Skip to main content

Advertisement

Log in

MiR-574-5P, miR-1827, and miR-4429 as Potential Biomarkers for Schizophrenia

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Schizophrenia is a severe chronic debilitating disorder with millions of affected individuals. Diagnosis is based on clinical presentations, which are made when the progressive disease has appeared. Early diagnosis may help improve the clinical outcomes and response to treatments. Lack of a reliable molecular diagnostic invokes the identification of novel biomarkers. To elucidate the molecular basis of the disease, in this study we used two mRNA expression arrays, including GSE93987 and GSE38485, and one miRNA array, GSE54914, and meta-analysis was conducted for evaluation of mRNA expression arrays via metaDE package. Using WGCNA package, we performed network analysis for both mRNA expression arrays separately. Then, we constructed protein–protein interaction network for significant modules. Limma package was employed to analyze the miRNA array for identification of dysregulated miRNAs (DEMs). Using genes of significant modules and DEMs, a mRNA-miRNA network was constructed and hub genes and miRNAs were identified. To confirm the dysregulated genes, expression values were evaluated through available datasets including GSE62333, GSE93987, and GSE38485. The ability of the detected hub miRNAs to discriminate schizophrenia from healthy controls was evaluated by assessing the receiver-operating curve. Finally, the expression levels of genes and miRNAs were evaluated in 40 schizophrenia patients compared with healthy controls via Real-Time PCR. The results confirmed dysregulation of hsa-miR-574-5P, hsa-miR-1827, hsa-miR-4429, CREBRF, ARPP19, TGFBR2, and YWHAZ in blood samples of schizophrenia patients. In conclusion, three miRNAs including hsa-miR-574-5P, hsa-miR-1827, and hsa-miR-4429 are suggested as potential biomarkers for diagnosis of schizophrenia.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005

  • Bassett AS, Chow EW, Weksberg R, Brzustowicz L (2002) Schizophrenia and genetics: new insights. Curr Psychiatry Rep 4(4):307–314

    Article  PubMed  PubMed Central  Google Scholar 

  • Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23(1):175–205

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Tang J, Chen J, Wang Z (2014) Hsa-miR-574-5p negatively regulates MACC-1 expression to suppress colorectal cancer liver metastasis. Cancer Cell Int 14(1):1–9

    Article  Google Scholar 

  • Dong R, Shen Z, Zheng C, Chen G, Zheng S (2016) Serum microRNA microarray analysis identifies miR-4429 and miR-4689 are potential diagnostic biomarkers for biliary atresia. Sci Rep 6:21084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donzelli J, Proestler E, Riedel A, Nevermann S, Hertel B, Guenther A et al (2021) Small extracellular vesicle-derived miR-574–5p regulates PGE2-biosynthesis via TLR7/8 in lung cancer. J Extracell Vesicles 10(12):e12143-e

  • Du Y, Tan WL, Chen L, Yang ZM, Li XS, Xue X et al (2021) Exosome transplantation from patients with schizophrenia causes schizophrenia-relevant behaviors in mice: an integrative multi-omics data analysis. Schizophr Bull 47(5):1288–1299

    Article  PubMed  Google Scholar 

  • Du Y, Yu Y, Hu Y, Li XW, Wei ZX, Pan RY et al (2019) Genome-wide, integrative analysis implicates exosome-derived MicroRNA dysregulation in schizophrenia. Schizophr Bull 45(6):1257–1266

    Article  PubMed  PubMed Central  Google Scholar 

  • Feltrin ASA, Tahira AC, Simões SN, Brentani H, Martins DC Jr (2019) Assessment of complementarity of WGCNA and NERI results for identification of modules associated to schizophrenia spectrum disorders. PLoS One 14(1):e0210431-e

  • Foss KM, Sima C, Ugolini D, Neri M, Allen KE, Weiss GJ (2011) miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer. J Thorac Oncol 6(3):482–488

    Article  PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ (2007) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(suppl_1):D154-D158

  • Guo X, Wang Z, Sun Q, Sun C, Hua H, Huang Q (2020) The inhibitory effect of microRNA-1827 on anoikis resistance in lung adenocarcinoma A549 cells via targeting caveolin-1. Acta Biochim Biophys Sin 52(10):1148–1155

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Yan Z, Hu Y, Huang X, Pan C (2021) Complement C7 is specifically expressed in mesangial cells and is a potential diagnostic biomarker for diabetic nephropathy and is regulated by miR-494-3p and miR-574-5p. Diabetes Metab Syndr Obes 14:3077–3088

