Skip to main content

Advertisement

Log in

Identification of Peripheral Blood miRNA Biomarkers in First-Episode Drug-Free Schizophrenia Patients Using Bioinformatics Strategy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Schizophrenia (SCZ) is a polygenic, complex mental disorder of which a diagnosis is often made based on psychiatric history and clinical observation with few available objectives and detectable biomarkers. To identify co-expressed miRNA modules in schizophrenia patients and verify the possibility of using peripheral blood miRNAs as novel biomarkers, high-throughput sequencing was performed on 15 first-episode schizophrenia patients (FES) and 15 healthy controls (CTL). We found 79 differential expressed miRNAs (DEMs) in FES patients and three FES-related co-expression miRNA modules by miRNA-seq data standardized difference analysis and weighted gene co-expression network analysis (WGCNA). Then, 41 hub miRNAs were screened from the intersection of key modules and DEMs, among which miR-9-5p, miR-144-3p, miR-328-3p, and miR-4467 were selected for qRT-PCR verification in a larger sample (FES = 35, CTL = 60). The level of miR-9-5p in FES patients was downregulated, and miR-4467 was upregulated with better diagnostic performance (AUC = 0.719). The target genes of miR-9-5p engage in the biological processes (BP) such as body behaviour, neuronal differentiation regulation, nervous system development, and neurotrophin signaling pathways. Their hub target genes were also located, including NEDD4, EIF4G1, FBXL16, and FBXL3. Summarily, miR-9-5p and miR-4467 hold promise in blood diagnosis for SCZ, and miR-9-5p might affect the onset and development of SCZ through target regulation of neurodevelopment-related mRNAs. Our findings revealed the complex relationship between the miRNA co-expression network and FES, providing more verifiable biomarkers for SCZ early diagnosis and clues for the etiology of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Insel TR (2010) Rethinking schizophrenia. Nature 468(7321):187–193. https://doi.org/10.1038/nature09552

    Article  CAS  PubMed  Google Scholar 

  2. Charlson FJ, Ferrari AJ, Santomauro DF, Diminic S, Stockings E, Scott JG, McGrath JJ, Whiteford HA (2018) Global epidemiology and burden of schizophrenia: findings from the Global Burden of Disease Study 2016. Schizophr Bull 44(6):1195–1203. https://doi.org/10.1093/schbul/sby058

    Article  PubMed  PubMed Central  Google Scholar 

  3. Laursen TM, Nordentoft M, Mortensen PB (2014) Excess early mortality in schizophrenia. Annu Rev Clin Psychol 10:425–448. https://doi.org/10.1146/annurev-clinpsy-032813-153657

    Article  PubMed  Google Scholar 

  4. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610. https://doi.org/10.1038/nrg2843

    Article  CAS  PubMed  Google Scholar 

  5. Lee YS, Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4:199–227. https://doi.org/10.1146/annurev.pathol.4.110807.092222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, Cai L (2018) miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 39(7):1073–1084. https://doi.org/10.1038/aps.2018.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rottiers V, Näär AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13(4):239–250. https://doi.org/10.1038/nrm3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller BH, Wahlestedt C (2010) MicroRNA dysregulation in psychiatric disease. Brain Res 1338:89–99. https://doi.org/10.1016/j.brainres.2010.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun E, Shi Y (2015) MicroRNAs: small molecules with big roles in neurodevelopment and diseases. Exp Neurol 268:46–53. https://doi.org/10.1016/j.expneurol.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  10. Gallego JA, Gordon ML, Claycomb K, Bhatt M, Lencz T, Malhotra AK (2012) In vivo microRNA detection and quantitation in cerebrospinal fluid. J Mole Neurosci : MN 47(2):243–248. https://doi.org/10.1007/s12031-012-9731-7

    Article  CAS  Google Scholar 

  11. Moreau MP, Bruse SE, David-Rus R, Buyske S, Brzustowicz LM (2011) Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder. Biol Psychiat 69(2):188–193. https://doi.org/10.1016/j.biopsych.2010.09.039

    Article  CAS  PubMed  Google Scholar 

  12. Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, Parker JS, Jin J et al (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8(2):R27. https://doi.org/10.1186/gb-2007-8-2-r27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He K, Guo C, He L, Shi Y (2018) MiRNAs of peripheral blood as the biomarker of schizophrenia. Hereditas 155:9. https://doi.org/10.1186/s41065-017-0044-2

