Skip to main content

Advertisement

Log in

Shared Molecular Signatures Across Zika Virus Infection and Multiple Sclerosis Highlight AP-1 Transcription Factor as a Potential Player in Post-ZIKV MS-Like Phenotypes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Zika virus (ZIKV) is an arbovirus of the Flaviviridae genus that has rapidly disseminated from across the Pacific to the Americas. Robust evidence has indicated a crucial role of ZIKV in congenital virus syndrome, including neonatal microcephaly. Moreover, emerging evidence suggests an association between ZIKV infection and the development of an extensive spectrum of central nervous system inflammatory demyelinating diseases (CNS IDD), such as multiple sclerosis–like clinical phenotypes. However, the underlying mechanisms of host-pathogen neuro-immune interactions remain to be elucidated. This study aimed to identify common transcriptional signatures between multiple sclerosis (MS) and ZIKV infection to generate molecular interaction networks, thereby leading to the identification of deregulated processes and pathways, which could give an insight of these underlying molecular mechanisms. Our investigation included publicly available transcriptomic data from MS patients in either relapse or remission (RR-MS) and datasets of subjects acutely infected by ZIKV for both immune peripheral cells and central nervous system cells. The protein-protein interaction (PPI) analysis showed upregulated AP-1 transcription factors (JUN and FOS) among the top hub and bottleneck genes in RR-MS and ZIKV data. Gene enrichment analysis retrieved a remarkable presence of ontologies and pathways linked to oxidative stress responses, immune cell function, inflammation, interleukin signaling, cell division, and transcriptional regulation commonly enriched in both scenarios. Considering the recent findings concerning AP-1 function in immunological tolerance breakdown, regulation of inflammation, and its function as an oxidative stress sensor, we postulate that the ZIKV trigger may contribute as a boost for the activation of such AP-1-regulated mechanisms that could favor the development of MS-like phenotypes following ZIKV infection in a genetically susceptible individual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The original RR-MS dataset used for the current study is available online at https://academic.oup.com/hmg/article/20/18/3606/556655 under the Supplementary information section. The original ZIKV dataset reported in this paper was deposited to the NCBI GEO and is available under access code GSE101878. The lists of differentially expressed genes used as input in the current study and all the outputs of the PPI analysis, gene enrichment, and Gene Ontology are available online in the supplementary file section or upon reasonable request to the corresponding authors. The studies with CNS cells and peripheral immune cells used for comparison in this study that were retrieved from the GEO database can be found upon the following accession numbers: GSE207347, GSE131605, GSE113636, GSE93385, GSE87750, GSE80434, GSE78711, GSE132228, GSE93870, and GSE198542. The DEG lists from Schultz et al. (2021) and Gueddes et al. (2021) were retrieved directly from supplementary material of the primary studies.

References

  1. Schuler-Faccini L et al (2016) Possible association between Zika virus infection and microcephaly – Brazil 2015. MMWR Morb Mortal Wkly Rep 65(3):59–62. https://doi.org/10.15585/mmwr.mm6503e2

    Article  PubMed  Google Scholar 

  2. Rasmussen SA et al (2016) Zika virus and birth defects–reviewing the evidence for causality. New England J Med 374(20):1981–7. https://doi.org/10.1056/NEJMsr1604338

    Article  CAS  Google Scholar 

  3. De Araújo TVB et al (2018) Association between microcephaly, Zika virus infection, and other risk factors in Brazil: final report of a case-control study. Lancet Infect Dis 18:328–336

  4. da Silva IRF, Frontera JA, de Filippis AMB, do Nascimento OJM (2017) Neurologic complications associated with the Zika virus in Brazilian adults. JAMA Neurol 74:1190–1198

    Article  PubMed  PubMed Central  Google Scholar 

  5. Parra B et al (2016) Guillain-Barré syndrome associated with Zika virus infection in Colombia. New England J Med 375(16):1513–1523. https://doi.org/10.1056/NEJMoa1605564

    Article  Google Scholar 

  6. Rozé, Benoît et al (2016) “Zika virus detection in cerebrospinal fluid from two patients with encephalopathy, Martinique, February 2016.” Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 21 (16) https://doi.org/10.2807/1560-7917.ES.2016.21.16.30205

  7. Ferreira Brito, Lucia Maria et al (2017) Guillain-Barré syndrome, acute disseminated encephalomyelitis and encephalitis associated with Zika virus infection in Brazil: detection of viral RNA and isolation of virus during late infection. The American journal of tropical medicine and hygiene 97(5):1405–1409. https://doi.org/10.4269/ajtmh.17-0106

    Article  Google Scholar 

  8. Azevedo RSS et al (2016) Zika virus epidemic in Brazil. I. Fatal disease in adults: clinical and laboratorial aspects. J Clin Virol: Off Publ Pan Am Soc Clin Virol 85:56–64. https://doi.org/10.1016/j.jcv.2016.10.024

    Article  Google Scholar 

  9. Mécharles S et al (2016) Acute myelitis due to Zika virus infection. Lancet (London, England) 387(10026):1481. https://doi.org/10.1016/S0140-6736(16)00644-9

    Article  PubMed  Google Scholar 

  10. Niemeyer B et al (2017) Acute disseminated encephalomyelitis following Zika virus infection. European neurology 77(1–2):45–46. https://doi.org/10.1159/000453396

    Article  PubMed  Google Scholar 

  11. Galliez RM, Spitz M, Rafful PP et al (2016) Zika virus causing encephalomyelitis associated with immunoactivation. Open Forum Infect Dis 3(4):203. https://doi.org/10.1093/ofid/ofw203

    Article  CAS  Google Scholar 

  12. Soares CN, Brasil P, Carrera RM et al (2016Oct) Fatal encephalitis associated with Zika virus infection in an adult. Journal of Clinical Virology: the Official Publication of the Pan American Society for Clinical Virology. 83:63–65. https://doi.org/10.1016/j.jcv.2016.08.297

    Article  PubMed  Google Scholar 

  13. Nicastri E et al (2016) Zika virus infection in the central nervous system and female genital tract. Emerg Infect Dis 22(12):2228–2230. https://doi.org/10.3201/eid2212.161280

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carteaux G et al (2016) Zika virus associated with meningoencephalitis. The New England journal of medicine 374(16):1595–6. https://doi.org/10.1056/NEJMc1602964

    Article  PubMed  Google Scholar 

  15. Schwartzmann PV, Ramalho LNZ, Neder L, Vilar FC, Ayub-Ferreira SM, Romeiro MF et al (2017) Zika virus meningoencephalitis in an immunocompromised patient. Mayo Clinic Proceed 92. https://doi.org/10.1016/j.mayocp.2016.12.019

