Skip to main content

Advertisement

Log in

Muscone Can Improve Spinal Cord Injury by Activating the Angiogenin/Plexin-B2 Axis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a devastating neurological disorder that usually damages sensorimotor and autonomic functions. Signaling pathways can play a key role in the repair process of SCI. The plexin-B2 acts as a receptor for angiogenin and mediates ribosomal RNA transcription, influencing cell survival and proliferation. Protein kinase B serine/threonine kinase interacts with angiogenin to form a positive feedback effect. Brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor can induce angiogenin nuclear translocation. Moreover, the BDNF can promote the secretion of angiogenin. Interestingly, all of them can activate the angiogenin/plexin-B2 axis. Muscone has anti-inflammatory and proliferative features as it can inhibit nuclear transcription factor kappa-B (NF-κB) and activate the angiogenin/plexin-B2 axis, thus being significant agent in the SCI repair process. Herein, we review the potential mechanism of angiogenin/plexin-B2 axis activation and the role of muscone in SCI treatment. Muscone may attenuate inflammatory responses and promote neuronal regeneration after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018. https://doi.org/10.1038/nrdp.2017.18

    Article  PubMed  Google Scholar 

  2. Badhiwala JH, Wilson JR, Fehlings MG (2019) Global burden of traumatic brain and spinal cord injury. Lancet Neurol 18(1):24–25. https://doi.org/10.1016/S1474-4422(18)30444-7

    Article  PubMed  Google Scholar 

  3. GBD 2016 Neurology Collaborators (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18(5):459–480. https://doi.org/10.1016/S1474-4422(18)30499-X

    Article  Google Scholar 

  4. Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, Ismail OHR, Athi Kumar RK et al (2020) Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci 21(20):7533. https://doi.org/10.3390/ijms21207533

    Article  CAS  PubMed Central  Google Scholar 

  5. Okada S (2016) The pathophysiological role of acute inflammation after spinal cord injury. Inflamm Regen 36:20. https://doi.org/10.1186/s41232-016-0026-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Al Mamun A, Wu Y, Monalisa I, Jia C, Zhou K, Munir F, Xiao J (2020) Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res 28:97–109. https://doi.org/10.1016/j.jare.2020.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun G, Li G, Li D, Huang W, Zhang R, Zhang H, Duan Y, Wang B (2018) hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater Sci Eng C Mater Biol Appl 89:194–204. https://doi.org/10.1016/j.msec.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  8. Hu XC, Lu YB, Yang YN, Kang XW, Wang YG, Ma B, Xing S (2021) Progress in clinical trials of cell transplantation for the treatment of spinal cord injury: how many questions remain unanswered? Neural Regen Res 16(3):405–413. https://doi.org/10.4103/1673-5374.293130

    Article  PubMed  Google Scholar 

  9. Yang Y, Fan Y, Zhang H, Zhang Q, Zhao Y, Xiao Z, Liu W, Chen B et al (2021) Small molecules combined with collagen hydrogel direct neurogenesis and migration of neural stem cells after spinal cord injury. Biomaterials 269:120479. https://doi.org/10.1016/j.biomaterials.2020.120479

    Article  CAS  PubMed  Google Scholar 

  10. Lv R, Du L, Zhang L, Zhang Z (2019) Polydatin attenuates spinal cord injury in rats by inhibiting oxidative stress and microglia apoptosis via Nrf2/HO-1 pathway. Life Sci 217:119–127. https://doi.org/10.1016/j.lfs.2018.11.053

    Article  CAS  PubMed  Google Scholar 

  11. Zhou X, Wahane S, Friedl MS, Kluge M, Friedel CC, Avrampou K, Zachariou V, Guo L et al (2020) Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2. Nat Neurosci 23(3):337–350. https://doi.org/10.1038/s41593-020-0597-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu W, Goncalves KA, Li S, Kishikawa H, Sun G, Yang H, Vanli N, Wu Y et al (2017) Plexin-B2 mediates physiologic and pathologic functions of angiogenin. Cell 171(4):849-864.e25. https://doi.org/10.1016/j.cell.2017.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Phung HM, Lee S, Hwang JH, Kang KS (2020) preventive effect of muscone against cisplatin nephrotoxicity in LLC-PK1 cells. Biomolecules 10(10):1444. https://doi.org/10.3390/biom10101444