    Article  PubMed  Google Scholar 

  14. Wei H, Yuan Y, Liu S, Wang C, Yang F, Lu Z, Wang C, Deng H et al (2015) Detection of circulating miRNA levels in schizophrenia. Am J Psychiatry 172(11):1141–1147. https://doi.org/10.1176/appi.ajp.2015.14030273

    Article  PubMed  Google Scholar 

  15. Gardiner E, Beveridge NJ, Wu JQ, Carr V, Scott RJ, Tooney PA, Cairns MJ (2012) Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Mol Psychiatry 17(8):827–840. https://doi.org/10.1038/mp.2011.78

    Article  CAS  PubMed  Google Scholar 

  16. Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 1:54. https://doi.org/10.1186/1752-0509-1-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Langfelder P, Luo R, Oldham MC, Horvath S (2011) Is my network module preserved and reproducible? PLoS Comput Biol 7(1):e1001057. https://doi.org/10.1371/journal.pcbi.1001057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, Tang Y, Chen YG et al (2020) miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 48(D1):D148-d154. https://doi.org/10.1093/nar/gkz896

    Article  CAS  PubMed  Google Scholar 

  19. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  20. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT et al (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362-d368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  Google Scholar 

  21. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luoni A, Riva MA (2016) MicroRNAs and psychiatric disorders: from aetiology to treatment. Pharmacol Ther 167:13–27. https://doi.org/10.1016/j.pharmthera.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  23. Seo MS, Scarr E, Lai CY, Dean B (2014) Potential molecular and cellular mechanism of psychotropic drugs. Clin Psychopharmacol Neurosci 12(2):94–110. https://doi.org/10.9758/cpn.2014.12.2.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang X, Bao C, Lv Q, Zhao J, Wang Y, Lang X, Li Z, Yi Z (2020) Sex difference in cognitive impairment in drug-free schizophrenia: association with miR-195 levels. Psychoneuroendocrinology 119:104748. https://doi.org/10.1016/j.psyneuen.2020.104748

    Article  CAS  PubMed  Google Scholar 

  25. Camkurt MA, Acar Ş, Coşkun S, Güneş M, Güneş S, Yılmaz MF, Görür A, Tamer L (2015) Comparison of plasma microRNA levels in drug naive, first episode depressed patients and healthy controls. J Psychiatr Res 69:67–71. https://doi.org/10.1016/j.jpsychires.2015.07.023

    Article  PubMed  Google Scholar 

  26. Wang X, Sundquist K, Hedelius A, Palmér K, Memon AA, Sundquist J (2015) Circulating microRNA-144-5p is associated with depressive disorders. Clin Epigenetics 7(1):69. https://doi.org/10.1186/s13148-015-0099-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wan Y, Liu Y, Wang X, Wu J, Liu K, Zhou J, Liu L, Zhang C (2015) Identification of differential microRNAs in cerebrospinal fluid and serum of patients with major depressive disorder. PLoS ONE 10(3):e0121975. https://doi.org/10.1371/journal.pone.0121975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kichukova TM, Popov NT, Ivanov IS, Vachev TI (2017) Profiling of circulating serum microRNAs in children with autism spectrum disorder using stem-loop qRT-PCR assay. Folia Med 59(1):43–52. https://doi.org/10.1515/folmed-2017-0009

    Article  CAS  Google Scholar 

  29. Ozkul Y, Taheri S, Bayram KK, Sener EF, Mehmetbeyoglu E, Öztop DB, Aybuga F, Tufan E et al (2020) A heritable profile of six miRNAs in autistic patients and mouse models. Sci Rep 10(1):9011. https://doi.org/10.1038/s41598-020-65847-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mor M, Nardone S, Sams DS, Elliott E (2015) Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Molecular autism 6:46. https://doi.org/10.1186/s13229-015-0040-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qin Z, Han X, Ran J, Guo S, Lv L (2021) Exercise-mediated alteration of miR-192–5p is associated with cognitive improvement in Alzheimer’s disease. Neuroimmunomodulation 29(1):36–43. https://doi.org/10.1159/000516928