  16. Medina MT, England JD, Lorenzana I et al (2016) Zika virus associated with sensory polyneuropathy. J Neurol Sci 369:271–272. https://doi.org/10.1016/j.jns.2016.08.044

    Article  PubMed  Google Scholar 

  17. Muñoz LS et al (2016) Zika virus-associated neurological disease in the adult: Guillain-Barré syndrome, encephalitis, and myelitis. Seminars Reprod Med 34(5):273–279. https://doi.org/10.1055/s-0036-1592066

    Article  Google Scholar 

  18. Alves-Leon SV et al (2019) Zika virus found in brain tissue of a multiple sclerosis patient undergoing an acute disseminated encephalomyelitis-like episode. Multiple Sclerosis (Houndmills, Basingstoke, England) 25(3):427–430. https://doi.org/10.1177/1352458518781992

    Article  PubMed  Google Scholar 

  19. Bido-Medina R et al (2018) Impact of Zika virus on adult human brain structure and functional organization. Ann Clin Transl Neurol 5(6):752–762. https://doi.org/10.1002/acn3.575

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nascimento OJM (2016) Central nervous system demyelination associated to Zika virus outbreaks. Multiple Sclerosis J 22 https://doi.org/10.1177/1352458516663086

  21. Neri VC, Xavier MF, Barros PO et al (2018Dec) Case report: acute transverse myelitis after Zika virus infection. The American Journal of Tropical Medicine and Hygiene. 99(6):1419–1421. https://doi.org/10.4269/ajtmh.17-0938

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ferreira Brito, Lúcia Maria et al (2020) Neurological disease in adults with Zika and chikungunya virus infection in Northeast Brazil: a prospective observational study. The Lancet. Neurology 19(10):826–839. https://doi.org/10.1016/S1474-4422(20)30232-5

    Article  Google Scholar 

  23. Figueiredo CP, Barros-Aragão FGQ, Neris RLS, Frost PS, Soares C, Souza INO et al (2019) Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice. Nat Commun 10. https://doi.org/10.1038/s41467-019-11866-7

  24. Acosta-Ampudia Y, Monsalve DM, Castillo-Medina LF et al (2018) Autoimmune neurological conditions associated with Zika virus infection. Frontiers in Molecular Neuroscience. 11:116. https://doi.org/10.3389/fnmol.2018.00116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arora HS (2020) A to Z of Zika Virus: A comprehensive review for clinicians. Global Pediatric Health. 7:2333794X20919595. https://doi.org/10.1177/2333794x20919595

  26. Meertens L et al (2017) Axl mediates ZIKA virus entry in human glial cells and modulates innate immune responses. Cell Rep 18(2):324–333. https://doi.org/10.1016/j.celrep.2016.12.045

    Article  CAS  PubMed  Google Scholar 

  27. Stefanik M, Formanova P, Bily T et al (2018) Characterisation of Zika virus infection in primary human astrocytes. BMC Neurosci 19:5. https://doi.org/10.1186/s12868-018-0407-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Monsalve DM et al (2017) Zika virus and autoimmunity. One-step forward. Autoimmun Rev 16(12):1237–1245. https://doi.org/10.1016/j.autrev.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  29. Anaya JM et al (2016) “Zika virus and neurologic autoimmunity: the putative role of gangliosides.” BMC Med 14(49) https://doi.org/10.1186/s12916-016-0601-y

  30. Alves-Leon SV et al (2021) Exome-wide search for genes associated with central nervous system inflammatory demyelinating diseases following CHIKV infection: the tip of the iceberg. Front Gene 12:639364. https://doi.org/10.3389/fgene.2021.639364

    Article  CAS  Google Scholar 

  31. de Débora Almeida A et al (2021) Association between ocular toxoplasmosis and APEX1 and MYD88 polymorphism. Acta Tropica 221:106006. https://doi.org/10.1016/j.actatropica.2021.106006

    Article  CAS  Google Scholar 

  32. Coutinho LG et al (2014) The kynurenine pathway is involved in bacterial meningitis. J Neuroinflammation 11:169. https://doi.org/10.1186/s12974-014-0169-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ (2019) Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res 18. https://doi.org/10.1021/acs.jproteome.8b00702

  34. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J et al (2019) STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47. https://doi.org/10.1093/nar/gky1131.

  35. Scardoni G, Petterlini M, Laudanna C (2009) Analyzing biological network parameters with CentiScaPe. Bioinformatics 25. https://doi.org/10.1093/bioinformatics/btp517

  36. Yu G, Wang LG, Han Y, He QY (2012) ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS A J Integr Biol 16 https://doi.org/10.1089/omi.2011.0118

  37. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles G V. et al (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14. https://doi.org/10.1186/1471-2105-14-128

  38. Kuleshov M V., Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44. https://doi.org/10.1093/nar/gkw377

  39. Lin C-C, Edelson BT (2017) New insights into the role of IL-1β in experimental autoimmune encephalomyelitis and multiple sclerosis. J Immunol 198. https://doi.org/10.4049/jimmunol.1700263

  40. Chastain EML, Duncan DS, Rodgers JM, Miller SD (2011) The role of antigen presenting cells in multiple sclerosis. Biochimica et Biophysica Acta - Mole Basis Dis. 1812. https://doi.org/10.1016/j.bbadis.2010.07.008

  41. Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9. https://doi.org/10.1038/nri2550

  42. Taheri S, Candelario-Jalil E, Estrada E, Rosenberg G, Sood R (2008) MRI study in rat to evaluate the effect of cyclooxygenase inhibition on blood brain barrier disruption following intracerebral injection of tumor necrosis factor-[alpha]. In: Proceed 16th Sci Meet, Int Soc Magnet Resonance Med

  43. Rothwell NJ, Luheshi GN (2000) Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci 23. https://doi.org/10.1016/S0166-2236(00)01661-1

  44. Mandel M, Gurevich M, Pauzner R, Kaminski N, Achiron A (2004) Autoimmunity gene expression portrait: specific signature that intersects or differentiates between multiple sclerosis and systemic lupus erythematosus. Clin Exp Immunol 138. https://doi.org/10.1111/j.1365-2249.2004.02587.x.

  45. Liu FL, Wu CC, Chang DM (2014) TACE-dependent amphiregulin release is induced by IL-1β and promotes cell invasion in fibroblast-like synoviocytes in rheumatoid arthritis. Rheumatol (United Kingdom) 53. https://doi.org/10.1093/rheumatology/ket350.