    Article  CAS  PubMed Central  Google Scholar 

  14. Zhou LY, Yao M, Tian ZR, Liu SF, Song YJ, Ye J, Li G, Sun YL et al (2020) Muscone suppresses inflammatory responses and neuronal damage in a rat model of cervical spondylotic myelopathy by regulating Drp1-dependent mitochondrial fission. J Neurochem 155(2):154–176. https://doi.org/10.1111/jnc.15011

    Article  CAS  PubMed  Google Scholar 

  15. Abd El Wahab MG, Ali SS, Ayuob NN (2018) The role of musk in relieving the neurodegenerative changes induced after exposure to chronic stress. Am J Alzheimers Dis Other Demen. 33(4):221–231. https://doi.org/10.1177/1533317518755993

    Article  PubMed  Google Scholar 

  16. Mori A, Nishioka Y, Yamada M, Nishibata Y, Masuda S, Tomaru U, Honma N, Moriyama T et al (2018) Brain-derived neurotrophic factor induces angiogenin secretion and nuclear translocation in human umbilical vein endothelial cells. Pathol Res Pract 214(4):521–526. https://doi.org/10.1016/j.prp.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  17. Du Y, Ge Y, Xu Z, Aa N, Gu X, Meng H, Lin Z, Zhu D et al (2018) Hypoxia-inducible factor 1 alpha (HIF-1α)/vascular endothelial growth factor (VEGF) pathway participates in angiogenesis of myocardial infarction in muscone-treated mice: preliminary study. Med Sci Monit 24:8870–8877. https://doi.org/10.12659/MSM.912051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karki A, Purohit R, Nosack S, Bharathy N, Michalek JE, Chen S, Keller C (2022) Plexin-B2 and semaphorins do not drive rhabdomyosarcoma proliferation or migration. Sarcoma 2022:9646909. https://doi.org/10.1155/2022/9646909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hemida AS, Mareae AH, Elbasiony ASA, Shehata WA (2020) Plexin-B2 in psoriasis; a clinical and immunohistochemical study. J Immunoassay Immunochem 41(4):718–728. https://doi.org/10.1080/15321819.2020.1741385

    Article  CAS  PubMed  Google Scholar 

  20. Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, Chedotal A, Winberg ML et al (1999) Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99(1):71–80. https://doi.org/10.1016/s0092-8674(00)80063-x

    Article  CAS  PubMed  Google Scholar 

  21. Deng S, Hirschberg A, Worzfeld T, Penachioni JY, Korostylev A, Swiercz JM, Vodrazka P, Mauti O et al (2007) Plexin-B2, but not Plexin-B1, critically modulates neuronal migration and patterning of the developing nervous system in vivo. J Neurosci 27(23):6333–6347. https://doi.org/10.1523/JNEUROSCI.5381-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nishide M, Kumanogoh A (2018) The role of semaphorins in immune responses and autoimmune rheumatic diseases. Nat Rev Rheumatol 14(1):19–31. https://doi.org/10.1038/nrrheum.2017.201

    Article  CAS  PubMed  Google Scholar 

  23. McDermott JE, Goldblatt D, Paradis S (2018) Class 4 Semaphorins and Plexin-B receptors regulate GABAergic and glutamatergic synapse development in the mammalian hippocampus. Mol Cell Neurosci 92:50–66. https://doi.org/10.1016/j.mcn.2018.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simonetti M, Paldy E, Njoo C, Bali KK, Worzfeld T, Pitzer C, Kuner T, Offermanns S et al (2021) The impact of semaphorin 4C/plexin-B2 signaling on fear memory via remodeling of neuronal and synaptic morphology. Mol Psychiatry 26(4):1376–1398. https://doi.org/10.1038/s41380-019-0491-4