    Article  CAS  PubMed  Google Scholar 

  32. Gámez-Valero A, Campdelacreu J, Vilas D, Ispierto L, Reñé R, Álvarez R, Armengol MP, Borràs FE et al (2019) Exploratory study on microRNA profiles from plasma-derived extracellular vesicles in Alzheimer’s disease and dementia with Lewy bodies. Translational neurodegeneration 8:31. https://doi.org/10.1186/s40035-019-0169-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ghanbari M, Munshi ST, Ma B, Lendemeijer B, Bansal S, Adams HH, Wang W, Goth K et al (2019) A functional variant in the miR-142 promoter modulating its expression and conferring risk of Alzheimer disease. Hum Mutat 40(11):21312145. https://doi.org/10.1002/humu.23872

    Article  CAS  Google Scholar 

  34. Kumar P, Dezso Z, MacKenzie C, Oestreicher J, Agoulnik S, Byrne M, Bernier F, Yanagimachi M et al (2013) Circulating miRNA biomarkers for Alzheimer’s disease. PLoS ONE 8(7):e69807. https://doi.org/10.1371/journal.pone.0069807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Van der Auwera S, Ameling S, Wittfeld K, d’HarcourtRowold E, Nauck M, Völzke H, Suhre K, Najafi-Shoushtari H et al (2019) Association of childhood traumatization and neuropsychiatric outcomes with altered plasma micro RNA-levels. Neuropsychopharmacol: official publication of the American College of Neuropsychopharmacology 44(12):2030–2037. https://doi.org/10.1038/s41386-019-0460-2

    Article  CAS  Google Scholar 

  36. Zhou LT, Zhang J, Tan L, Huang HZ, Zhou Y, Liu ZQ, Lu Y, Zhu LQ, Yao C, Liu D (2021) Elevated levels of miR-144-3p induce cholinergic degeneration by impairing the maturation of NGF in Alzheimer’s disease. Front Cell Dev Biol 9:667412. https://doi.org/10.3389/fcell.2021.667412

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sun X, Wu Y, Gu M, Zhang Y (2014) miR-342-5p decreases ankyrin G levels in Alzheimer’s disease transgenic mouse models. Cell Rep 6(2):264–270. https://doi.org/10.1016/j.celrep.2013.12.028

    Article  CAS  PubMed  Google Scholar 

  38. Dakterzada F, David Benítez I, Targa A, Lladó A, Torres G, Romero L, de Gonzalo-Calvo D, Moncusí-Moix A, Tort-Merino A, Huerto R, Sánchez-de-la-Torre M, Barbé F, Piñol-Ripoll G (2021) Reduced levels of miR-342-5p in plasma are associated with worse cognitive evolution in patients with mild Alzheimer’s disease. Front Aging Neurosci 13:705989. https://doi.org/10.3389/fnagi.2021.705989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lugli G, Cohen AM, Bennett DA, Shah RC, Fields CJ, Hernandez AG, Smalheiser NR (2015) Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLoS ONE 10(10):e0139233. https://doi.org/10.1371/journal.pone.0139233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barbagallo C, Mostile G, Baglieri G, Giunta F, Luca A, Raciti L, Zappia M, Purrello M, Ragusa M, Nicoletti A (2020) Specific signatures of serum miRNAs as potential biomarkers to discriminate clinically similar neurodegenerative and vascular-related diseases. Cell Mol Neurobiol 40(4):531–546. https://doi.org/10.1007/s10571-019-00751-y

    Article  CAS  PubMed  Google Scholar 

  41. Su L, Wang C, Zheng C, Wei H, Song X (2018) A meta-analysis of public microarray data identifies biological regulatory networks in Parkinson’s disease. BMC Med Genomics 11(1):40. https://doi.org/10.1186/s12920-018-0357-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Z, Li Z, Jiang C, Jiang X, Zhang J (2019) MiR-92b-3p promotes neurite growth and functional recovery via the PTEN/AKT pathway in acute spinal cord injury. J Cell Physiol 234(12):23043–23052. https://doi.org/10.1002/jcp.28864

    Article  CAS  PubMed  Google Scholar 

  43. Xu L, Cao H, Xie Y, Zhang Y, Du M, Xu X, Ye R, Liu X (2019) Exosome-shuttled miR-92b-3p from ischemic preconditioned astrocytes protects neurons against oxygen and glucose deprivation. Brain Res 1717:66–73. https://doi.org/10.1016/j.brainres.2019.04.009