  46. Ruprecht K, Kuhlmann T, Seif F, Hummel V, Kruse N, Brück W et al (2001) Effects of oncostatin M on human cerebral endothelial cells and expression in inflammatory brain lesions. J Neuropathol Exp Neurol 60. https://doi.org/10.1093/jnen/60.11.1087

  47. Modur V, Feldhaus MJ, Weyrich AS, Jicha DL, Prescott SM, Zimmerman GA et al (1997) Oncostatin M is a proinflammatory mediator: in vivo effects correlate with endothelial cell expression of inflammatory cytokines and adhesion molecules. J Clin Invest 100. https://doi.org/10.1172/JCI119508

  48. Ensoli F, Fiorelli V, Lugaresi A, Farina D, de Cristofaro M, Collacchi B et al (2002) Lymphomononuclear cells from multiple sclerosis patients spontaneously produce high levels of oncostatin M, tumor necrosis factors α and β and interferon γ. Multiple Sclerosis 8. https://doi.org/10.1191/1352458502ms817oa

  49. Huynh JL, Garg P, Thin TH, Yoo S, Dutta R, Trapp BD et al (2014) Epigenome-wide differences in pathology-free regions of multiple sclerosis-affected brains. Nat Neurosci 17. https://doi.org/10.1038/nn.3588

  50. Beck H, Schwarz G, Schröter CJ, Deeg M, Baier D, Stevanovic S et al (2001) Cathepsin S and an asparagine-specific endoprotease dominate the proteolytic processing of human myelin basic protein in vitro. Eur J Immunol 31. https://doi.org/10.1002/1521-4141(200112)31:12<3726::AID-IMMU3726>3.0.CO;2-O

  51. Oveland E, Ahmad I, Lereim RR, Kroksveen AC, Barsnes H, Guldbrandsen A et al (2021) Cuprizone and EAE mouse frontal cortex proteomics revealed proteins altered in multiple sclerosis. Sci Rep 11. https://doi.org/10.1038/s41598-021-86191-5

  52. Manoury B, Mazzeo D, Fugger L, Viner N, Ponsford M, Streeter H et al (2002) Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nat Immunol 3. https://doi.org/10.1038/ni754

  53. Whittaker Hawkins RF, Patenaude A, Dumas A, Jain R, Tesfagiorgis Y, Kerfoot S et al (2017) ICAM1+ neutrophils promote chronic inflammation via ASPRV1 in B cell–dependent autoimmune encephalomyelitis. JCI Insight 2. https://doi.org/10.1172/jci.insight.96882

  54. Huang MT, Chen ST, Wu HY, Chen YJ, Chou TY, Hsieh SL (2015) DcR3 suppresses influenza virus-induced macrophage activation and attenuates pulmonary inflammation and lethality. J Mole Med 93. https://doi.org/10.1007/s00109-015-1291-1

  55. Dan I, Watanabe NM, Kusumi A (2001) The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol. 11. https://doi.org/10.1016/S0962-8924(01)01980-8

  56. Yamamoto N, Honma M, Suzuki H (2011) Off-target serine/threonine kinase 10 inhibition by erlotinib enhances lymphocytic activity leading to severe skin disorders. Mole Pharmacol 80. https://doi.org/10.1124/mol.110.070862

  57. Siegmund K, Klepsch V, Hermann-Kleiter N, Baier G (2016) Proof of principle for a T lymphocyte intrinsic function of Coronin 1A. J Biol Chem 291. https://doi.org/10.1074/jbc.M116.748012

  58. Kaminski S, Hermann-Kleiter N, Meisel M, Thuille N, Cronin S, Hara H et al (2011) Coronin 1A is an essential regulator of the TGFβ receptor/SMAD3 signaling pathway in Th17 CD4 + T cells. J Autoimmun 37. https://doi.org/10.1016/j.jaut.2011.05.018

  59. Yang Y, Wang C, Cheng P, Zhang X, Li X, Hu Y et al (2018) CD180 ligation inhibits TLR7-and TLR9-mediated activation of macrophages and dendritic cells through the Lyn-SHP-1/2 axis in murine lupus. Front Immunol 9. https://doi.org/10.3389/fimmu.2018.02643

  60. Ramesh A, Schubert RD, Greenfield AL, Dandekar R, Loudermilk R, Sabatino JJ et al (2020) A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis. Proceed Natl Acad Sci USA 117. https://doi.org/10.1073/pnas.2008523117

  61. Sánchez-Barrena MJ, Vallis Y, Clatworthy MR, Doherty GJ, Veprintsev DB, Evans PR et al (2012) Bin2 is a membrane sculpting N-BAR protein that influences leucocyte podosomes, motility and phagocytosis. PLoS ONE 7. https://doi.org/10.1371/journal.pone.0052401

  62. Ma C, Wang S, Wang G, Wu Y, Yang T, Shen W et al (2020) Protein spectrum changes in exosomes after therapeutic plasma exchange in patients with neuromyelitis optica. J Clin Apheresis 35. https://doi.org/10.1002/jca.21781

  63. Feizi P et al (2022) Central nervous system (CNS) inflammatory demyelinating diseases (IDDs) associated with COVID-19: a case series and review. J Neuroimmunol 371:577939. https://doi.org/10.1016/j.jneuroim.2022.577939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lucas RM, Hughes AM, Lay MLJ, Ponsonby AL, Dwyer DE, Taylor B V. et al (2011) Epstein-Barr virus and multiple sclerosis. J Neurol, Neurosurg Psych. 82. https://doi.org/10.1136/jnnp-2011-300174

  65. Acosta-Ampudia Y, Monsalve DM, Ramírez-Santana C (2019) Identifying the culprits in neurological autoimmune diseases. J Transl Autoimmun. 2. https://doi.org/10.1016/j.jtauto.2019.100015

  66. Lum F-M, Lee D, Chua T-K, Tan JJL, Lee CYP, Liu X et al (2018) Zika virus infection preferentially counterbalances human peripheral monocyte and/or NK cell activity. mSphere 3. https://doi.org/10.1128/mspheredirect.00120-18

  67. Kakalacheva K, Münz C, Lünemann JD (2011) Viral triggers of multiple sclerosis. Biochimica et Biophysica Acta - Mole Basis Dis 1812. https://doi.org/10.1016/j.bbadis.2010.06.012

  68. Burnard S, Lechner-Scott J, Scott RJ (2017) EBV and MS: Major cause, minor contribution or red-herring? Multiple sclerosis and related disorders. 16. https://doi.org/10.1016/j.msard.2017.06.002

  69. Salvetti M, Giovannoni G, Aloisi F (2009) Epstein-Barr virus and multiple sclerosis. Current Opinion in Neurology. 22:201–206

    Article  PubMed  Google Scholar 

  70. Zamvil SS, Spencer CM, Baranzini SE (2018) Cree BAC. the gut microbiome in neuromyelitis optica. Neurotherapeutics. 15. https://doi.org/10.1007/s13311-017-0594-z