    Article  PubMed  Google Scholar 

  25. Van Battum E, Heitz-Marchaland C, Zagar Y, Fouquet S, Kuner R, Chédotal A (2021) Plexin-B2 controls the timing of differentiation and the motility of cerebellar granule neurons. Elife 10:e60554. https://doi.org/10.7554/eLife.60554

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xia J, Swiercz JM, Bañón-Rodríguez I, Matković I, Federico G, Sun T, Franz T, Brakebusch CH et al (2015) Semaphorin-plexin signaling controls mitotic spindle orientation during epithelial morphogenesis and repair. Dev Cell 33(3):299–313. https://doi.org/10.1016/j.devcel.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  27. Paldy E, Simonetti M, Worzfeld T, Bali KK, Vicuña L, Offermanns S, Kuner R (2017) Semaphorin 4C Plexin-B2 signaling in peripheral sensory neurons is pronociceptive in a model of inflammatory pain. Nat Commun 8(1):176. https://doi.org/10.1038/s41467-017-00341-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Povysheva T, Shmarov M, Logunov D, Naroditsky B, Shulman I, Ogurcov S, Kolesnikov P, Islamov R et al (2017) Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG. J Neurosurg Spine 27(1):105–115. https://doi.org/10.3171/2016.9.SPINE15959

    Article  PubMed  Google Scholar 

  29. Bai R, Sun D, Chen M, Shi X, Luo L, Yao Z, Liu Y, Ge X et al (2020) Myeloid cells protect intestinal epithelial barrier integrity through the angiogenin/plexin-B2 axis. EMBO J 39(13):e103325. https://doi.org/10.15252/embj.2019103325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oikonomou KA, Kapsoritakis AN, Kapsoritaki AI, Manolakis AC, Tiaka EK, Tsiopoulos FD, Tsiompanidis IA, Potamianos SP (2011) Angiogenin, angiopoietin-1, angiopoietin-2, and endostatin serum levels in inflammatory bowel disease. Inflamm Bowel Dis 17(4):963–970. https://doi.org/10.1002/ibd.21410

    Article  PubMed  Google Scholar 

  31. Junqueira Alves C, Dariolli R, Haydak J, Kang S, Hannah T, Wiener RJ, DeFronzo S, Tejero R et al (2021) Plexin-B2 orchestrates collective stem cell dynamics via actomyosin contractility, cytoskeletal tension and adhesion. Nat Commun. 12(1):6019. https://doi.org/10.1038/s41467-021-26296-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiao C, Luo Y, Zhang C, Zhu Z, Yang L, Qiao H, Fu M, Wang G et al (2020) Negative regulation of dendritic cell activation in psoriasis mediated via CD100-plexin-B2. J Pathol 250(4):409–419. https://doi.org/10.1002/path.5383

    Article  CAS  PubMed  Google Scholar 

  33. Daviaud N, Chen K, Huang Y, Friedel RH, Zou H (2016) Impaired cortical neurogenesis in plexin-B1 and -B2 double deletion mutant. Dev Neurobiol 76(8):882–899. https://doi.org/10.1002/dneu.22364

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Shen S, Li P, Fan Y, Zhang L, Li W, Liu Y (2019) PLEXIN-B2 promotes the osteogenic differentiation of human bone marrow mesenchymal stem cells via activation of the RhoA signaling pathway. Cell Signal 62:109343. https://doi.org/10.1016/j.cellsig.2019.06.008

    Article  CAS  PubMed  Google Scholar 

  35. Garcia A, Dunoyer-Geindre S, Zapilko V, Nolli S, Reny JL, Fontana P (2019) Functional validation of microrna-126-3p as a platelet reactivity regulator using human haematopoietic stem cells. Thromb Haemost 119(2):254–263. https://doi.org/10.1055/s-0038-1676802

    Article  PubMed  Google Scholar 

  36. Atkin-Smith GK, Miles MA, Tixeira R, Lay FT, Duan M, Hawkins CJ, Phan TK, Paone S et al (2019) Plexin B2 is a regulator of monocyte apoptotic cell disassembly. Cell Rep 29(7):1821-1831.e3. https://doi.org/10.1016/j.celrep.2019.10.014