    Article  CAS  PubMed  Google Scholar 

  44. Liu X, Cui X, Guan G, Dong Y, Zhang Z (2020) microRNA-192-5p is involved in nerve repair in rats with peripheral nerve injury by regulating XIAP. Cell cycle (Georgetown, Tex) 19(3):326–338. https://doi.org/10.1080/15384101.2019.1710916

    Article  CAS  Google Scholar 

  45. Lai WS, Xu B, Westphal KG, Paterlini M, Olivier B, Pavlidis P, Karayiorgou M, Gogos JA (2006) Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proc Natl Acad Sci USA 103(45):16906–16911. https://doi.org/10.1073/pnas.0604994103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang CY, Chen YW, Wang TW, Lai WS (2016) Akting up in the GABA hypothesis of schizophrenia: Akt1 deficiency modulates GABAergic functions and hippocampus-dependent functions. Sci Rep 6:33095. https://doi.org/10.1038/srep33095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang CH, Pei JC, Luo DZ, Chen C, Chen YW, Lai WS (2014) Investigation of gene effects and epistatic interactions between Akt1 and neuregulin 1 in the regulation of behavioral phenotypes and social functions in genetic mouse models of schizophrenia. Front Behav Neurosci 8:455. https://doi.org/10.3389/fnbeh.2014.00455

    Article  PubMed  Google Scholar 

  48. Vogt D, Cho KKA, Lee AT, Sohal VS, Rubenstein JLR (2015) The parvalbumin/somatostatin ratio is increased in Pten mutant mice and by human PTEN ASD alleles. Cell Rep 11(6):944–956. https://doi.org/10.1016/j.celrep.2015.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y, Baker SJ, Parada LF (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50(3):377–388. https://doi.org/10.1016/j.neuron.2006.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Renault VM, Rafalski VA, Morgan AA, Salih DA, Brett JO, Webb AE, Villeda SA, Thekkat PU, Guillerey C, Denko NC, Palmer TD, Butte AJ, Brunet A (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5(5):527–539. https://doi.org/10.1016/j.stem.2009.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Furukawa-Hibi Y, Kobayashi Y, Chen C, Motoyama N (2005) FOXO transcription factors in cell-cycle regulation and the response to oxidative stress. Antioxid Redox Signal 7(5–6):752–760. https://doi.org/10.1089/ars.2005.7.752

    Article  CAS  PubMed  Google Scholar 

  52. Gross DN, van den Heuvel AP, Birnbaum MJ (2008) The role of FoxO in the regulation of metabolism. Oncogene 27(16):2320–2336. https://doi.org/10.1038/onc.2008.25

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X, Tang N, Hadden TJ (1813) Rishi AK (2011) Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 11:1978–1986. https://doi.org/10.1016/j.bbamcr.2011.03.010

    Article  CAS  Google Scholar 

  54. Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP (2021) Oxidative stress-related mechanisms in schizophrenia pathogenesis and new treatment perspectives. Oxid Med Cell Longev 2021:8881770. https://doi.org/10.1155/2021/8881770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Orea-Soufi A, Dávila D, Salazar-Roa M, de Mar LM, Velasco G (2019) Phosphorylation of FOXO proteins as a key mechanism to regulate their activity. Methods Mol Biol 1890:51–59. https://doi.org/10.1007/978-1-4939-8900-3_5

    Article  CAS  PubMed  Google Scholar 

  56. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657. https://doi.org/10.1126/science.296.5573.1655

    Article  CAS  PubMed  Google Scholar 

  57. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868. https://doi.org/10.1016/s0092-8674(00)80595-4

    Article  CAS  PubMed  Google Scholar 

  58. Schmidt MF, Gan ZY, Komander D, Dewson G (2021) Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ 28(2):570–590. https://doi.org/10.1038/s41418-020-00706-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gu S, Cui F, Yin J, Fang C, Liu L (2021) Altered mRNA expression levels of autophagy- and apoptosis-related genes in the FOXO pathway in schizophrenia patients treated with olanzapine. Neurosci Lett 746:135669. https://doi.org/10.1016/j.neulet.2021.135669

