Skip to main content
Log in

mTORC1-Dependent and GSDMD-Mediated Pyroptosis in Developmental Sevoflurane Neurotoxicity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Developmental sevoflurane exposure leads to neuronal cell death, and subsequent learning and memory cognitive defects. The underlyi\ng mechanism remains to be elucidated. Gasdermin D (GSDMD)-mediated pyroptosis is a form of inflammatory cell death and participates in a variety of neurodegenerative diseases. Several studies illustrated that dysregulation of mTOR activity is involved in pyroptotic cell death. The current study was designed to interrogate the role of GSDMD-mediated pyroptosis and mTOR activity in developmental sevoflurane exposure. We found that inhibition of GSDMD pore formation with Disulfiram (DSF) or Necrosulfonamide (NSA) significantly attenuated sevoflurane neurotoxicity in vitro. In addition, treatment with DSF or NSA also mitigated damage-associated molecular patterns (DAMPs) release and subsequent plasma membrane rupture (PMR) induced by sevoflurane challenge. Further investigation showed that the overactivation of mTOR signaling is involved in sevoflurane induced pyroptosis both in vivo and in vitro. Intriguingly, we found that the DAMPs release and subsequent PMR triggered by developmental sevoflurane priming were compromised by knocking down the expression of mTORC1 component Raptor, but not mTORC2 component Rictor. Moreover, sevoflurane induced pyroptosis could also be restored by suppressing mTOR activity or knocking down the expressions of Ras-related small GTPases RagA or RagC. Finally, administration of DSF or NSA dramatically improved the spatial and emotional cognitive disorders without alternation of locomotor activity. Taken together, these results indicate that mTORC1-dependent and GSDMD-mediated pyroptosis contributes to the developmental sevoflurane neurotoxicity. Characterizing these processes may provide experimental evidence for the possible prevention of developmental sevoflurane neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and are available from the corresponding author on reasonable request.

Abbreviations

4E-BP1:

EIF-4E binding protein-1

CNS:

Central nervous system

DAMPs:

Damage-associated molecular patterns

DSF:

Disulfiram

GSDMD:

Gasdermin D

HMGB1:

High-mobility group box 1

LDH:

Lactate dehydrogenase

mTOR:

Mammalian target of rapamycin

MWM:

Morris water maze

NINJ1:

Ninjurin-1

NSA:

Necrosulfonamide

PMR:

Plasma membrane rupture

S6K1:

P70 ribosomal protein S6 kinase 1

References

  1. Lu Y, Wu X, Dong Y, Xu Z, Zhang Y, Xie Z (2010) Anesthetic sevoflurane causes neurotoxicity differently in neonatal naive and Alzheimer disease transgenic mice. Anesthesiology 112:1404–1416

    Article  CAS  Google Scholar 

  2. Satomoto M, Satoh Y, Terui K, Miyao H, Takishima K, Ito M, Imaki J (2009) Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology 110:628–637

    Article  CAS  Google Scholar 

  3. Shih J, May LD, Gonzalez HE, Lee EW, Alvi RS, Sall JW, Rau V, Bickler PE et al (2012) Delayed environmental enrichment reverses sevoflurane-induced memory impairment in rats. Anesthesiology 116(3):586–602

    Article  CAS  Google Scholar 

  4. Kalkman CJ, Peelen L, Moons KG, Veenhuizen M, Bruens M, Sinnema G, de Jong TP (2009) Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology 110(4):805–812

    Article  Google Scholar 

  5. DiMaggio C, Sun LS, Kakavouli A, Byrne MW, Li G (2009) A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J Neurosurg Anesthesiol 21:286–291

    Article  Google Scholar 

  6. Yon JH, Daniel-Johnson J, Carter LB, Jevtovic-Todorovic V (2005) Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135:815–827

    Article  CAS  Google Scholar 

  7. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3(1):79–83

    Article  CAS  Google Scholar 

  8. Frank D, Vince JE (2019) Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ 26:99–114

    Article  Google Scholar 

  9. Kayagaki N, Kornfeld OS, Lee BL, Stowe IB, O’Rourke K, Li Q et al (2021) NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591:131–136

