawa S, Yamada RX, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y (2003) Activity-evoked capacitative Ca2+ entry: implications in synaptic plasticity. J Neurosci 23(21):7737–7741

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca(2+) release-activated Ca(2+) channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP(3) receptors. J Physiol 536(Pt 1):3–19

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Tozzi A, Bengtson CP, Longone P, Carignani C, Fusco FR, Bernardi G, Mercuri NB (2003) Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur J Neurosci 18(8):2133–2145

    PubMed  Google Scholar 

  223. Ishikawa J, Ohga K, Yoshino T, Takezawa R, Ichikawa A, Kubota H, Yamada T (2003) A pyrazole derivative, YM-58483, potently inhibits store-operated sustained Ca2+ influx and IL-2 production in T lymphocytes. J Immunol 170(9):4441–4449

    CAS  PubMed  Google Scholar 

  224. Deveci A, Hasna J, Bouron A (2020) Inhibition of store-operated calcium channels by N-arachidonoyl glycine (NAGly): no evidence for the involvement of lipid-sensing G protein coupled receptors. Sci rep 10(1):2649. https://doi.org/10.1038/s41598-020-59565-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Norwood N, Moore TM, Dean DA, Bhattacharjee R, Li M, Stevens T (2000) Store-operated calcium entry and increased endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol 279(5):L815–L824. https://doi.org/10.1152/ajplung.2000.279.5.L815

    Article  CAS  PubMed  Google Scholar 

  226. Tran QK, Watanabe H, Le HY, Pan L, Seto M, Takeuchi K, Ohashi K (2001) Myosin light chain kinase regulates capacitative ca(2+) entry in human monocytes/macrophages. Arterioscler Thromb Vasc Biol 21(4):509–515. https://doi.org/10.1161/01.atv.21.4.509

    Article  CAS  PubMed  Google Scholar 

  227. Watanabe H, Takahashi R, Zhang XX, Kakizawa H, Hayashi H, Ohno R (1996) Inhibition of agonist-induced Ca2+ entry in endothelial cells by myosin light-chain kinase inhibitor. Biochem Biophys Res Commun 225(3):777–784. https://doi.org/10.1006/bbrc.1996.1250

    Article  CAS  PubMed  Google Scholar 

  228. Smyth JT, Dehaven WI, Bird GS, Putney JW Jr (2008) Ca2+-store-dependent and -independent reversal of Stim1 localization and function. J Cell Sci 121(Pt 6):762–772. https://doi.org/10.1242/jcs.023903

    Article  CAS  PubMed  Google Scholar 

  229. Sadaghiani AM, Lee SM, Odegaard JI, Leveson-Gower DB, McPherson OM, Novick P, Kim MR, Koehler AN, Negrin R, Dolmetsch RE, Park CY (2014) Identification of Orai1 channel inhibitors by using minimal functional domains to screen small molecule microarrays. Chem & bio 21(10):1278–1292. https://doi.org/10.1016/j.chembiol.2014.08.016

    Article  CAS  Google Scholar 

  230. Schleifer H, Doleschal B, Lichtenegger M, Oppenrieder R, Derler I, Frischauf I, Glasnov TN, Kappe CO, Romanin C, Groschner K (2012) Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca(2+) entry pathways. Br J Pharmacol 167(8):1712–1722. https://doi.org/10.1111/j.1476-5381.2012.02126.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Derler I, Schindl R, Fritsch R, Heftberger P, Riedl MC, Begg M, House D, Romanin C (2013) The action of selective CRAC channel blockers is affected by the Orai pore geometry. Cell Calcium 53(2):139–151. https://doi.org/10.1016/j.ceca.2012.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Bouron A (2020) Transcriptomic profiling of Ca2+ transport systems during the formation of the cerebral cortex in mice. Cells 9(8). https://doi.org/10.3390/cells9081800

  233. Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y et al (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A 106(13):5400–5405

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Gibon J, Tu P, Bouron A (2010) Store-depletion and hyperforin activate distinct types of Ca(2+)-conducting channels in cortical neurons. Cell Calcium 47(6):538–543