    Article  CAS  PubMed  Google Scholar 

  60. Camkurt MA, Karababa F, Erdal ME, Bayazıt H, Kandemir SB, Ay ME, Kandemir H, Ay Ö, Çiçek E, Selek S, Taşdelen B (2016) Investigation of dysregulation of several microRNAs in peripheral blood of schizophrenia patients. Clin Psychopharmacol Neurosci 14(3):256–260. https://doi.org/10.9758/cpn.2016.14.3.256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24(4):857–864. https://doi.org/10.1634/stemcells.2005-0441

    Article  CAS  PubMed  Google Scholar 

  62. Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S (2011) MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci 31(9):3407–3422. https://doi.org/10.1523/jneurosci.5085-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Delaloy C, Liu L, Lee JA, Su H, Shen F, Yang GY, Young WL, Ivey KN, Gao FB (2010) MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell 6(4):323–335. https://doi.org/10.1016/j.stem.2010.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16(4):365–371. https://doi.org/10.1038/nsmb.1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dajas-Bailador F, Bonev B, Garcez P, Stanley P, Guillemot F, Papalopulu N (2012) microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat Neurosci 15(5):697–699. https://doi.org/10.1038/nn.3082

    Article  CAS  PubMed  Google Scholar 

  66. Otaegi G, Pollock A, Hong J, Sun T (2011) MicroRNA miR-9 modifies motor neuron columns by a tuning regulation of FoxP1 levels in developing spinal cords. J Neurosci 31(3):809–818. https://doi.org/10.1523/jneurosci.4330-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hauberg ME, Roussos P, Grove J, Børglum AD, Mattheisen M (2016) Analyzing the role of microRNAs in schizophrenia in the context of common genetic risk variants. JAMA Psychiat 73(4):369–377. https://doi.org/10.1001/jamapsychiatry.2015.3018

    Article  Google Scholar 

  68. Kranz TM, Goetz RR, Walsh-Messinger J, Goetz D, Antonius D, Dolgalev I, Heguy A, Seandel M, Malaspina D, Chao MV (2015) Rare variants in the neurotrophin signaling pathway implicated in schizophrenia risk. Schizophr Res 168(1–2):421–428. https://doi.org/10.1016/j.schres.2015.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  69. Su Y, Yang L, Li Z, Wang W, Xing M, Fang Y, Cheng Y, Lin GN, Cui D (2021) The interaction of ASAH1 and NGF gene involving in neurotrophin signaling pathway contributes to schizophrenia susceptibility and psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 104:110015. https://doi.org/10.1016/j.pnpbp.2020.110015

    Article  CAS  PubMed  Google Scholar 

  70. Crider A, Pillai A (2017) Estrogen signaling as a therapeutic target in neurodevelopmental disorders. J Pharmacol Exp Ther 360(1):48–58. https://doi.org/10.1124/jpet.116.237412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Azcoitia I, Yague JG, Garcia-Segura LM (2011) Estradiol synthesis within the human brain. Neuroscience 191:139–147. https://doi.org/10.1016/j.neuroscience.2011.02.012

    Article  CAS  PubMed  Google Scholar 

  72. Cui J, Shen Y, Li R (2013) Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med 19(3):197–209. https://doi.org/10.1016/j.molmed.2012.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Denk J, Boelmans K, Siegismund C, Lassner D, Arlt S, Jahn H (2015) MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer’s disease. PLoS ONE 10(5):e0126423. https://doi.org/10.1371/journal.pone.0126423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Deng H, Wu Y, Jankovic J (2015) The EIF4G1 gene and Parkinson’s disease. Acta Neurol Scand 132(2):73–78. https://doi.org/10.1111/ane.12397

    Article  CAS  PubMed  Google Scholar 

  75. Han C, Cui K, Bi X, Wang L, Sun M, Yang L, Liu L (2019) Association between polymorphism of the NEDD4 gene and cognitive dysfunction of schizophrenia patients in Chinese Han population. BMC Psychiatry 19(1):405. https://doi.org/10.1186/s12888-019-2386-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Smith AR, Smith RG, Pishva E, Hannon E, Roubroeks JAY, Burrage J, Troakes C, Al-Sarraj S, Sloan C, Mill J, van den Hove DL, Lunnon K (2019) Parallel profiling of DNA methylation and hydroxymethylation highlights neuropathology-associated epigenetic variation in Alzheimer’s disease. Clin Epigenetics 11(1):52. https://doi.org/10.1186/s13148-019-0636-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ansar M, Paracha SA, Serretti A, Sarwar MT, Khan J, Ranza E, Falconnet E, Iwaszkiewicz J, Shah SF, Qaisar AA, Santoni FA, Zoete V, Megarbane A, Ahmed J, Colombo R, Makrythanasis P, Antonarakis SE (2019) Biallelic variants in FBXL3 cause intellectual disability, delayed motor development and short stature. Hum Mol Genet 28(6):972–979. https://doi.org/10.1093/hmg/ddy406