    Article  CAS  Google Scholar 

  10. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671

    Article  CAS  Google Scholar 

  11. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H et al (n. d) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660-665

  12. Lammert CR, Frost EL, Bellinger CE, Bolte AC, McKee CA, Hurt ME et al (2020) AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580:647–652

    Article  CAS  Google Scholar 

  13. Hu Y, Wang B, Li S, Yang S (2022) Pyroptosis, and its role in central nervous system disease. J Mol Biol 434:167379

    Article  CAS  Google Scholar 

  14. Liu GY, Sabatini DM (2020) mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 21:183–203

    Article  CAS  Google Scholar 

  15. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A et al (n. d) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131-1143

  16. Pagani M, Barsotti N, Bertero A, Trakoshis S, Ulysse L, Locarno A et al (n. d) mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity. Nat Commun 12:6084

  17. Li M-y, Zhu X-l, Zhao B-x, Shi L, Wang W, Hu W et al (2019) Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS–AMPK–mTOR axis. Cell Death Dis 10:1–14

    Google Scholar 

  18. Evavold CL, Hafner-Bratkovic I, Devant P, D’Andrea JM, Ngwa EM, Borsic E et al (2021) Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell 184:4495–4511

    Article  CAS  Google Scholar 

  19. Lerman J, Sikich N, Kleinman S, Yentis S (1994) The pharmacology of sevoflurane in infants and children. Anesthesiology 80(4):814–824

    Article  CAS  Google Scholar 

  20. Wang WY, Wu XM, Jia LJ, Zhang HH, Cai F, Mao H, Xu WC, Chen L, Zhang J, Hu SF (2016) Beta-arrestin1 and 2 differently modulate metabotropic glutamate receptor 7 signaling in rat developmental sevoflurane-induced neuronal apoptosis. Neuroscience 313:199–212

    Article  CAS  Google Scholar 

  21. Wang WY, Jia LJ, Luo Y, Zhang HH, Cai F, Mao H, Xu WC, Fang JB, Peng ZY, Ma ZW, Chen YH, Zhang J, Wei Z, Yu BW, Hu SF (2016) Location-and subunit-specific NMDA receptors determine the developmental sevoflurane neurotoxicity through ERK1/2 signaling. Mol Neurobiol 53:216–230

    Article  CAS  Google Scholar 

  22. Wang WY, Wang H, Luo Y, Jia LJ, Zhao JN, Zhang HH, Ma ZW, Xue QS, Yu BW (2012) The effects of metabotropic glutamate receptor 7 allosteric agonist N, N′-dibenzhydrylethane-1, 2-diamine dihydrochloride on developmental sevoflurane neurotoxicity: role of extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase signaling pathway. Neuroscience 205:167–177

    Article  CAS  Google Scholar 

  23. Wang WY, Luo Y, Jia LJ, Hu SF, Lou XK, Shen SL, Lu H, Zhang HH, Yang R, Wang H, Ma ZW, Xue QS, Yu BW (2014) Inhibition of aberrant cyclin-dependent kinase 5 activity attenuates isoflurane neurotoxicity in the developing brain. Neuropharmacology 77:90–99

    Article  CAS  Google Scholar 

  24. Dai J, Li X, Wang C, Gu S, Dai L, Zhang J et al (2021) Repeated neonatal sevoflurane induced neurocognitive impairment through NF-κB-mediated pyroptosis. J Neuroinflamm 18:1–11

    Article  Google Scholar 

  25. Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC (2018) The pore-forming protein gasdermin D regulates Interleukin-1 secretion from living macrophages. Immunity 48:35–44

    Article  CAS  Google Scholar 

  26. Russo AJ, Vasudevan SO, Méndez-Huergo SP, Kumari P, Menoret A, Duduskar S et al (2021) Intracellular immune sensing promotes inflammation via gasdermin D–driven release of a lectin alarmin. Nat Immunol 22:154–165

    Article  CAS  Google Scholar 

  27. Yang H, Wang H, Andersson U (2020) Targeting inflammation driven by HMGB1. Front Immunol 11:484

    Article  CAS  Google Scholar 

  28. Wang Y, Shao F (2021) NINJ1, rupturing swollen membranes for cataclysmic cell lysis. Mol Cell 81(7):1370–1371

    Article  CAS  Google Scholar 

  29. Efeyan A, Zoncu R, Chang S, Gumper I, Snitkin H, Wolfson RL et al (2013) Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493:679–683