  71. Oldstone MBA (1998) Molecular mimicry and immune mediated diseases. FASEB J 12. https://doi.org/10.1096/fasebj.12.13.1255

  72. Ohl K, Tenbrock K, Kipp M (2016) Oxidative stress in multiple sclerosis: central and peripheral mode of action. Exp Neurol. 277. https://doi.org/10.1016/j.expneurol.2015.11.010

  73. Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I et al (2015) Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 78. https://doi.org/10.1002/ana.24497

  74. Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47. https://doi.org/10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q

  75. Patsopoulos NA, Baranzini SE, Santaniello A, Shoostari P, Cotsapas C, Wong G et al (2019) Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365. https://doi.org/10.1126/science.aav7188

  76. Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA (2011) Pattern recognition receptors and the innate immune response to viral infection. Viruses 3. https://doi.org/10.3390/v3060920

  77. Zhang Y, Saccani S, Shin H, Nikolajczyk BS (2008) Dynamic protein associations define two phases of IL-1β transcriptional activation. J Immunol 181. https://doi.org/10.4049/jimmunol.181.1.503

  78. Serkkola E, Hurme M (1993) Synergism between protein kinase C and cAMP-dependent pathways in the expression of the interleukin-1β gene is mediated via the activator-protein-1 (AP-1) enhancer activity. Eur J Biochem 213. https://doi.org/10.1111/j.1432-1033.1993.tb17754.x

  79. Singha B, Gatla HR, Vancurova I (2015) Transcriptional regulation of chemokine expression in ovarian cancer. Biomolecules 5. https://doi.org/10.3390/biom5010223

  80. Choi SH, Wiesner P, Almazan F, Kim J, Miller YI (2012) Spleen tyrosine kinase regulates AP-1 dependent transcriptional response to minimally oxidized LDL. PLoS ONE 7. https://doi.org/10.1371/journal.pone.0032378

  81. Hannemann N, Jordan J, Paul S, Reid S, Baenkler H-W, Sonnewald S et al (2017) The AP-1 transcription factor c-Jun promotes arthritis by regulating cyclooxygenase-2 and arginase-1 expression in macrophages. J Immunol 198. https://doi.org/10.4049/jimmunol.1601330

  82. Allport VC, Slater DM, Newton R, Bennett PR (2000) NF-κB and AP-1 are required for cyclo-oxygenase 2 gene expression in amnion epithelial cell line (WISH)

  83. Govindarajan V, de Rivero Vaccari JP, Keane RW (2020) Role of inflammasomes in multiple sclerosis and their potential as therapeutic targets. J Neuroinflammation 17. https://doi.org/10.1186/s12974-020-01944-9

  84. Liba Z, Nohejlova H, Capek V, Krsek P, Sediva A, Kayserova J (2019) Utility of chemokines CCL2, CXCL8, 10 and 13 and interleukin 6 in the pediatric cohort for the recognition of neuroinflammation and in the context of traditional cerebrospinal fluid neuroinflammatory biomarkers. PLoS ONE 14. https://doi.org/10.1371/journal.pone.0219987

  85. Naveca FG, Pontes GS, Chang AYH, da Silva GAV, do Nascimento VA, Monteiro DC da S et al (2018) Analysis of the immunological biomarker profile during acute zika virus infection reveals the overexpression of CXCL10, a chemokine linked to neuronal damage. Memorias do Instituto Oswaldo Cruz 113. https://doi.org/10.1590/0074-02760170542

  86. Bartosik-Psujek H, Stelmasiak Z (2005) The levels of chemokines CXCL8, CCL2 and CCL5 in multiple sclerosis patients are linked to the activity of the disease. Eur J Neurol 12. https://doi.org/10.1111/j.1468-1331.2004.00951.x

  87. Rossi B, Santos-Lima B, Terrabuio E, Zenaro E, Constantin G (2021) Common peripheral immunity mechanisms in multiple sclerosis and Alzheimer’s disease. Front Immunol 12. https://doi.org/10.3389/fimmu.2021.639369

  88. Dhaiban S, Al-Ani M, Elemam NM, Maghazachi AA (2020) Targeting chemokines and chemokine receptors in multiple sclerosis and experimental autoimmune encephalomyelitis. J Inflamm Res 13. https://doi.org/10.2147/JIR.S270872

  89. Kwon YN, Kim B, Ahn S, Seo J, Kim SB, Yoon SS et al (2020) Serum level of IL-1β in patients with inflammatory demyelinating disease: marked upregulation in the early acute phase of MOG antibody associated disease (MOGAD). J Neuroimmunol 348. https://doi.org/10.1016/j.jneuroim.2020.577361

  90. Kim BS, Jin YH, Meng L, Hou W, Kang HS, Park HS et al (2012) IL-1 signal affects both protection and pathogenesis of virus-induced chronic CNS demyelinating disease. J Neuroinflamm 9. https://doi.org/10.1186/1742-2094-9-217

  91. Lund BT, Ashikian N, Ta HQ, Chakryan Y, Manoukian K, Groshen S et al (2004) Increased CXCL8 (IL-8) expression in multiple sclerosis. J Neuroimmunol 155. https://doi.org/10.1016/j.jneuroim.2004.06.008

  92. Palumbo S (2017) Pathogenesis and progression of multiple sclerosis: the role of arachidonic acid–mediated neuroinflammation. In: Multiple sclerosis: perspectives in treatment and pathogenesis. https://doi.org/10.15586/codon.multiplesclerosis.2017.ch7

  93. Rose JW, Hill KE, Watt HE, Carlson NG (2004) Inflammatory cell expression of cyclooxygenase-2 in the multiple sclerosis lesion. J Neuroimmunol 149. https://doi.org/10.1016/j.jneuroim.2003.12.021

  94. Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C et al (2006) COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 6. https://doi.org/10.1186/1471-2377-6-12

  95. Michlmayr D, Andrade P, Gonzalez K, Balmaseda A, Harris E (2017) CD14+CD16+ monocytes are the main target of Zika virus infection in peripheral blood mononuclear cells in a paediatric study in Nicaragua. Nat Microbiol 2. https://doi.org/10.1038/s41564-017-0035-0

  96. Hastings AK, Uraki R, Gaitsch H, Dhaliwal K, Stanley S, Sproch H et al (2019) Aedes aegypti NeSt1 protein enhances Zika virus pathogenesis by activating neutrophils . J Virol 93. https://doi.org/10.1128/jvi.00395-19

  97. Tricot T, Helsen N, Kaptein SJF, Neyts J, Verfaillie CM (2018) Human stem cell-derived hepatocyte-like cells support Zika virus replication and provide a relevant model to assess the efficacy of potential antivirals. PLoS ONE 13. https://doi.org/10.1371/journal.pone.0209097