    Article  CAS  PubMed  Google Scholar 

  37. Yan H, Wu L, Shih C, Hou S, Shi J, Mao T, Chen W, Melvin B et al (2017) Plexin B2 and semaphorin 4C guide T cell recruitment and function in the germinal center. Cell Rep 19(5):995–1007. https://doi.org/10.1016/j.celrep.2017.04.022

    Article  CAS  PubMed  Google Scholar 

  38. Zhang C, Xiao C, Dang E, Cao J, Zhu Z, Fu M, Yao X, Liu Y et al (2018) CD100-Plexin-B2 promotes the inflammation in psoriasis by activating NF-κB and the inflammasome in keratinocytes. J Invest Dermatol 138(2):375–383. https://doi.org/10.1016/j.jid.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  39. Nishide M, Nojima S, Ito D, Takamatsu H, Koyama S, Kang S, Kimura T, Morimoto K et al (2017) Semaphorin 4D inhibits neutrophil activation and is involved in the pathogenesis of neutrophil-mediated autoimmune vasculitis. Ann Rheum Dis 76(8):1440–1448. https://doi.org/10.1136/annrheumdis-2016-210706

    Article  CAS  PubMed  Google Scholar 

  40. Gensel JC, Zhang B (2015) Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 1619:1–11. https://doi.org/10.1016/j.brainres.2014.12.045

    Article  CAS  PubMed  Google Scholar 

  41. Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ (2010) Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain 133(Pt 2):433–447. https://doi.org/10.1093/brain/awp322

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhou Y, Dong Q, Pan Z, Song Y, Su P, Niu Y, Sun Y, Liu D (2019) hyperbaric oxygen improves functional recovery of the injured spinal cord by inhibiting inflammation and glial scar formation. Am J Phys Med Rehabil 98(10):914–920. https://doi.org/10.1097/PHM.0000000000001225

    Article  PubMed  Google Scholar 

  43. Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS et al (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532(7598):195–200. https://doi.org/10.1038/nature17623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang C, Wang Q, Lou Y, Xu J, Feng Z, Chen Y, Tang Q, Zheng G et al (2018) Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. J Cell Mol Med 22(2):1148–1166. https://doi.org/10.1111/jcmm.13368

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, He X, Kawaguchi R, Zhang Y, Wang Q, Monavarfeshani A, Yang Z, Chen B et al (2020) Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 587(7835):613–618. https://doi.org/10.1038/s41586-020-2795-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen G, Li J, Wang Z, Liu W (2020) Ezetimibe protects against spinal cord injury by regulating autophagy and apoptosis through inactivation of PI3K/AKT/mTOR signaling. Am J Transl Res 12(6):2685–2694

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Song M, Bode AM, Dong Z, Lee MH (2019) AKT as a therapeutic target for cancer. Cancer Res 79(6):1019–1031. https://doi.org/10.1158/0008-5472.CAN-18-2738

    Article  CAS  PubMed  Google Scholar 

  48. Revathidevi S, Munirajan AK (2019) Akt in cancer: Mediator and more. Semin Cancer Biol 59:80–91. https://doi.org/10.1016/j.semcancer.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  49. Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li X, Yang W, Zhang C et al (2017) A Circular RNA Binds To and Activates AKT Phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 7(16):3842–3855. https://doi.org/10.7150/thno.19764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13(22):2905–2927. https://doi.org/10.1101/gad.13.22.2905

    Article  CAS  PubMed  Google Scholar 

  51. Umar S, Soni R, Durgapal SD, Soman S, Balakrishnan S (2020) A synthetic coumarin derivative (4-flourophenylacetamide-acetyl coumarin) impedes cell cycle at G0/G1 stage, induces apoptosis, and inhibits metastasis via ROS-mediated p53 and AKT signaling pathways in A549 cells. J Biochem Mol Toxicol 34(10):e22553. https://doi.org/10.1002/jbt.22553