    Article  CAS  Google Scholar 

  30. Ing C, Warner DO, Sun LS, Flick RP, Davidson AJ, Vutskits L et al (2022) Anesthesia and developing brains: unanswered questions and proposed paths forward. Anesthesiology 136(3):500–512

    Article  Google Scholar 

  31. Kolbrink B, Riebeling T, Kunzendorf U, Krautwald S (2020) Plasma membrane pores drive inflammatory. Cell Death Front Cell Dev Biol 8:817

    Article  Google Scholar 

  32. Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B et al (2018) Pathogen blockade of TAK1 triggers caspase-8–dependent cleavage of gasdermin D and cell death. Science 362:1064–1069

    Article  CAS  Google Scholar 

  33. Demarco B, Grayczyk JP, Bjanes E, Le Roy D, Tonnus W, Assenmacher C-A et al (2020) Caspase-8–dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci Adv 6:eabc3465

    Article  CAS  Google Scholar 

  34. Zhang H, Zeng L, Xie M, Liu J, Zhou B, Wu R et al (2020) TMEM173 drives lethal coagulation in sepsis. Cell Host Microbe 27:556–570

    Article  CAS  Google Scholar 

  35. Rogers C, Erkes DA, Nardone A, Aplin AE, Fernandes-Alnemri T, Alnemri ES (2019) Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun 10:1689

    Article  Google Scholar 

  36. Fischer FA, Chen KW, Bezbradica JS (2021) Posttranslational and therapeutic control of gasdermin-mediated pyroptosis and inflammation. Front Immunol 12:661162

    Article  CAS  Google Scholar 

  37. Liu X, Xia S, Zhang Z, Wu H, Lieberman J (2021) Channelling inflammation: gasdermins in physiology and disease. Nat Rev Drug Discov 20:384–405

    Article  CAS  Google Scholar 

  38. Nie Y, Li S, Yan T, Ma Y, Ni C, Wang H, Zheng H (2020) Propofol attenuates isoflurane-induced neurotoxicity and cognitive impairment in fetal and offspring mice. Anesth Analg 131:1616–1625

    Article  CAS  Google Scholar 

  39. Tang XL, Wang X, Fang G, Zhao YL, Yan J, Zhou Z et al (2021) Resveratrol ameliorates sevoflurane-induced cognitive impairment by activating the SIRT1/NF-kappaB pathway in neonatal mice. J Nutr Biochem 90:108579

    Article  CAS  Google Scholar 

  40. Montana MC, Evers AS (2017) Anesthetic neurotoxicity: new findings and future directions. J Pediatr 181:279–285

    Article  Google Scholar 

  41. Paudel YN, Shaikh MF, Chakraborti A, Kumari Y, Aledo-Serrano A, Aleksovska K et al (2018) HMGB1: a common biomarker and potential target for TBI, neuroinflammation, epilepsy, and cognitive dysfunction. Front Neurosci 12:628

    Article  Google Scholar 

  42. Volchuk A, Ye A, Chi L, Steinberg BE, Goldenberg NM (2020) Indirect regulation of HMGB1 release by gasdermin D. Nat Commun 11:4561

    Article  CAS  Google Scholar 

  43. Yue J, Hui L, Xie G, Chen S, Wu S, Fang X (2013) Sevoflurane combined with ATP activates caspase-1 and triggers caspase-1-dependent pyroptosis in murine J774 macrophages. Inflammation 36:330–336

    Article  Google Scholar 

  44. Querfurth H, Lee HK (2021) Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 16:44

    Article  CAS  Google Scholar 

  45. Zhang J, Wang C, Yu S, Luo Z, Chen Y, Liu Q et al (2014) Sevoflurane postconditioning protects rat hearts against ischemia-reperfusion injury via the activation of PI3K/AKT/mTOR signaling. Sci Rep 4:7317

    Article  CAS  Google Scholar 

  46. Rathkey JK, Zhao J, Liu Z, Chen Y, Yang J, Kondolf HC et al (2018) Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci Immunol 3:eaat2738