  98. Pingen M, Bryden SR, Pondeville E, Schnettler E, Kohl A, Merits A et al (2016) Host inflammatory response to mosquito bites enhances the severity of Arbovirus infection. Immunity 44. https://doi.org/10.1016/j.immuni.2016.06.002

  99. Foo SS, Chen W, Chan Y, Bowman JW, Chang LC, Choi Y et al (2017) Asian Zika virus strains target CD14+ blood monocytes and induce M2-skewed immunosuppression during pregnancy. Nat Microbiol 2. https://doi.org/10.1038/s41564-017-0016-3

  100. Lim SJ, Seyfang A, Dutra S, Kane B, Groer M (2020) Gene expression responses to Zika virus infection in peripheral blood mononuclear cells from pregnant and non-pregnant women. MicrobiologyOpen 9. https://doi.org/10.1002/mbo3.1134

  101. Wang A, Thurmond S, Islas L, Hui K, Hai R (2017) Zika virus genome biology and molecular pathogenesis. Emerg Microbes Infect 6. https://doi.org/10.1038/emi.2016.141

  102. Mahamud-Ur Rashid, Zahedi-Amiri A, Glover KKM, Gao A, Nickol ME, Kindrachuk J et al (2020) Zika virus dysregulates human sertoli cell proteins involved in spermatogenesis with little effect on tight junctions. PLoS Neglected Trop Dis 14. https://doi.org/10.1371/journal.pntd.0008335

  103. Liu M, Chen F, Liu T, Chen F, Liu S, Yang J (2017) The role of oxidative stress in influenza virus infection. Microbes Infect 19. https://doi.org/10.1016/j.micinf.2017.08.008

  104. Zhang Z, Rong L, Li YP (2019) Flaviviridae viruses and oxidative stress: implications for viral pathogenesis. Oxidative Medicine and Cellular Longevity 2019. https://doi.org/10.1155/2019/1409582

  105. Ledur PF, Karmirian K, Pedrosa C da SG, Souza LRQ, Assis-de-Lemos G, Martins TM et al (2020) Zika virus infection leads to mitochondrial failure, oxidative stress and DNA damage in human iPSC-derived astrocytes. Sci Rep 10. https://doi.org/10.1038/s41598-020-57914-x

  106. Park T, Kang MG, Baek SH, Lee CH, Park D (2020) Zika virus infection differentially affects genome-wide transcription in neuronal cells and myeloid dendritic cells. PLoS ONE 15. https://doi.org/10.1371/journal.pone.0231049

  107. Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R (2018) Rewiring cellular networks by members of the Flaviviridae family. Nature Reviews Microbiology 16. https://doi.org/10.1038/nrmicro.2017.170

  108. Valadão ALC, Aguiar RS, de Arruda LB (2016) Interplay between inflammation and cellular stress triggered by Flaviviridae viruses. Frontiers in Microbiology 7. https://doi.org/10.3389/fmicb.2016.01233

  109. Olagnier D, Peri S, Steel C, van Montfoort N, Chiang C, Beljanski V et al (2014) Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathogens 10. https://doi.org/10.1371/journal.ppat.1004566

  110. Tabari D, Scholl C, Steffens M, Weickhardt S, Elgner F, Bender D et al (2020) Impact of Zika virus infection on human neural stem cell MicroRNA signatures. Viruses 12. https://doi.org/10.3390/v12111219

  111. Goes A, Wouters D, Pol SMA, Huizinga R, Ronken E, Adamson P et al (2001) Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. FASEB J 15. https://doi.org/10.1096/fj.00-0881fje

  112. Foletta VC, Segal DH, Cohen DR (1998) Transcriptional regulation in the immune system: All roads lead to AP-1. J Leukocyte Biol 63. https://doi.org/10.1002/jlb.63.2.139.

  113. Wagner EF, Eferl R (2005) Fos/AP-1 proteins in bone and the immune system. Immunological Reviews. 208. https://doi.org/10.1111/j.0105-2896.2005.00332.x

  114. Karin M, Liu ZG, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9. https://doi.org/10.1016/S0955-0674(97)80068-3

  115. Yukawa M, Jagannathan S, Vallabh S, Kartashov A V., Chen X, Weirauch MT et al (2020) AP-1 activity induced by co-stimulation is required for chromatin opening during T cell activation. J Exp Med 217. https://doi.org/10.1084/jem.20182009

  116. Vierbuchen T, Ling E, Cowley CJ, Couch CH, Wang X, Harmin DA et al (2017) AP-1 transcription factors and the BAF complex mediate signal-dependent enhancer selection. Mole Cell 68. https://doi.org/10.1016/j.molcel.2017.11.026

  117. Bevington SL, Ng STH, Britton GJ, Keane P, Wraith DC, Cockerill PN (2020) Chromatin priming renders T cell tolerance-associated genes sensitive to activation below the signaling threshold for immune response genes. Cell Rep 31. https://doi.org/10.1016/j.celrep.2020.107748

  118. Li P, Leonard WJ (2018) Chromatin accessibility and interactions in the transcriptional regulation of T cells. Front Immunol 9. https://doi.org/10.3389/fimmu.2018.02738

  119. Bonenfant G, Meng R, Shotwell C, Badu P, Payne AF, Ciota AT et al (2020) Asian zika virus isolate significantly changes the transcriptional profile and alternative RNA splicing events in a neuroblastoma cell line. Viruses 12. https://doi.org/10.3390/v12050510

  120. Ojha CR, Rodriguez M, Karuppan MKM, Lapierre J, Kashanchi F, El-Hage N (2019) Toll-like receptor 3 regulates Zika virus infection and associated host inflammatory response in primary human astrocytes. PLoS ONE 14. https://doi.org/10.1371/journal.pone.0208543

  121. Michalski D, Gustavo Ontiveros J, Russo J, Charley PA, Anderson JR, Heck AM et al (2019) Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection. J Biol Chem 294. https://doi.org/10.1074/jbc.RA119.009129

  122. Sun X, Hua S, Gao C, Blackmer JE, Ouyang Z, Ard K et al (2020) Immune-profiling of ZIKV-infected patients identifies a distinct function of plasmacytoid dendritic cells for immune cross-regulation. Nat Commun 11. https://doi.org/10.1038/s41467-020-16217-5

  123. Schultz V, Cumberworth SL, Gu Q, Johnson N, Donald CL, McCanney GA et al (2021) Zika virus infection leads to demyelination and axonal injury in mature cns cultures. Viruses 13. https://doi.org/10.3390/v13010091