    CAS  PubMed  Google Scholar 

  235. Waldherr L, Tiffner A, Mishra D, Sallinger M, Schober R, Frischauf I, Schmidt T, Handl V, Sagmeister P, Kockinger M, Derler I, Ucal M, Bonhenry D, Patz S, Schindl R (2020) Blockage of store-operated Ca(2+) influx by Synta66 is mediated by direct inhibition of the Ca(2+) selective Orai1 Pore. Cancers 12(10). https://doi.org/10.3390/cancers12102876

  236. Wu KC, Wong KL, Shiao LR, Chen CY, Chan P, Leung YM (2021) Perturbation of Ca(2+) stores and store-operated Ca(2+) influx by lidocaine in neuronal N2A and NG108-15cells. Eur J Pharmacol 904:174115. https://doi.org/10.1016/j.ejphar.2021.174115

    Article  CAS  PubMed  Google Scholar 

  237. Tobin V, Gouty LA, Moos FC, Desarmenien MG (2006) A store-operated current (SOC) mediates oxytocin autocontrol in the developing rat hypothalamus. Eur J Neurosci 24(2):400–404

    PubMed  Google Scholar 

  238. Choi S, Kim JH, Roh EJ, Ko MJ, Jung JE, Kim HJ (2006) Nuclear factor-kappaB activated by capacitative Ca2+ entry enhances muscarinic receptor-mediated soluble amyloid precursor protein (sAPPalpha) release in SH-SY5Y cells. J Biol Chem 281(18):12722–12728. https://doi.org/10.1074/jbc.M601018200

    Article  CAS  PubMed  Google Scholar 

  239. Crouzin N, de Jesus Ferreira MC, Cohen-Solal C, Aimar RF, Vignes M, Guiramand J (2007) Alpha-tocopherol-mediated long-lasting protection against oxidative damage involves an attenuation of calcium entry through TRP-like channels in cultured hippocampal neurons. Free Radic Biol Med 42(9):1326–1337. https://doi.org/10.1016/j.freeradbiomed.2007.01.032

    Article  CAS  PubMed  Google Scholar 

  240. Wu J, Shih HP, Vigont V, Hrdlicka L, Diggins L, Singh C, Mahoney M, Chesworth R, Shapiro G, Zimina O, Chen X, Wu Q, Glushankova L, Ahlijanian M, Koenig G, Mozhayeva GN, Kaznacheyeva E, Bezprozvanny I (2011) Neuronal store-operated calcium entry pathway as a novel therapeutic target for Huntington's disease treatment. Chem & bio 18(6):777–793. https://doi.org/10.1016/j.chembiol.2011.04.012

    Article  CAS  Google Scholar 

  241. Boisseau S, Kunert-Keil C, Lucke S, Bouron A (2009) Heterogeneous distribution of TRPC proteins in the embryonic cortex. Histochem Cell Biol 131(3):355–363

    CAS  PubMed  Google Scholar 

  242. Weigl LG, Hohenegger M, Kress HG (2000) Dihydropyridine-induced Ca2+ release from ryanodine-sensitive Ca2+ pools in human skeletal muscle cells. J Physiol 525(Pt 2):461–469. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00461.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Valencia L, Bidet M, Martial S, Sanchez E, Melendez E, Tauc M, Poujeol C, Martin D, Namorado MD, Reyes JL, Poujeol P (2001) Nifedipine-activated Ca(2+) permeability in newborn rat cortical collecting duct cells in primary culture. Am J Physiol Cell Physiol 280(5):C1193–C1203. https://doi.org/10.1152/ajpcell.2001.280.5.C1193

    Article  CAS  PubMed  Google Scholar 

  244. Johnson MT, Gudlur A, Zhang X, Xin P, Emrich SM, Yoast RE, Courjaret R, Nwokonko RM, Li W, Hempel N, Machaca K, Gill DL, Hogan PG, Trebak M (2020) L-type Ca(2+) channel blockers promote vascular remodeling through activation of STIM proteins. Proc Natl Acad Sci U S A 117(29):17369–17380. https://doi.org/10.1073/pnas.2007598117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Liu Z, Wei Y, Zhang L, Yee PP, Johnson M, Zhang X, Gulley M, Atkinson JM, Trebak M, Wang HG, Li W (2019) Induction of store-operated calcium entry (SOCE) suppresses glioblastoma growth by inhibiting the Hippo pathway transcriptional coactivators YAP/TAZ. Oncogene 38(1):120–139. https://doi.org/10.1038/s41388-018-0425-7