    Article  CAS  PubMed  Google Scholar 

  52. He Y, Liu X, Chen Z (2020) Glial scar-a promising target for improving outcomes after CNS injury. J Mol Neurosci 70(3):340–352. https://doi.org/10.1007/s12031-019-01417-6

    Article  CAS  PubMed  Google Scholar 

  53. Hart CG, Karimi-Abdolrezaee S (2021) Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 99(10):2427–2462. https://doi.org/10.1002/jnr.24922

    Article  CAS  PubMed  Google Scholar 

  54. Xu X, Zhang A, Zhu Y, He W, Di W, Fang Y, Shi X (2018) MFG-E8 reverses microglial-induced neurotoxic astrocyte (A1) via NF-κB and PI3K-Akt pathways. J Cell Physiol 234(1):904–914. https://doi.org/10.1002/jcp.26918

    Article  CAS  PubMed  Google Scholar 

  55. Ju WK, Shim MS, Kim KY, Park TL, Ahn S, Edwards G, Weinreb RN (2019) Inhibition of cAMP/PKA pathway protects optic nerve head astrocytes against oxidative stress by Akt/Bax phosphorylation-mediated Mfn1/2 oligomerization. Oxid Med Cell Longev 2019:8060962. https://doi.org/10.1155/2019/8060962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gao Q, Yu G, Yu M, Wang X (2020) Bupleuri radix prevents the recurrences of resected colonic polyps by affecting angiogenin-2-induced protein kinase B/Akt signaling. J Oncol 2020:3531652. https://doi.org/10.1155/2020/3531652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim HM, Kang DK, Kim HY, Kang SS, Chang SI (2007) Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells. Biochem Biophys Res Commun 352(2):509–513. https://doi.org/10.1016/j.bbrc.2006.11.047

    Article  CAS  PubMed  Google Scholar 

  58. Huang F, Chen T, Chang J, Zhang C, Liao F, Wu L, Wang W, Yin Z (2021) A conductive dual-network hydrogel composed of oxidized dextran and hyaluronic-hydrazide as BDNF delivery systems for potential spinal cord injury repair. Int J Biol Macromol 167:434–445. https://doi.org/10.1016/j.ijbiomac.2020.11.206

    Article  CAS  PubMed  Google Scholar 

  59. Masuda K, Furuyama T, Takahara M, Fujioka S, Kurinami H, Inagaki S (2004) Sema4D stimulates axonal outgrowth of embryonic DRG sensory neurones. Genes Cells 9(9):821–829. https://doi.org/10.1111/j.1365-2443.2004.00766.x

    Article  CAS  PubMed  Google Scholar 

  60. Kailiang Z, Yihui Z, Dingsheng L, Xianyao T (2016) effects of muscone on random skin flap survival in Rats. J Reconstr Microsurg 32(3):200–207. https://doi.org/10.1055/s-0035-1565264

    Article  PubMed  Google Scholar 

  61. Kishimoto K, Liu S, Tsuji T, Olson KA, Hu GF (2005) Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene 24(3):445–456. https://doi.org/10.1038/sj.onc.1208223

    Article  CAS  PubMed  Google Scholar 

  62. He Y, Li Z, Chen Z, Yu X, Ji Z, Wang J, Qian Y, Li L (2018) Effects of VEGF-ANG-1-PLA nano-sustained release microspheres on proliferation and differentiation of ADSCs. Cell Biol Int 42(8):1060–1068. https://doi.org/10.1002/cbin.10986

    Article  CAS  PubMed  Google Scholar 

  63. Wang J, Xing H, Qin X, Ren Q, Yang J, Li L (2020) Pharmacological effects and mechanisms of muscone. J Ethnopharmacol 262:113120. https://doi.org/10.1016/j.jep.2020.113120

    Article  CAS  PubMed  Google Scholar 

  64. Liu Y, Bian H, Xu S, Shu S, Jia J, Chen J, Cao X, Bao X et al (2020) muscone ameliorates synaptic dysfunction and cognitive deficits in APP/PS1 mice. J Alzheimers Dis 76(2):491–504. https://doi.org/10.3233/JAD-200188