  124. Sharma A, Maheshwari RK (2009) Oligonucleotide array analysis of Toll-like receptors and associated signalling genes in Venezuelan equine encephalitis virus-infected mouse brain. J Gen Virol 90. https://doi.org/10.1099/vir.0.010280-0

  125. Gerhauser I, Ulrich R, Alldinger S, Baumgärtner W (2007) Induction of activator protein-1 and nuclear factor-κB as a prerequisite for disease development in susceptible SJL/J mice after Theiler murine encephalomyelitis. J Neuropathol Exp Neurol 66. https://doi.org/10.1097/nen.0b013e3181461f31

  126. Peng H, Shi M, Zhang L, Li Y, Sun J, Zhang L et al (2014) Activation of JNK1/2 and p38 MAPK signaling pathways promotes enterovirus 71 infection in immature dendritic cells. BMC Microbiol 14. https://doi.org/10.1186/1471-2180-14-147

  127. Tuller Tamir, Atar Shimshi, Ruppin Eytan, Gurevich Michael, Achiron Anat (2011) Global map of physical interactions among differentially expressed genes in multiple sclerosis relapses and remissions. Human MoleGene 20(18):3606–3619. https://doi.org/10.1093/hmg/ddr281

    Article  CAS  PubMed  Google Scholar 

  128. Sun X et al (2017) Transcriptional changes during naturally acquired Zika virus infection render dendritic cells highly conducive to viral replication. Cell Rep 21(12):3471–3482. https://doi.org/10.1016/j.celrep.2017.11.087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bartosik-Psujek H, Stelmasiak Z (2005Jan) The levels of chemokines CXCL8, CCL2 and CCL5 in multiple sclerosis patients are linked to the activity of the disease. Eur J Neurol. 12(1):49–54. https://doi.org/10.1111/j.1468-1331.2004.00951.x

    Article  CAS  PubMed  Google Scholar 

  130. Bai Z, Chen D, Wang L, Zhao Y, Liu T, Yu Y, Yan T, Cheng Y (2019Oct) Cerebrospinal fluid and blood cytokines as biomarkers for multiple sclerosis: a systematic review and meta-analysis of 226 studies with 13,526 multiple sclerosis patients. Front Neurosci. 4(13):1026. https://doi.org/10.3389/fnins.2019.01026

    Article  Google Scholar 

  131. Matsushita T, Tateishi T, Isobe N, Yonekawa T, Yamasaki R, Matsuse D et al (2013) Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLoS ONE 8(4):e61835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lund BT, Ashikian N, Ta HQ, Chakryan Y, Manoukian K, Groshen S, Gilmore W, Cheema GS, Stohl W, Burnett ME, Ko D, Kachuck NJ, Weiner LP (2004Oct) Increased CXCL8 (IL-8) expression in multiple sclerosis. J Neuroimmunol. 155(1–2):161–71. https://doi.org/10.1016/j.jneuroim.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  133. Zhong-bo X, Xin F, Wei-na Z, Ming-liang Q∗ (2021) Identification of key genes and microRNAs for multiple sclerosis using bioinformatics analysis. Medicine: 100 (48) e27667 https://doi.org/10.1097/MD.0000000000027667

  134. Horibata S, Teramoto T, Vijayarangan N, Kuhn S, Padmanabhan R, Vasudevan S, Gottesman M, Padmanabhan R (2021) Host gene expression modulated by Zika virus infection of human-293 cells. Virology 552:32–42. https://doi.org/10.1016/j.virol.2020.09.007

    Article  CAS  PubMed  Google Scholar 

  135. da Silva M, Matias H et al (2019) Innate immune response in patients with acute Zika virus infection. Med Microbiol Immunol 208(6):703–714. https://doi.org/10.1007/s00430-019-00588-8

    Article  CAS  PubMed  Google Scholar 

  136. Chen X, Hou H, Qiao H et al (2021) Identification of blood-derived candidate gene markers and a new 7-gene diagnostic model for multiple sclerosis. Biol Res 54:12. https://doi.org/10.1186/s40659-021-00334-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bowen JR, Quicke KM, Maddur MS, O’Neal JT, McDonald CE, Fedorova NB, Puri V, Shabman RS, Pulendran B, Suthar MS (2017) Zika virus antagonizes type I interferon responses during infection of human dendritic cells. PLoS Pathog 13:e1006164

    Article  PubMed  PubMed Central  Google Scholar 

  138. Das M, Mohapatra S, Mohapatra SS (2012) New perspectives on central and peripheral immune responses to acute traumatic brain injury. Journal of neuroinflammation 9:236. https://doi.org/10.1186/1742-2094-9-236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hughes HK, Moreno RJ, Ashwood P (2023) Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain, behavior, and immunity 108:245–254. https://doi.org/10.1016/j.bbi.2022.12.001

    Article  CAS  PubMed  Google Scholar 

  140. Segal BM (2005) CNS chemokines, cytokines, and dendritic cells in autoimmune demyelination. Journal of the neurological sciences 228(2):210–214. https://doi.org/10.1016/j.jns.2004.10.014

    Article  CAS  PubMed  Google Scholar 

  141. Chahine LM, Stern MB, Chen-Plotkin A (2014) Blood-based biomarkers for Parkinson’s disease. Parkinsonism Relat Disord 20(Suppl 1):S99-103. https://doi.org/10.1016/S1353-8020(13)70025-7

    Article  PubMed  PubMed Central  Google Scholar 

  142. Grunblatt E et al (2009) Gene expression as peripheral biomarkers for sporadic Alzheimer’s disease. J Alzheimers Dis 16:627–634. https://doi.org/10.3233/JAD-2009-0996

    Article  CAS  PubMed  Google Scholar 

  143. Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA (2006) The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med 147:126–132. https://doi.org/10.1016/j.lab.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  144. Maes OC et al (2007) Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol Aging 28:1795–1809. https://doi.org/10.1016/j.neurobiolaging.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  145. Sullivan PF, Fan C, Perou CM (2006) Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 141B:261–268. https://doi.org/10.1002/ajmg.b.30272

    Article  PubMed  Google Scholar 

  146. Tabari D, Scholl C, Steffens M et al (2020) Impact of Zika virus infection on human neural stem cell microRNA signatures. Viruses. 12(11):E1219. https://doi.org/10.3390/v12111219

    Article  CAS  Google Scholar 

  147. Bonenfant G, Meng R, Shotwell C, Badu P, Payne AF, Ciota AT, Sammons MA, Berglund JA, Pager CT (2020) Asian Zika virus isolate significantly changes the transcriptional profile and alternative RNA splicing events in a neuroblastoma cell line. Viruses 12(5):510. https://doi.org/10.3390/v12050510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Watanabe M, Buth JE, Vishlaghi N, de la Torre-Ubieta L, Taxidis J, Khakh B S, Coppola G, Pearson CA, Yamauchi K, Gong D, Dai X, Damoiseaux R, Aliyari R, Liebscher S, Schenke-Layland K, Caneda C, Huang E J, Zhang Y, Cheng G, Geschwind DH., … Novitch B G (2017) Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep 21(2):517–532. https://doi.org/10.1016/j.celrep.2017.09.047