    Article  CAS  PubMed  Google Scholar 

  246. Li P, Rubaiy HN, Chen GL, Hallett T, Zaibi N, Zeng B, Saurabh R, Xu SZ (2019) Mibefradil, a T-type Ca(2+) channel blocker also blocks Orai channels by action at the extracellular surface. Br J Pharmacol 176(19):3845–3856. https://doi.org/10.1111/bph.14788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Baraniak JH Jr, Zhou Y, Nwokonko RM, Jennette MR, Kazzaz SA, Stenson JM, Whitsell AL, Wang Y, Trebak M, Gill DL (2021) Orai channel C-terminal peptides are key modulators of STIM-Orai coupling and calcium signal generation. Cell Rep 35(13):109322. https://doi.org/10.1016/j.celrep.2021.109322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Azimi I, Stevenson RJ, Zhang X, Meizoso-Huesca A, Xin P, Johnson M, Flanagan JU, Chalmers SB, Yoast RE, Kapure JS, Ross BP, Vetter I, Ashton MR, Launikonis BS, Denny WA, Trebak M, Monteith GR (2020) A new selective pharmacological enhancer of the Orai1 Ca(2+) channel reveals roles for Orai1 in smooth and skeletal muscle functions. ACS Pharmacol Transl Sci 3(1):135–147. https://doi.org/10.1021/acsptsci.9b00081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Zhang X, Xin P, Yoast RE, Emrich SM, Johnson MT, Pathak T, Benson JC, Azimi I, Gill DL, Monteith GR, Trebak M (2020) Distinct pharmacological profiles of ORAI1, ORAI2, and ORAI3 channels. Cell Calcium 91:102281. https://doi.org/10.1016/j.ceca.2020.102281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Hogan PG, Rao A (2015) Store-operated calcium entry: mechanisms and modulation. Biochem Biophys Res Commun 460(1):40–49. https://doi.org/10.1016/j.bbrc.2015.02.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Bouron A (2018) Phyto and endocannabinoids exert complex actions on calcium and zinc signaling in mouse cortical neurons. Biochem Pharmacol 152:244–251. https://doi.org/10.1016/j.bcp.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  252. Deak AT, Groschner LN, Alam MR, Seles E, Bondarenko AI, Graier WF, Malli R (2013) The endocannabinoid N-arachidonoyl glycine (NAGly) inhibits store-operated Ca2+ entry by preventing STIM1-Orai1 interaction. J Cell Sci 126(Pt 4):879–888. https://doi.org/10.1242/jcs.118075

    Article  CAS  PubMed  Google Scholar 

  253. Pelzl L, Hauser S, Elsir B, Sukkar B, Sahu I, Singh Y, Hoflinger P, Bissinger R, Jemaa M, Stournaras C, Schols L, Lang F (2017) Lithium sensitive ORAI1 expression, store operated Ca(2+) entry and suicidal death of neurons in chorea-acanthocytosis. Sci rep 7(1):6457. https://doi.org/10.1038/s41598-017-06451-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Chen PH, Chung CC, Lin YF, Kao YH, Chen YJ (2021) Lithium reduces migration and collagen synthesis activity in human cardiac fibroblasts by inhibiting store-operated Ca(2+) entry. Int J Mol Sci 22:2. https://doi.org/10.3390/ijms22020842

    Article  CAS  Google Scholar 

  255. Du T, Rong Y, Feng R, Verkhratsky A, Peng L (2016) Chronic treatment with anti-bipolar drugs down-regulates gene expression of TRPC1 in neurones. Front Cell Neurosci 10:305. https://doi.org/10.3389/fncel.2016.00305

    Article  CAS  PubMed  Google Scholar 

  256. Choi SY, Kim YH, Lee YK, Kim KT (2001) Chlorpromazine inhibits store-operated calcium entry and subsequent noradrenaline secretion in PC12 cells. Br J Pharmacol 132(2):411–418

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Guner G, Guzelsoy G, Isleyen FS, Sahin GS, Akkaya C, Bayam E, Kotan EI, Kabakcioglu A, Ince-Dunn G (2017) NEUROD2 regulates Stim1 expression and store-operated calcium entry in cortical neurons. eNeuro 4:1. https://doi.org/10.1523/ENEURO.0255-16.2017