    Article  CAS  PubMed  Google Scholar 

  78. Dong Z, Chen W, Chen C, Wang H, Cui W, Tan Z, Robinson H, Gao N, Luo B, Zhang L, Zhao K, Xiong WC, Mei L (2020) CUL3 Deficiency causes social deficits and anxiety-like behaviors by impairing excitation-inhibition balance through the promotion of cap-dependent translation. Neuron 105(3):475-490.e476. https://doi.org/10.1016/j.neuron.2019.10.035

    Article  CAS  PubMed  Google Scholar 

  79. Glynn D, Sizemore RJ, Morton AJ (2007) Early motor development is abnormal in complexin 1 knockout mice. Neurobiol Dis 25(3):483–495. https://doi.org/10.1016/j.nbd.2006.10.011

    Article  CAS  PubMed  Google Scholar 

  80. Glynn D, Drew CJ, Reim K, Brose N, Morton AJ (2005) Profound ataxia in complexin I knockout mice masks a complex phenotype that includes exploratory and habituation deficits. Hum Mol Genet 14(16):2369–2385. https://doi.org/10.1093/hmg/ddi239

    Article  CAS  PubMed  Google Scholar 

  81. Fujikawa R, Higuchi S, Nakatsuji M, Yasui M, Ikedo T, Nagata M, Yokode M, Minami M (2016) EP4 receptor-associated protein in microglia promotes inflammation in the brain. Am J Pathol 186(8):1982–1988. https://doi.org/10.1016/j.ajpath.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  82. Fatemi SH, Folsom TD, Reutiman TJ, Novak J, Engel RH (2012) Comparative gene expression study of the chronic exposure to clozapine and haloperidol in rat frontal cortex. Schizophr Res 134(2–3):211–218. https://doi.org/10.1016/j.schres.2011.11.013

    Article  PubMed  Google Scholar 

  83. Nt P, Ds M, Mm N, In M, Ti V (2018) Investigation of circulating serum microRNA-328-3p and microRNA-3135a expression as promising novel biomarkers for autism spectrum disorder. Balkan J Med Genet 21(2):5–12. https://doi.org/10.2478/bjmg-2018-0026

    Article  PubMed  Google Scholar 

  84. Zhou Q, Luo L, Wang X, Li X (2019) Relationship between single nucleotide polymorphisms in the 3'UTR of amyloid precursor protein and risk of Alzheimer's disease and its mechanism. Biosci Rep 39(5):BSR20182485. https://doi.org/10.1042/bsr20182485

  85. Everaert C, Luypaert M, Maag JLV, Cheng QX, Dinger ME, Hellemans J, Mestdagh P (2017) Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. Sci Rep 7(1):1559. https://doi.org/10.1038/s41598-017-01617-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the professional help provided by the psychiatrists in the study. We are very grateful to all the participants who volunteered to participate in this study.

Funding

This work was supported by the National Natural Science Foundation of China [81673253] and the Jilin Provincial Ministry of Education S & T Project [JJKH20190091KJ].

Author information

Authors and Affiliations

Authors

Contributions

QY and MDJ conceived and designed the study. XJZ and YYS did the material preparation. Data analysis and experiment were performed by MDJ and ZJL. MDJ and XWL wrote the first draft of the manuscript. NNJ and YEL collected the data. LZA, GYH, XYC, MTX, and YQY revised the graphs. All authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiong Yu.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. The study was approved by the Ethics Committee of the School of Public Health of Jilin University.

Consent to Participate

Informed consent was obtained from all individual participants or their guardians included in the study.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 322 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, M., Zhu, X., Sun, Y. et al. Identification of Peripheral Blood miRNA Biomarkers in First-Episode Drug-Free Schizophrenia Patients Using Bioinformatics Strategy. Mol Neurobiol 59, 4730–4746 (2022). https://doi.org/10.1007/s12035-022-02878-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02878-4

Keywords

Navigation