    Article  CAS  PubMed  Google Scholar 

  65. He MC, Shi Z, Qin M, Sha NN, Li Y, Liao DF, Lin FH, Shu B et al (2020) Muscone ameliorates LPS-induced depressive-like behaviors and inhibits neuroinflammation in prefrontal cortex of mice. Am J Chin Med 48(3):559–577. https://doi.org/10.1142/S0192415X20500287

    Article  PubMed  Google Scholar 

  66. Yu S, Zhao G, Han F, Liang W, Jiao Y, Li Z, Li L (2020) Muscone relieves inflammatory pain by inhibiting microglial activation-mediated inflammatory response via abrogation of the NOX4/JAK2-STAT3 pathway and NLRP3 inflammasome. Int Immunopharmacol 82:106355. https://doi.org/10.1016/j.intimp.2020.106355

    Article  CAS  PubMed  Google Scholar 

  67. Yu L, Wang N, Zhang Y, Wang Y, Li J, Wu Q, Liu Y (2014) Neuroprotective effect of muscone on glutamate-induced apoptosis in PC12 cells via antioxidant and Ca(2+) antagonism. Neurochem Int 70:10–21. https://doi.org/10.1016/j.neuint.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  68. Liu Z, Li H, Ma W, Pan S (2021) Network pharmacology to investigate the pharmacological mechanisms of muscone in Xingnaojing injections for the treatment of severe traumatic brain injury. PeerJ 9:e11696. https://doi.org/10.7717/peerj.11696

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liu K, Xie L, Deng M, Zhang X, Luo J, Li X (2021) Zoology, chemical composition, pharmacology, quality control and future perspective of Musk (Moschus): a review. Chin Med 16(1):46. https://doi.org/10.1186/s13020-021-00457-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wei CJ, Hua F, Chen YH, Zhang ZW, Shen ZY (2021) Muscone alleviates myocardial ischemia-reperfusion injury via inhibition of oxidative stress and enhancement of SIRT3. J Biol Regul Homeost Agents 35(1):85–96. https://doi.org/10.23812/20-101-A

    Article  CAS  PubMed  Google Scholar 

  71. Guo L, Quan ZX, Zhao ZH, Tang K, Ou YS, Jiang DM (2015) Effects of musk ketone on nerve recovery after spinal cord injury. Genet Mol Res 14(2):2958–2963. https://doi.org/10.4238/2015.April.10.4

    Article  CAS  PubMed  Google Scholar 

  72. David S, López-Vales R, Wee YV (2012) Harmful and beneficial effects of inflammation after spinal cord injury: potential therapeutic implications. Handb Clin Neurol 109:485–502. https://doi.org/10.1016/B978-0-444-52137-8.00030-9

    Article  PubMed  Google Scholar 

  73. Xiyang YB, Lu BT, Ya-Zhao, Yuan-Zhang, Xia QJ, Zou Y, Zhang W, Quan XZ et al (2014) Expressional difference, distributions of TGF-β1 in TGF-β1 knock down transgenic mouse, and its possible roles in injured spinal cord. Exp Biol Med (Maywood). 239(3):320–9. https://doi.org/10.1177/1535370213509562

    Article  CAS  PubMed  Google Scholar 

  74. Park J, Choi H, Min JS, Park SJ, Kim JH, Park HJ, Kim B, Chae JI et al (2013) Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem 127(2):221–232. https://doi.org/10.1111/jnc.12361