    Article  Google Scholar 

  258. Sharma S, Quintana A, Findlay GM, Mettlen M, Baust B, Jain M, Nilsson R, Rao A, Hogan PG (2013) An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca2+ entry. Nature 499(7457):238–242. https://doi.org/10.1038/nature12229

    Article  CAS  PubMed  Google Scholar 

  259. Deb BK, Hasan G (2019) SEPT7-mediated regulation of Ca(2+) entry through Orai channels requires other septin subunits. Cytoskeleton 76(1):104–114. https://doi.org/10.1002/cm.21476

    Article  CAS  PubMed  Google Scholar 

  260. Deb BK, Chakraborty P, Gopurappilly R, Hasan G (2020) SEPT7 regulates Ca(2+) entry through Orai channels in human neural progenitor cells and neurons. Cell Calcium 90:102252. https://doi.org/10.1016/j.ceca.2020.102252

    Article  CAS  PubMed  Google Scholar 

  261. Bogeski I, Kummerow C, Al-Ansary D, Schwarz EC, Koehler R, Kozai D, Takahashi N, Peinelt C, Griesemer D, Bozem M, Mori Y, Hoth M, Niemeyer BA (2010) Differential redox regulation of ORAI ion channels: a mechanism to tune cellular calcium signaling. Sci Signal 3(115):ra24. https://doi.org/10.1126/scisignal.2000672

    Article  CAS  PubMed  Google Scholar 

  262. Nunes P, Demaurex N (2014) Redox regulation of store-operated Ca2+ entry. Antioxid Redox Signal 21(6):915–932. https://doi.org/10.1089/ars.2013.5615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Grupe M, Myers G, Penner R, Fleig A (2010) Activation of store-operated I(CRAC) by hydrogen peroxide. Cell Calcium 48(1):1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Smith IF, Boyle JP, Vaughan PF, Pearson HA, Peers C (2001) Effects of chronic hypoxia on Ca(2+) stores and capacitative Ca(2+) entry in human neuroblastoma (SH-SY5Y) cells. J Neurochem 79(4):877–884

    CAS  PubMed  Google Scholar 

  265. Yu AS, Yue Z, Feng J, Yue L (2018) Regulation of Orai/STIM Channels by pH. In: Kozak JA, Putney Jr JW (eds) . Calcium Entry Channels in Non-Excitable Cells, Boca Raton (FL), pp. 161–176. https://doi.org/10.1201/9781315152592-9

    Chapter  Google Scholar 

  266. Malayev A, Nelson DJ (1995) Extracellular pH modulates the Ca2+ current activated by depletion of intracellular Ca2+ stores in human macrophages. J Membr Biol 146(1):101–111. https://doi.org/10.1007/BF00232684

    Article  CAS  PubMed  Google Scholar 

  267. Rychkov GY, Zhou FH, Adams MK, Brierley SM, Ma L, Barritt GJ (2022) Orai1- and Orai2-, but not Orai3-mediated ICRAC is regulated by intracellular pH. J Physiol 600(3):623–643. https://doi.org/10.1113/JP282502

    Article  CAS  PubMed  Google Scholar 

  268. Laskay G, Kalman K, Van Kerkhove E, Steels P, Ameloot M (2005) Store-operated Ca2+-channels are sensitive to changes in extracellular pH. Biochem Biophys Res Commun 337(2):571–579. https://doi.org/10.1016/j.bbrc.2005.09.086

    Article  CAS  PubMed  Google Scholar 

  269. Koss DJ, Riedel G, Platt B (2009) Intracellular Ca2+ stores modulate SOCCs and NMDA receptors via tyrosine kinases in rat hippocampal neurons. Cell Calcium 46(1):39–48

    CAS  PubMed  Google Scholar 

  270. Lazzari C, Peggion C, Stella R, Massimino ML, Lim D, Bertoli A, Sorgato MC (2011) Cellular prion protein is implicated in the regulation of local Ca2+ movements in cerebellar granule neurons. J Neurochem 116(5):881–890. https://doi.org/10.1111/j.1471-4159.2010.07015.x