  149. Shan C, Xia H, Haller SL, Azar SR, Liu Y, Liu J, Muruato AE, Chen R, Rossi SL, Wakamiya M, Vasilakis N, Pei R, Fontes-Garfias CR, Singh SK, Xie X, Weaver SC, Shi PY (2020) A Zika virus envelope mutation preceding the 2015 epidemic enhances virulence and fitness for transmission. Proceed Natl Acad Sci U S A 117(33):20190–20197. https://doi.org/10.1073/pnas.2005722117

    Article  CAS  Google Scholar 

  150. Pettersson JHO, Bohlin J, Dupont-Rouzeyrol M, Brynildsrud OB, Alfsnes K, Cao-Lormeau VM, et al (2018) Re-visiting the evolution, dispersal and epidemiology of Zika virus in Asia article. Emerg Microbes Infect. 7(1). Available from: https://doi.org/10.1038/s41426-0180082-5

  151. Ayala-Nunez NV, Follain G, Delalande F, Hirschler A, Partiot E, Hale GL, et al (2019) Zika virus enhances monocyte adhesion and transmigration favoring viral dissemination to neural cells. Nat Commun. 10(1):1–16. Available from: https://doi.org/10.1038/s41467-019-12408x

  152. Goodfellow FT, Willard KA, Wu X, Scoville S, Stice SL, Brindley MA (2018) Strain-Dependent consequences of Zika virus infection and differential impact on neural development. Viruses 10(10):550. https://doi.org/10.3390/v10100550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Aguiar RS, Pohl F, Morais GL, Nogueira FCS, Carvalho JB, Guida L, Arge LWP, Melo A, Moreira MEL, Cunha DP, Gomes L, Portari EA, Velasquez E, Melani RD, Pezzuto P, de Castro FL, Geddes VEV, Gerber AL, Azevedo GS, Schamber-Reis BL, … Nakaya HI (2020). Molecular alterations in the extracellular matrix in the brains of newborns with congenital Zika syndrome. Sci Signal 13(635):eaay6736. https://doi.org/10.1126/scisignal.aay6736

  154. Schwarz DS, Blower MD (2016) The endoplasmic reticulum: structure, function and response to cellular signaling. Cellular and molecular life sciences : CMLS 73(1):79–94. https://doi.org/10.1007/s00018-015-2052-6

    Article  CAS  PubMed  Google Scholar 

  155. So JS (2018) Roles of endoplasmic reticulum stress in immune responses. Mole Cells 41(8):705–716. https://doi.org/10.14348/molcells.2018.0241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Park SM, Kang TI, So JS (2021) Roles of XBP1s in transcriptional regulation of target genes. Biomedicines 9(7):791. https://doi.org/10.3390/biomedicines9070791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wheeler MA, Jaronen M, Covacu R, Zandee SEJ, Scalisi G, Rothhammer V, Tjon EC, Chao CC, Kenison JE, Blain M, Rao VTS, Hewson P, Barroso A, Gutiérrez-Vázquez C, Prat A, Antel JP, Hauser R, Quintana FJ (2019) Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell 176(3):581-596.e18. https://doi.org/10.1016/j.cell.2018.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Getts MT, Getts DR, Kohm AP, Miller SD (2008) Endoplasmic reticulum stress response as a potential therapeutic target in multiple sclerosis. Therapy 5:631–640

    Article  PubMed  PubMed Central  Google Scholar 

  159. Mháille AN, McQuaid S, Windebank A, Cunnea P, McMahon J, Samali A, FitzGerald U (2008) Increased expression of endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions. J Neuropathol Exp Neurol 67(3):200–211. https://doi.org/10.1097/NEN.0b013e318165b239

    Article  PubMed  Google Scholar 

  160. Duclot F, Kabbaj M (2017) The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders. Front Behav Neurosci 11:35. https://doi.org/10.3389/fnbeh.2017.00035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Woodson CM, Kehn-Hall K (2022) Examining the role of EGR1 during viral infections. Front Microbiol 13:1020220. https://doi.org/10.3389/fmicb.2022.1020220

    Article  PubMed  PubMed Central  Google Scholar 

  162. Freiesleben S, Hecker M, Zettl U et al (2016) Analysis of microRNA and gene expression profiles in multiple sclerosis: integrating interaction data to uncover regulatory mechanisms. Sci Rep 6:34512. https://doi.org/10.1038/srep34512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shepard CJ, Cline SG, Hinds D, Jahanbakhsh S, Prokop JW (2019) Breakdown of multiple sclerosis genetics to identify an integrated disease network and potential variant mechanisms. Physiol Genomics 51(11):562–577. https://doi.org/10.1152/physiolgenomics.00120.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Liu M, Hou X, Zhang P, Hao Y, Yang Y, Wu X, Zhu D, Guan Y (2013) Microarray gene expression profiling analysis combined with bioinformatics in multiple sclerosis. Mole Biol Rep 40(5):3731–3737. https://doi.org/10.1007/s11033-012-2449-3

    Article  CAS  PubMed  Google Scholar 

  165. Hoffmann E, Ashouri J, Wolter S, Doerrie A, Dittrich-Breiholz O, Schneider H et al (2008) Transcriptional regulation of EGR-1 by the Interleukin-1-JNK-MKK7-c-Jun pathway. J Biol Chem 283:12120–12128. https://doi.org/10.1074/jbc.M800583200

    Article  CAS  PubMed  Google Scholar 

  166. Schafflick D, Xu CA, Hartlehnert M, Cole M, Schulte-Mecklenbeck A, Lautwein T, Wolbert J, Heming M, Meuth SG, Kuhlmann T, Gross CC, Wiendl H, Yosef N, Horste GMZ (2020) Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun 11(1):247. https://doi.org/10.1038/s41467-019-14118-w

    Article  CAS  Google Scholar 

  167. Hunt D, Raivich G, Anderson PN (2012) Activating transcription factor 3 and the nervous system. Front Mol Neurosci 5:7. https://doi.org/10.3389/fnmol.2012.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Frezel N, Sohet F, Daneman R, Basbaum AI, Braz JM (2016) Peripheral and central neuronal ATF3 precedes CD4+ T-cell infiltration in EAE. Exp Neurol 283(Pt A):224–234. https://doi.org/10.1016/j.expneurol.2016.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mutukula N, Man Z, Takahashi Y, Iniesta Martinez F, Morales M, Carreon-Guarnizo E, Hernandez Clares R, Garcia-Bernal D, Martinez Martinez L, Lajara J, Nuñez Delicado E, Meca Lallana JE, Izpisua Belmonte JC (2021) Generation of RRMS and PPMS specific iPSCs as a platform for modeling multiple sclerosis. Stem Cell Res 53:102319. https://doi.org/10.1016/j.scr.2021.102319