    Article  Google Scholar 

  47. Sun L, Wang H, Wang Z, He S, Chen S, Liao D et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227

    Article  CAS  Google Scholar 

  48. Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J et al (2020) FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol 21:736–745

    Article  CAS  Google Scholar 

  49. Wang C, Yang T, Xiao J, Xu C, Mbalaviele G (2021) Activation of GSDME compensates for GSDMD deficiency in a mouse model of NLRP3 inflammasomopathy. bioRxiv 2021 https://doi.org/10.1101/2021.01.06.425634

  50. Wang Y, Gao W, Shi X, Ding J, Liu W, He H et al (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547:99–103

    Article  CAS  Google Scholar 

  51. Taabazuing CY, Okondo MC, Bachovchin DA (2017) Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem Biol 24:507–514

    Article  CAS  Google Scholar 

  52. Chavan SS, Huerta PT, Robbiati S, Valdes-Ferrer SI, Ochani M, Dancho M et al (2012) HMGB1 mediates cognitive impairment in sepsis survivors. Mol Med 18:930–937

    Article  CAS  Google Scholar 

  53. Brück E, Lasselin J, Andersson U, Sackey PV, Olofsson PS (2020) Prolonged elevation of plasma HMGB1 is associated with cognitive impairment in intensive care unit survivors. Intensive Care Med 46:811–812

    Article  Google Scholar 

  54. Kang E, Jiang D, Ryu YK, Lim S, Kwak M, Gray CD et al (2017) Early postnatal exposure to isoflurane causes cognitive deficits and disrupts development of newborn hippocampal neurons via activation of the mTOR pathway. PLoS Biol 15:e2001246

    Article  Google Scholar 

  55. Wen J, Xu J, Mathena RP, Choi JH, Mintz CD (2021) Early isoflurane exposure impairs synaptic development in Fmr1 KO mice via the mTOR pathway. Neurochem Res 46:1577–1588

    Article  CAS  Google Scholar 

  56. Vanderplow AM, Eagle AL, Kermath BA, Bjornson KJ, Robison AJ, Cahill ME (2021) Akt-mTOR hypoactivity in bipolar disorder gives rise to cognitive impairments associated with altered neuronal structure and function. Neuron 109:1479–1496

    Article  CAS  Google Scholar 

  57. Bedoui S, Herold MJ, Strasser A (2020) Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol 21:678–695

    Article  CAS  Google Scholar 

  58. de Vasconcelos NM, Van Opdenbosch N, Van Gorp H, Parthoens E, Lamkanfi M (2019) Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture. Cell Death Differ 26:146–161

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Luo Fo-Quan and Hong Hua-li for critical comments on this topic.

Funding

This research was supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY18H310007 (Wen-Yuan Wang), and the National Natural Science Foundation, Beijing, China, grant No. 81302858 (Wen-Yuan Wang), the National Key Research and Development Program of China (No. 2018YFC2001904) and the Zhejiang Provincial Science and Technology Project (No. 2023574725).

Author information

Authors and Affiliations

Authors

Contributions

WWY designed the study, conducted the majority of the experiments and wrote most of the manuscript. YWQ prepared neuronal cultures and wrote the preliminary manuscript. HQY and LYS helped with western blot analysis. QSJ and LJT performed the behavior study. MH and CF carried out FCM and immunofluorescence. YHL performed confocal microscopy, analyzed the results, edited the manuscript and contributed to the supervision of the study. All authors approved the version to be published.

Corresponding authors

Correspondence to Wang Wen-Yuan or Yang Hui-Ling.

Ethics declarations

Ethics Approval

All animal experiments and protocol have been approved by the Animal Care and Use Committee of Zhejiang Provincial People’s Hospital (Affiliated People`s Hospital, Hangzhou Medical College).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen-Yuan, W., Wan-Qing, Y., Qi-Yun, H. et al. mTORC1-Dependent and GSDMD-Mediated Pyroptosis in Developmental Sevoflurane Neurotoxicity. Mol Neurobiol 60, 116–132 (2023). https://doi.org/10.1007/s12035-022-03070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03070-4

Keywords

Navigation