    Article  CAS  PubMed  Google Scholar 

  271. De Mario A, Castellani A, Peggion C, Massimino ML, Lim D, Hill AF, Sorgato MC, Bertoli A (2015) The prion protein constitutively controls neuronal store-operated Ca(2+) entry through Fyn kinase. Front Cell Neurosci 9:416. https://doi.org/10.3389/fncel.2015.00416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Scremin E, Agostini M, Leparulo A, Pozzan T, Greotti E, Fasolato C (2020) ORAI2 down-regulation potentiates SOCE and decreases Abeta42 accumulation in human neuroglioma cells. Int J Mol Sci 21:15. https://doi.org/10.3390/ijms21155288

    Article  CAS  Google Scholar 

  273. Vaeth M, Yang J, Yamashita M, Zee I, Eckstein M, Knosp C, Kaufmann U, Karoly Jani P, Lacruz RS, Flockerzi V, Kacskovics I, Prakriya M, Feske S (2017) ORAI2 modulates store-operated calcium entry and T cell-mediated immunity. Nat Commun 8:14714. https://doi.org/10.1038/ncomms14714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Srikanth S, Ribalet B, Gwack Y (2013) Regulation of CRAC channels by protein interactions and post-translational modification. Channels (Austin) 7(5):354–363. https://doi.org/10.4161/chan.23801

    Article  CAS  PubMed  Google Scholar 

  275. Smyth JT, Petranka JG, Boyles RR, DeHaven WI, Fukushima M, Johnson KL, Williams JG, Putney JW Jr (2009) Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis. Nat Cell Biol 11(12):1465–1472. https://doi.org/10.1038/ncb1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Hawkins BJ, Irrinki KM, Mallilankaraman K, Lien YC, Wang Y, Bhanumathy CD, Subbiah R, Ritchie MF, Soboloff J, Baba Y, Kurosaki T, Joseph SK, Gill DL, Madesh M (2010) S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. J Cell Biol 190(3):391–405. https://doi.org/10.1083/jcb.201004152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Carreras-Sureda A, Abrami L, Ji-Hee K, Wang WA, Henry C, Frieden M, Didier M, van der Goot FG, Demaurex N (2021) S-acylation by ZDHHC20 targets ORAI1 channels to lipid rafts for efficient Ca(2+) signaling by Jurkat T cell receptors at the immune synapse. eLife 10:e72051. https://doi.org/10.7554/eLife.72051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. West SJ, Kodakandla G, Wang Q, Tewari R, Zhu MX, Boehning D, Akimzhanov AM (2022) S-acylation of Orai1 regulates store-operated Ca2+ entry. J Cell Sci 135:5. https://doi.org/10.1242/jcs.258579

    Article  CAS  Google Scholar 

  279. Gibhardt CS, Cappello S, Bhardwaj R, Schober R, Kirsch SA, Bonilla Del Rio Z, Gahbauer S, Bochicchio A, Sumanska M, Ickes C, Stejerean-Todoran I, Mitkovski M, Alansary D, Zhang X, Revazian A, Fahrner M, Lunz V, Frischauf I, Luo T et al (2020) Oxidative stress-induced STIM2 cysteine modifications suppress store-operated calcium entry. Cell Rep 33(3):108292. https://doi.org/10.1016/j.celrep.2020.108292

    Article  CAS  PubMed  Google Scholar 

  280. Wu S, Hyrc KL, Moulder KL, Lin Y, Warmke T, Snider BJ (2009) Cellular calcium deficiency plays a role in neuronal death caused by proteasome inhibitors. J Neurochem 109(5):1225–1236. https://doi.org/10.1111/j.1471-4159.2009.06037.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Lang F, Pelzl L, Hauser S, Hermann A, Stournaras C, Schols L (2018) To die or not to die SGK1-sensitive ORAI/STIM in cell survival. Cell Calcium 74:29–34. https://doi.org/10.1016/j.ceca.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  282. Lee JE, Jeon IS, Han NE, Song HJ, Kim EG, Choi JW, Song KD, Lee HK, Choi JK (2013) Ubiquilin 1 interacts with Orai1 to regulate calcium mobilization. Mol Cells 35(1):41–46. https://doi.org/10.1007/s10059-013-2268-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Kuang XL, Liu Y, Chang Y, Zhou J, Zhang H, Li Y, Qu J, Wu S (2016) Inhibition of store-operated calcium entry by sub-lethal levels of proteasome inhibition is associated with STIM1/STIM2 degradation. Cell Calcium 59(4):172–180. https://doi.org/10.1016/j.ceca.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  284. Moon H, Min C, Kim G, Kim D, Kim K, Lee SA, Moon B, Yang S, Lee J, Yang SJ, Cho SK, Lee G, Lee CS, Park CS, Park D (2020) Crbn modulates calcium influx by regulating Orai1 during efferocytosis. Nat Commun 11(1):5489. https://doi.org/10.1038/s41467-020-19272-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Vajente N, Norante R, Redolfi N, Daga A, Pizzo P, Pendin D (2019) Microtubules stabilization by mutant spastin affects ER morphology and Ca(2+) handling. Front in phys 10:1544. https://doi.org/10.3389/fphys.2019.01544

