Skip to main content
Log in

METTL3-Mediated N6-Methyladenosine Modification of lncRNA D26496 Suppresses the Proliferation and Migration of Schwann Cells after Sciatic Nerve Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Previous reports showed that LncRNA D26496 was downregulated and N6-methyladenosine (m6A) methyltransferase METTL3 was upregulated in sciatic nerve injury (SNI). YTH-Domain Family Member 2 (YTHDF2) regulated RNA degradation through recognizing m6A sites. However, whether METTL3-mediated m6A of D26496 plays a role in development of SNI is unknown. Therefore, in this study, we established a rat SNI model and a H2O2-induced Schwann cell injury model to investigate the role of D26496 in modulating SNI and how the expression of D26496 was regulated during this process. D26496 expression was downregulated in both models. Rats with SNI displayed severe oxidative stress, manifested as increased MDA production and decreased SOD and GSH activity. Moreover, overexpression of D26496 alleviated H2O2-induced Schwann cell injury likely by promoting cell proliferation and migration and suppressing cell apoptosis and oxidative stress. Mechanism studies found that METTL3 expression was upregulated after SNI, and silencing METTL3 reduced the D26496 m6A level, but upregulated D26496 expression. Subsequent studies found that YTHDF2 was upregulated after SNI, and abundant m6A modified D26496 in the precipitated protein-RNA complexes by anti-YTHDF2 antibody, whereas silencing YTHDF2 promoted D26496 expression but had no effect on m6A levels of D29496. Silencing D26496 reversed the protective effect of knocking down METTL3 or knocking down YTHDF2 on H2O2-induced cell damage. In vivo, D26496 overexpression alleviated SNI-induced neuropathic pain and oxidative stress. In conclusion, our results suggested that D26496 m6A modification mediated by METTL3 and recognition of D26496 m6A sites by YTHDF2 induced D26496 degradation, thereby participating in the progression of SNI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and are available from the corresponding author upon reasonable request.

Abbreviations

m6A:

N6-Methyladenosine

METTL3:

Methyltransferase-like 3

H2O2 :

Hydrogen peroxide

METTL14:

Methyltransferase-like 14

FBS:

Fetal bovine serum

Vector:

PcDNA3.1 vector

Scramble:

SiRNA-negative control

PI:

Propidium iodide

YTHDF2:

YTH-Domain Family Member 2

SNI:

Sciatic nerve injury

rRNA:

Ribosomal RNA

ALKBH5:

A-Ketoglutarate-dependent dioxygenase alkB homolog 5

FTO:

Fat mass and obesity-associated protein

WTAP:

WT1-associated protein

KIAA1429:

VIRMA, vir-Like m6A methyltransferase associated

SD:

Sprague-Dawley

PWT:

Paw withdrawal threshold

PWL:

Paw withdrawal latency

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

GSH:

Glutathione

References

  1. Arthur-Farraj P, Coleman MP (2021) Lessons from injury: how nerve injury studies reveal basic biological mechanisms and therapeutic opportunities for peripheral nerve diseases. Neurotherapeutics : J Am Soc Exp NeuroTherapeutics 18(4):2200–2221. https://doi.org/10.1007/s13311-021-01125-3

    Article  CAS  Google Scholar 

  2. Li C, Liu SY, Pi W, Zhang PX (2021) Cortical plasticity and nerve regeneration after peripheral nerve injury. Neural Regen Res 16(8):1518–1523. https://doi.org/10.4103/1673-5374.303008

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rigoni M, Negro S (2020) Signals orchestrating peripheral nerve repair. Cells 9(8). https://doi.org/10.3390/cells9081768

  4. Nocera G, Jacob C (2020) Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci: CMLS 77(20):3977–3989. https://doi.org/10.1007/s00018-020-03516-9

    Article  CAS  PubMed  Google Scholar 

  5. Liu B, Xin W, Tan JR, Zhu RP, Li T, Wang D, Kan SS, Xiong DK et al (2019) Myelin sheath structure and regeneration in peripheral nerve injury repair. Proc Natl Acad Sci USA 116(44):22347–22352. https://doi.org/10.1073/pnas.1910292116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lv W, Deng B, Duan W, Li Y, Liu Y, Li Z, Xia W, Li C (2018) Schwann cell plasticity is regulated by a weakened intrinsic antioxidant defense system in acute peripheral nerve injury. Neuroscience 382:1–13. https://doi.org/10.1016/j.neuroscience.2018.04.018

    Article  CAS  PubMed  Google Scholar 

  7. Ransohoff JD, Wei Y, Khavari PA (2018) The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 19(3):143–157. https://doi.org/10.1038/nrm.2017.104

    Article  CAS  PubMed  Google Scholar 

  8. Hosseini E, Bagheri-Hosseinabadi Z, De Toma I, Jafarisani M, Sadeghi I (2019) The importance of long non-coding RNAs in neuropsychiatric disorders. Mol Aspects Med 70:127–140. https://doi.org/10.1016/j.mam.2019.07.004