    Article  CAS  PubMed  Google Scholar 

  170. Lovas G, Nielsen JA, Johnson KR, Hudson LD (2010) Alterations in neuronal gene expression profiles in response to experimental demyelination and axonal transection. Multiple Sclerosis (Houndmills, Basingstoke, England) 16(3):303–316. https://doi.org/10.1177/1352458509357063

    Article  CAS  PubMed  Google Scholar 

  171. Shang Z, Sun W, Zhang M, Xu L, Jia X, Zhang R, Fu S (2020) Identification of key genes associated with multiple sclerosis based on gene expression data from peripheral blood mononuclear cells. Peer J 8:e8357. https://doi.org/10.7717/peerj.8357

    Article  PubMed  PubMed Central  Google Scholar 

  172. Gerondakis S, Fulford T, Messina N et al (2014) NF-κB control of T cell development. Nat Immunol 15:15–25. https://doi.org/10.1038/ni.2785

    Article  CAS  PubMed  Google Scholar 

  173. Dresselhaus EC, Meffert MK (2019) Cellular specificity of NF-κB function in the nervous system. Front Immunol 10:1043. https://doi.org/10.3389/fimmu.2019.01043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Jie Z, Ko CJ, Wang H, Xie X, Li Y, Gu M, Zhu L, Yang JY, Gao T, Ru W, Tang SJ, Cheng X, Sun SC (2021) Microglia promote autoimmune inflammation via the noncanonical NF-κB pathway. Sci Adv 7(36):eabh0609. https://doi.org/10.1126/sciadv.abh0609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Dozio V, Sanchez JC (2018) Profiling the proteomic inflammatory state of human astrocytes using DIA mass spectrometry. J Neuroinflamm 15(1):331. https://doi.org/10.1186/s12974-018-1371-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang X, Kracht L, Lerario AM, Dubbelaar ML, Brouwer N, Wesseling EM, Boddeke EWGM, Eggen BJL, Kooistra SM (2022) Epigenetic regulation of innate immune memory in microglia. J Neuroinflamm 19(1):111. https://doi.org/10.1186/s12974-022-02463-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Feng X, Bao R, Li L, Deisenhammer F, Arnason BGW, Reder AT (2019) Interferon-β corrects massive gene dysregulation in multiple sclerosis: short-term and long-term effects on immune regulation and neuroprotection. EBioMedicine 49:269–283. https://doi.org/10.1016/j.ebiom.2019.09.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Berge T, Eriksson A, Brorson IS et al (2019) Quantitative proteomic analyses of CD4+ and CD8+ T cells reveal differentially expressed proteins in multiple sclerosis patients and healthy controls. Clin Proteom 16:19. https://doi.org/10.1186/s12014-019-9241-5

    Article  CAS  Google Scholar 

  179. Feng X, Bao R, Li L, Deisenhammer F, Arnason BGW, Reder AT (2019) Interferon-β corrects massive gene dysregulation in multiple sclerosis: short-term and long-term effects on immune regulation and neuroprotection. EBioMedicine 49:269–283. https://doi.org/10.1016/j.ebiom.2019.09.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hussman J, Beecham A, Schmidt M et al (2016) GWAS analysis implicates NF-κB-mediated induction of inflammatory T cells in multiple sclerosis. Genes Immun 17:305–312. https://doi.org/10.1038/gene.2016.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Satoh J, Misawa T, Tabunoki H, Yamamura T (2008) Molecular network analysis of T-cell transcriptome suggests aberrant regulation of gene expression by NF-kappaB as a biomarker for relapse of multiple sclerosis. Dis Markers 25(1):27–35. https://doi.org/10.1155/2008/824640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Swindell WR, Bojanowski K, Chaudhuri RK (2020) A novel fumarate, isosorbide di-(methyl fumarate) (IDMF), replicates astrocyte transcriptome responses to dimethyl fumarate (DMF) but specifically down-regulates genes linked to a reactive phenotype. Biochem Biophys Res Commun 532(3):475–481. https://doi.org/10.1016/j.bbrc.2020.08.079

    Article  CAS  PubMed  Google Scholar 

  183. Swindell WR, Bojanowski K, Chaudhuri RK (2022) Transcriptomic analysis of fumarate compounds identifies unique effects of isosorbide di-(methyl fumarate) on NRF2, NF-kappaB and IRF1 pathway genes. Pharmaceuticals (Basel, Switzerland) 15(4):461. https://doi.org/10.3390/ph15040461

    Article  CAS  PubMed  Google Scholar 

  184. van Loo G, De Lorenzi R, Schmidt H et al (2006) Inhibition of transcription factor NF-κB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat Immunol 7:954–961. https://doi.org/10.1038/ni1372

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kennedy Bonjour for assistance with the scientific illustration in Fig. 8.

Funding

This research was supported by FINEP (Grant No. 01.16.0078.00) and Rede Nacional de Especialistas em ZIKA e Doenças Correlatas (RENEZIKA) (CNPq Number 440779/2016-2), Coordination for the Improvement of Higher Education Personnel (CAPES Number 88887.130752/2016- 00), Department of Science and Technology (DECIT No. 14/2016), Brazilian National Council for Scientific and Technological Development, and Foundation for Rio de Janeiro State Research (FAPERJ). Author EVS is supported by CAPES 88882.456162/2019-01.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were carried out by Elielson V Silva, Fabrícia Lima Fontes-Dantas, Thiago Viana Dantas, and Amanda Dutra. The first draft of the manuscript was written by Elielson V Silva, Fabrícia Lima Fontes-Dantas, and Soniza Vieira Alves-Leon, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Soniza Vieira Alves-Leon.

Ethics declarations

Ethics Approval

This study was conducted using open-source transcriptome data.

Consent to Participate

Not applicable to this study.

Consent for Publication

Not applicable to this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, E.V., Fontes-Dantas, F.L., Dantas, T.V. et al. Shared Molecular Signatures Across Zika Virus Infection and Multiple Sclerosis Highlight AP-1 Transcription Factor as a Potential Player in Post-ZIKV MS-Like Phenotypes. Mol Neurobiol 60, 4184–4205 (2023). https://doi.org/10.1007/s12035-023-03305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03305-y

Keywords

Navigation