    Article  Google Scholar 

  286. Nolz JC, Gomez TS, Zhu P, Li S, Medeiros RB, Shimizu Y, Burkhardt JK, Freedman BD, Billadeau DD (2006) The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr Biol 16(1):24–34

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Parekh AB (2007) Functional consequences of activating store-operated CRAC channels. Cell Calcium 42(2):111–121

    CAS  PubMed  Google Scholar 

  288. Parekh AB, Penner R (1995) Depletion-activated calcium current is inhibited by protein kinase in RBL-2H3 cells. Proc Natl Acad Sci U S A 92(17):7907–7911

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Taylor CW, Machaca K (2019) IP3 receptors and store-operated Ca(2+) entry: a license to fill. Curr Opin Cell Biol 57:1–7. https://doi.org/10.1016/j.ceb.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  290. Bollimuntha S, Pani B, Singh BB (2017) Neurological and motor disorders: neuronal store-operated Ca(2+) signaling: an overview and its function. Adv Exp Med Biol 993:535–556. https://doi.org/10.1007/978-3-319-57732-6_27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Secondo A, Bagetta G, Amantea D (2018) On the role of store-operated calcium entry in acute and chronic neurodegenerative diseases. Front Mol Neurosci 11:87. https://doi.org/10.3389/fnmol.2018.00087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Wegierski T, Kuznicki J (2018) Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium 74:102–111. https://doi.org/10.1016/j.ceca.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  293. Pascual-Caro C, Espinosa-Bermejo N, Pozo-Guisado E, Martin-Romero FJ (2018) Role of STIM1 in neurodegeneration. World J Biol Chem 9(2):16–24. https://doi.org/10.4331/wjbc.v9.i2.16

    Article  PubMed  PubMed Central  Google Scholar 

  294. Popugaeva E, Pchitskaya E, Bezprozvanny I (2017) Dysregulation of neuronal calcium homeostasis in Alzheimer's disease—a therapeutic opportunity? Biochem Biophys Res Commun 483(4):998–1004. https://doi.org/10.1016/j.bbrc.2016.09.053

    Article  CAS  PubMed  Google Scholar 

  295. Czeredys M (2020) Dysregulation of neuronal calcium signaling via store-operated channels in Huntington's disease. Front Cell Dev Biol 8:611735. https://doi.org/10.3389/fcell.2020.611735