    Article  CAS  PubMed  Google Scholar 

  9. Zhang SF, Gao J, Liu CM (2019) The role of non-coding RNAs in neurodevelopmental disorders. Front Genet 10:1033. https://doi.org/10.3389/fgene.2019.01033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu B, Zhou S, Hu W, Qian T, Gao R, Ding G, Ding F, Gu X (2013) Altered long noncoding RNA expressions in dorsal root ganglion after rat sciatic nerve injury. Neurosci Lett 534:117–122. https://doi.org/10.1016/j.neulet.2012.12.014

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Wu J, Zhang X, Ding L, Zeng Q (2018) Microarray analysis of the expression profile of lncRNAs reveals the key role of lncRNA BC088327 as an agonist to heregulin-1β-induced cell proliferation in peripheral nerve injury. Int J Mol Med 41:3477–3484. https://doi.org/10.3892/ijmm.2018.3571

    Article  CAS  PubMed  Google Scholar 

  12. Ban Y, Tan P, Cai J, Li J, Hu M, Zhou Y, Mei Y, Tan Y et al (2020) LNCAROD is stabilized by m6A methylation and promotes cancer progression via forming a ternary complex with HSPA1A and YBX1 in head and neck squamous cell carcinoma. Mol Oncol 14(6):1282–1296. https://doi.org/10.1002/1878-0261.12676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, Sun HY, Zhu Q et al (2017) Cytoplasmic m 6 A reader YTHDF3 promotes mRNA translation. Cell Res 27(3):444–447. https://doi.org/10.1038/cr.2017.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song H, Feng X, Zhang H, Luo Y, Huang J, Lin M, Jin J, Ding X et al (2019) METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy 15(8):1419–1437. https://doi.org/10.1080/15548627.2019.1586246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roundtree IA, Evans ME, Pan T, He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169(7):1187–1200. https://doi.org/10.1016/j.cell.2017.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen XY, Zhang J, Zhu JS (2019) The role of m6A RNA methylation in human cancer. Mol Cancer 18(1):1–9. https://doi.org/10.1186/s12943-019-1033-z

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T (2019) The critical role of RNA m6A methylation in cancer. Can Res 79(7):1285–1292. https://doi.org/10.1158/0008-5472

    Article  Google Scholar 

  18. Zhang L, Hao D, Ma P, Ma B, Qin J, Tian G, Liu Z, Zhou X (2021) Epitranscriptomic analysis of m6A methylome after peripheral nerve injury. Front Genet 12:686000. https://doi.org/10.3389/fgene.2021.686000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu SF, Wang Y, Zhao QC (2022) Demethylase FTO promotes neuropathic pain development via regulating the m6A methylation levels of CXCR3. Acta Biochim Polonica. https://doi.org/10.18388/abp.2020_6185

    Article  Google Scholar 

  20. Chen Y, Guo W, Xu L, Li W, Cheng M, Hu Y, Xu W (2016) 17β-Estradiol promotes Schwann cell proliferation and differentiation, accelerating early remyelination in a mouse peripheral nerve injury model. Biomed Res Int 2016:7891202. https://doi.org/10.1155/2016/7891202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu X, Yu X, He Y, Wang L (2019) Long noncoding RNA nuclear enriched abundant transcript 1 promotes the proliferation and migration of Schwann cells by regulating the miR-34a/Satb1 axis. J Cell Physiol. https://doi.org/10.1002/jcp.28302

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, Tsang LH, Ho DW et al (2018) RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology (Baltimore, MD) 67(6):2254–2270. https://doi.org/10.1002/hep.29683

    Article  CAS  PubMed  Google Scholar 

  23. Zhou Z, Qi D, Gan Q, Wang F, Qin B, Li J, Wang H, Wang D (2021) Studies on the regulatory roles and related mechanisms of lncRNAs in the nervous system. Oxid Med Cell Longev 2021:6657944. https://doi.org/10.1155/2021/6657944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haider MT, Saito H, Zarrer J, Uzhunnumpuram K, Nagarajan S, Kari V, Horn-Glander M, Werner S et al (2020) Breast cancer bone metastases are attenuated in a Tgif1-deficient bone microenvironment. Breast Cancer Res: BCR 22(1):34. https://doi.org/10.1186/s13058-020-01269-8

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yao C, Wang Y, Zhang H, Feng W, Wang Q, Shen D, Qian T, Liu F et al (2018) lncRNA TNXA-PS1 modulates Schwann cells by functioning as a competing endogenous RNA following nerve injury. J Neurosci 38(29):6574–6585. https://doi.org/10.1523/JNEUROSCI.3790-16.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yao C, Chen Y, Wang J, Qian T, Feng W, Chen Y, Mao S, Yu B (2020) LncRNA BC088259 promotes Schwann cell migration through Vimentin following peripheral nerve injury. Glia 68(3):670–679. https://doi.org/10.1002/glia.23749