    Article  CAS  PubMed  Google Scholar 

  75. Kang S, Duan W, Zhang S, Chen D, Feng J, Qi N (2020) Muscone/RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood-brain barrier and targeting glioma. Theranostics 10(10):4308–4322. https://doi.org/10.7150/thno.41322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Goncalves KA, Silberstein L, Li S, Severe N, Hu MG, Yang H, Scadden DT, Hu GF (2016) Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. Cell 166(4):894–906. https://doi.org/10.1016/j.cell.2016.06.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li S, Goncalves KA, Lyu B, Yuan L, Hu GF (2020) Chemosensitization of prostate cancer stem cells in mice by angiogenin and plexin-B2 inhibitors. Commun Biol 3(1):26. https://doi.org/10.1038/s42003-020-0750-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu X, Chai Y, Liu G, Su W, Guo Q, Lv X, Gao P, Yu B et al (2021) Osteoclasts protect bone blood vessels against senescence through the angiogenin/plexin-B2 axis. Nat Commun 12(1):1832. https://doi.org/10.1038/s41467-021-22131-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dong J, Li H, Bai Y, Wu C (2019) Muscone ameliorates diabetic peripheral neuropathy through activating AKT/mTOR signalling pathway. J Pharm Pharmacol 71(11):1706–1713. https://doi.org/10.1111/jphp.13157

    Article  CAS  PubMed  Google Scholar 

  80. Wang X, Meng H, Chen P, Yang N, Lu X, Wang ZM, Gao W, Zhou N et al (2014) Beneficial effects of muscone on cardiac remodeling in a mouse model of myocardial infarction. Int J Mol Med 34(1):103–111. https://doi.org/10.3892/ijmm.2014.1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jin Z, Cheng X, Feng H, Kuang J, Yang W, Peng C, Shen B, Qiu W (2017) Apatinib inhibits angiogenesis via suppressing Akt/GSK3β/ANG signaling pathway in anaplastic thyroid cancer. Cell Physiol Biochem 44(4):1471–1484. https://doi.org/10.1159/000485583

    Article  CAS  PubMed  Google Scholar 

  82. Peng Y, Li L, Huang M, Duan C, Zhang L, Chen J (2014) Angiogenin interacts with ribonuclease inhibitor regulating PI3K/AKT/mTOR signaling pathway in bladder cancer cells. Cell Signal 26(12):2782–2792. https://doi.org/10.1016/j.cellsig.2014.08.021

    Article  CAS  PubMed  Google Scholar 

  83. Zhai X, Yan Z, Zhao J, Chen K, Yang Y, Cai M, He C, Huang C et al (2020) Muscone ameliorates ovariectomy-induced bone loss and receptor activator of nuclear factor-κb ligand-induced osteoclastogenesis by suppressing TNF receptor-associated factor 6-mediated signaling pathways. Front Pharmacol 11:348. https://doi.org/10.3389/fphar.2020.00348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Si YC, Li Q, Xie CE, Niu X, Xia XH, Yu CY (2014) Chinese herbs and their active ingredients for activating xue (blood) promote the proliferation and differentiation of neural stem cells and mesenchymal stem cells. Chin Med 9(1):13. https://doi.org/10.1186/1749-8546-9-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gabriel-Salazar M, Lei T, Grayston A, Costa C, Medina-Gutiérrez E, Comabella M, Montaner J, Rosell A (2021) Angiogenin in the neurogenic subventricular zone after stroke. Front Neurol 12:662235. https://doi.org/10.3389/fneur.2021.662235

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yang H, Yuan L, Ibaragi S, Li S, Shapiro R, Vanli N, Goncalves KA, Yu W et al (2022) Angiogenin and plexin-B2 axis promotes glioblastoma progression by enhancing invasion, vascular association, proliferation and survival. Br J Cancer. https://doi.org/10.1038/s41416-022-01814-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The Natural Science Foundation of Zhejiang Province supported this work (no. LY19H170001).

Author information

Authors and Affiliations

Authors

Contributions

XL designed the study. YZ, SG, YZ, BOAB, TJ, and XL prepared the first draft of the manuscript. YZ, SG, YZ, BOAB, and XL revised the manuscript. All authors approved the final paper.

Corresponding author

Correspondence to Xuehong Liu.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All authors agreed to publish this article.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Guo, S., Botchway, B.O.A. et al. Muscone Can Improve Spinal Cord Injury by Activating the Angiogenin/Plexin-B2 Axis. Mol Neurobiol 59, 5891–5901 (2022). https://doi.org/10.1007/s12035-022-02948-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02948-7

Keywords

Navigation