    Article  PubMed  PubMed Central  Google Scholar 

  296. Pathak T, Agrawal T, Richhariya S, Sadaf S, Hasan G (2015) Store-operated calcium entry through Orai is required for transcriptional maturation of the flight circuit in drosophila. J Neurosci 35(40):13784–13799. https://doi.org/10.1523/JNEUROSCI.1680-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Richhariya S, Jayakumar S, Abruzzi K, Rosbash M, Hasan G (2017) A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons. Sci rep 7:42586. https://doi.org/10.1038/srep42586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Narayanan R, Dougherty KJ, Johnston D (2010) Calcium store depletion induces persistent perisomatic increases in the functional density of h channels in hippocampal pyramidal neurons. Neuron 68(5):921–935. https://doi.org/10.1016/j.neuron.2010.11.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Kann O, Taubenberger N, Huchzermeyer C, Papageorgiou IE, Benninger F, Heinemann U, Kovacs R (2012) Muscarinic receptor activation determines the effects of store-operated Ca(2+)-entry on excitability and energy metabolism in pyramidal neurons. Cell Calcium 51(1):40–50. https://doi.org/10.1016/j.ceca.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  300. Ryu C, Jang DC, Jung D, Kim YG, Shim HG, Ryu HH, Lee YS, Linden DJ, Worley PF, Kim SJ (2017) STIM1 regulates somatic Ca(2+) signals and intrinsic firing properties of cerebellar purkinje neurons. J Neurosci 37(37):8876–8894. https://doi.org/10.1523/JNEUROSCI.3973-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Gao R, Gao X, Xia J, Tian Y, Barrett JE, Dai Y, Hu H (2013) Potent analgesic effects of a store-operated calcium channel inhibitor. Pain 154(10):2034–2044. https://doi.org/10.1016/j.pain.2013.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Brown AM, Riddoch FC, Robson A, Redfern CP, Cheek TR (2005) Mechanistic and functional changes in Ca2+ entry after retinoic acid-induced differentiation of neuroblastoma cells. Biochem J 388(Pt 3):941–948

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Bell N, Hann V, Redfern CP, Cheek TR (2013) Store-operated Ca(2+) entry in proliferating and retinoic acid-differentiated N- and S-type neuroblastoma cells. Biochim Biophys Acta 1833(3):643–651. https://doi.org/10.1016/j.bbamcr.2012.11.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Shin HY, Hong YH, Jang SS, Chae HG, Paek SL, Moon HE, Kim DG, Kim J, Paek SH, Kim SJ (2010) A role of canonical transient receptor potential 5 channel in neuronal differentiation from A2B5 neural progenitor cells. PLoS One 5(5):e10359. https://doi.org/10.1371/journal.pone.0010359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Bouron A, Altafaj X, Boisseau S, De Waard M (2005) A store-operated Ca2+ influx activated in response to the depletion of thapsigargin-sensitive Ca2+ stores is developmentally regulated in embryonic cortical neurons from mice. Brain Res Dev Brain Res 159(1):64–71

    CAS  PubMed  Google Scholar 

  306. Yap KA, Shetty MS, Garcia-Alvarez G, Lu B, Alagappan D, Oh-Hora M, Sajikumar S, Fivaz M (2017) STIM2 regulates AMPA receptor trafficking and plasticity at hippocampal synapses. Neurobiol Learn Mem 138:54–61. https://doi.org/10.1016/j.nlm.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  307. Savic N, Sciancalepore M (1998) Intracellular calcium stores modulate miniature GABA-mediated synaptic currents in neonatal rat hippocampal neurons. Eur J Neurosci 10(11):3379–3386

    CAS  PubMed  Google Scholar 

  308. Taylor SC, Peers C (2000) Three distinct Ca(2+) influx pathways couple acetylcholine receptor activation to catecholamine secretion from PC12 cells. J Neurochem 75(4):1583–1589

    CAS  PubMed  Google Scholar 

  309. Ris L, Dewachter I, Reverse D, Godaux E, Van Leuven F (2003) Capacitative calcium entry induces hippocampal long term potentiation in the absence of presenilin-1. J Biol Chem 278(45):44393–44399

    CAS  PubMed  Google Scholar 

  310. Pizzo P, Pozzan T (2007) Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol 17(10):511–517

    CAS  PubMed  Google Scholar 

  311. Hoth M, Fanger CM, Lewis RS (1997) Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 137(3):633–648

    CAS  PubMed  PubMed Central  Google Scholar 

  312. Parekh AB (2003) Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. J Physiol (Lond) 547(2):333–348

    CAS  PubMed  Google Scholar 

  313. Goldberg J, Currais A, Ates G, Huang L, Shokhirev M, Maher P, Schubert D (2020) Targeting of intracellular Ca(2+) stores as a therapeutic strategy against age-related neurotoxicities. npj Aging Mech Dis 6:10. https://doi.org/10.1038/s41514-020-00048-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Heikkila JE, Scott IG, Suominen LA, Akerman KE (1987) Differentiation-associated decrease in muscarinic receptor sensitivity in human neuroblastoma cells. J Cell Physiol 130(1):157–162. https://doi.org/10.1002/jcp.1041300122