    Article  PubMed  Google Scholar 

  27. Qiu J, Yang X, Wang L, Zhang Q, Ma W, Huang Z, Bao Y, Zhong L et al (2019) Isoquercitrin promotes peripheral nerve regeneration through inhibiting oxidative stress following sciatic crush injury in mice. Ann Transl Med 7(22):680. https://doi.org/10.21037/atm.2019.11.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim M, Kim H, Kim D, Kim D, Huh Y, Park C, Chung HJ, Jung J et al (2019) Heme oxygenase 1 in Schwann cells regulates peripheral nerve degeneration against oxidative stress. ASN Neuro 11:1759091419838949. https://doi.org/10.1177/1759091419838949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen L, Chen Z, Xu Z, Feng W, Yang X, Qi Z (2021) Polydatin protects Schwann cells from methylglyoxal induced cytotoxicity and promotes crushed sciatic nerves regeneration of diabetic rats. Phytother Res: PTR 35(8):4592–4604. https://doi.org/10.1002/ptr.7177

    Article  CAS  PubMed  Google Scholar 

  30. Sun J, Zheng J, Li Y, Yan M, Li P, Ma L (2019) LncRNA EPIC1 downregulation mediates hydrogen peroxide-induced neuronal cell injury. Aging (Albany NY) 11(23):11463. https://doi.org/10.18632/aging.102545

    Article  CAS  PubMed  Google Scholar 

  31. Yuan J, Song Y, Pan W, Li Y, Xu Y, Xie M, Shen Y, Zhang N et al (2020) LncRNA SLC26A4-AS1 suppresses the MRN complex-mediated DNA repair signaling and thyroid cancer metastasis by destabilizing DDX5. Oncogene 39(43):6664–6676. https://doi.org/10.1038/s41388-020-01460-3

    Article  CAS  PubMed  Google Scholar 

  32. Wu Y, Yang X, Chen Z, Tian L, Jiang G, Chen F, Li J, An P et al (2019) m(6)A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer 18(1):87. https://doi.org/10.1186/s12943-019-1014-2

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen S, Zhou L, Wang Y (2020) ALKBH5-mediated m6A demethylation of lncRNA PVT1 plays an oncogenic role in osteosarcoma. Cancer Cell Int 20(1):34–43. https://doi.org/10.1186/s12935-020-1105-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang J, Zhang S, Wang W, Xu Y, Kawuli A, Lu J, Xiu X (2020) Long non-coding RNA DSCAM-AS1 contributes to the tumorigenesis of cervical cancer by targeting miR-877-5p/ATXN7L3 axis. Biosci Rep 40(1). https://doi.org/10.1042/bsr20192061

  35. Liu S, Zhuo L, Wang J, Zhang Q, Li Q, Li G, Yan L, Jin T et al (2020) METTL3 plays multiple functions in biological processes. Am J Cancer Res 10(6):1631–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zeng C, Huang W, Li Y, Weng H (2020) Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol 13(1):117. https://doi.org/10.1186/s13045-020-00951-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu W, Li J, He C, Wen J, Ma H, Rong B, Diao J, Wang L et al (2021) METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature 591(7849):317–321. https://doi.org/10.1038/s41586-021-03210-1

    Article  CAS  PubMed  Google Scholar 

  38. Hou J, Zhang H, Liu J, Zhao Z, Wang J, Lu Z, Hu B, Zhou J, Zhao Z et al (2019) YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Mol Cancer 18(1):163. https://doi.org/10.1186/s12943-019-1082-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu R, Li Q, Feng Z, Cai L, Xu Q (2019) m6A reader YTHDF2 regulates LPS-induced inflammatory response. Int J Mol Sci 20(6):1323. https://doi.org/10.3390/ijms20061323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li M, Zhao X, Wang W, Shi H, Pan Q, Lu Z, Perez SP, Suganthan R et al (2018) Ythdf2-mediated m(6)A mRNA clearance modulates neural development in mice. Genome Biol 19(1):69. https://doi.org/10.1186/s13059-018-1436-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu H, Wang Z, Chen M, Zhao W, Tao T, Ma L, Ni Y, Li W (2021) YTHDF2 alleviates cardiac hypertrophy via regulating Myh7 mRNA decoy. Cell Biosci 11(1):132. https://doi.org/10.1186/s13578-021-00649-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dingjun Hao designed the experiments. Xin He, Jia’nan Zhang, Yunshan Guo, and Xiaowei Yang performed the experimental work. Yunfei Huang provided statistical analysis and figures for the manuscript. Xin He and Dingjun Hao wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dingjun Hao.

Ethics declarations

Ethics Approval

The present study and the associated experimental protocols were performed in compliance with ethical guidelines and approved by the Ethics Committee of Hong Hui Hospital.

Consent for Publication

All authors approved the manuscript for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhang, J., Guo, Y. et al. METTL3-Mediated N6-Methyladenosine Modification of lncRNA D26496 Suppresses the Proliferation and Migration of Schwann Cells after Sciatic Nerve Injury. Mol Neurobiol 60, 2413–2425 (2023). https://doi.org/10.1007/s12035-023-03222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03222-0

Keywords

Navigation