    Article  CAS  PubMed  Google Scholar 

  315. Jackson TR, Hallam TJ, Downes CP, Hanley MR (1987) Receptor coupled events in bradykinin action: rapid production of inositol phosphates and regulation of cytosolic free Ca2+ in a neural cell line. EMBO J 6(1):49–54. https://doi.org/10.1002/j.1460-2075.1987.tb04717.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Oakes SG, Iaizzo PA, Richelson E, Powis G (1988) Histamine-induced intracellular free Ca++, inositol phosphates and electrical changes in murine N1E-115 neuroblastoma cells. J Pharmacol Exp Ther 247(1):114–121

    CAS  PubMed  Google Scholar 

  317. Lambert DG, Nahorski SR (1990) Muscarinic-receptor-mediated changes in intracellular Ca2+ and inositol 1,4,5-trisphosphate mass in a human neuroblastoma cell line, SH-SY5Y. Biochem J 265(2):555–562. https://doi.org/10.1042/bj2650555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Fasolato C, Pizzo P, Pozzan T (1990) Receptor-mediated calcium influx in PC12 cells. ATP and bradykinin activate two independent pathways. J Biol Chem 265(33):20351–20355

    CAS  PubMed  Google Scholar 

  319. Murphy NP, Vaughan PF, Ball SG, McCormack JG (1991) The cholinergic regulation of intracellular calcium in the human neuroblastoma, SH-SY5Y. J Neurochem 57(6):2116–2123. https://doi.org/10.1111/j.1471-4159.1991.tb06430.x

    Article  CAS  PubMed  Google Scholar 

  320. Takemura H, Ohshika H, Yokosawa N, Oguma K, Thastrup O (1991) The thapsigargin-sensitive intracellular Ca2+ pool is more important in plasma membrane Ca2+ entry than the IP3-sensitive intracellular Ca2+ pool in neuronal cell lines. Biochem Biophys Res Commun 180(3):1518–1526

    CAS  PubMed  Google Scholar 

  321. Koizumi S, Nakazawa K, Inoue K (1995) Inhibition by Zn2+ of uridine 5'-triphosphate-induced Ca(2+)-influx but not Ca(2+)-mobilization in rat phaeochromocytoma cells. Br J Pharmacol 115(8):1502–1508. https://doi.org/10.1111/j.1476-5381.1995.tb16643.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Grudt TJ, Usowicz MM, Henderson G (1996) Ca2+ entry following store depletion in SH-SY5Y neuroblastoma cells. Brain Res Mol Brain Res 36(1):93–100

    CAS  PubMed  Google Scholar 

  323. McDonald RL, Roberts DJ, Palmer AC, Ball SG, Vaughan PF, Peers C (1997) Regulation of [Ca++]i in human neuroblastoma (SH-SY5Y) cells expressing recombinant rat angiotensin1A receptors by angiotensin II and carbachol. J Pharmacol Exp Ther 281(3):1257–1263

    CAS  PubMed  Google Scholar 

  324. Choi SY, Kim KT (1999) Capsaicin inhibits phospholipase C-mediated Ca(2+) increase by blocking thapsigargin-sensitive store-operated Ca(2+) entry in PC12 cells. J Pharmacol Exp Ther 291(1):107–114

    CAS  PubMed  Google Scholar 

  325. Korol SV, Korol TY, Kostyuk EP, Kostyuk PG (2007) Characteristics of store-operated calcium channels activated by depletion of the endoplasmic reticulum ryanodine-sensitive calcium stores in rat dorsal root ganglion neurons. Neurophysiology 39:165–170

    CAS  Google Scholar 

  326. Meucci O, Grimaldi M, Scorziello A, Govoni S, Bergamaschi S, Yasumoto T, Schettini G (1992) Maitotoxin-induced intracellular calcium rise in PC12 cells: involvement of dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels and phosphoinositide breakdown. J Neurochem 59(2):679–688

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was not supported by specific fundings but the author received support from the Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), and Université de Grenoble Alpes (UGA).

Author information

Authors and Affiliations

Authors

Contributions

AB: Data curation, analysis, and writing.

Corresponding author

Correspondence to Alexandre Bouron.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouron, A. Neuronal Store-Operated Calcium Channels. Mol Neurobiol 60, 4517–4546 (2023). https://doi.org/10.1007/s12035-023-03352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03352-5

Keywords

Navigation