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauberg ME, Roussos P, Grove J, Børglum AD, Mattheisen M, Schizophrenia Working Group of the Psychiatric Genomics Consortium (2016) Analyzing the role of MicroRNAs in schizophrenia in the context of common genetic risk variants. JAMA Psychiat 73(4):369–377

  • He K, Guo C, He L, Shi Y (2017) MiRNAs of peripheral blood as the biomarker of schizophrenia. Hereditas 155(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Hegewald AB, Breitwieser K, Ottinger SM, Mobarrez F, Korotkova M, Rethi B et al (2020) Extracellular miR-574–5p induces osteoclast differentiation via TLR 7/8 in rheumatoid arthritis. Front Immunol 11:585282

  • Islam MS, Khan MA, Murad MW, Karim M, Islam AB (2019) In silico analysis revealed Zika virus miRNAs associated with viral pathogenesis through alteration of host genes involved in immune response and neurological functions. J Medic Virol 91(9):1584–1594

  • James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N et al (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392(10159):1789–1858

    Article  Google Scholar 

  • Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B, Liu D (2014) microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS One 9(6):e99283-e

  • Kim Y, Giusti-Rodriguez P, Crowley JJ, Bryois J, Nonneman RJ, Ryan AK et al (2018) Comparative genomic evidence for the involvement of schizophrenia risk genes in antipsychotic effects. Mol Psychiatry 23(3):708–712

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Nairn AC, Cairns N, Lubec G (2001) Decreased levels of ARPP-19 and PKA in brains of Down syndrome and Alzheimer’s disease. J Neural Transm Suppl 61:263–272

    Google Scholar 

  • Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11(4):441–450

    Article  CAS  PubMed  Google Scholar 

  • Kuehner JN, Bruggeman EC, Wen Z, Yao B (2019) Epigenetic regulations in neuropsychiatric disorders. Front Gen 10(268)

  • Kutmon M, Kelder T, Mandaviya P, Evelo CT, Coort SL (2013) CyTargetLinker: a cytoscape app to integrate regulatory interactions in network analysis. PloS One 8(12):e82160

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9(1):1–13

    Article  Google Scholar 

  • Leung AKL, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40(2):205–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF et al (2009) Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet (london, England) 373(9659):234–239

    Article  CAS  Google Scholar 

  • Liu L, Zhao J, Chen Y, Feng R (2020) Metabolomics strategy assisted by transcriptomics analysis to identify biomarkers associated with schizophrenia. Anal Chim Acta 1140:18–29

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhao L, Zhang L, Qiao L, Gao S (2021) Downregulation of miR-574-5p inhibits HK-2 cell viability and predicts the onset of acute kidney injury in sepsis patients. Ren Fail 43(1):942–948

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Chen M, Wan Y, Lei L, Ruan H (2020) miR-574-5p targets FOXN3 to regulate the invasion of nasopharyngeal carcinoma cells via Wnt/β-catenin pathway. Technol Cancer Res Treat 19:1533033820971659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Tiwari A, Mirzakhani H, Wang AL, Kho AT, McGeachie MJ et al (2021a) Circulating microRNA: incident asthma prediction and vitamin D effect modification. J Pers Med 11(4):307

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Song Z, Jia N, Zhang C, Gao W, Wang L (2021b) microRNA-4429-5p suppresses the malignant development of colon cancer by targeting matrix metalloproteinase 16. In Vitro Cell Dev Biol Anim 57(7):715–725

    Article  CAS  PubMed  Google Scholar 

  • Li F, Lo TY, Miles L, Wang Q, Noristani HN, Li D et al (2021c) The Atr-Chek1 pathway inhibits axon regeneration in response to piezo-dependent mechanosensation. Nat Commun 12(1):3845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maes OC, An J, Sarojini H, Wang E (2008) Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 129(9):534–541

    Article  CAS  PubMed  Google Scholar 

  • Mäki P, Veijola J, Jones PB, Murray GK, Koponen H, Tienari P et al (2005) Predictors of schizophrenia—a review. Br Med Bull 73–74(1):1–15

    Article  PubMed  Google Scholar 

  • Maric NP, Svrakic DM (2012) Why schizophrenia genetics needs epigenetics: a review. Psychiatr Danub 24(1):2–18

    CAS  PubMed  Google Scholar 

  • Maycox PR, Kelly F, Taylor A, Bates S, Reid J, Logendra R et al (2009) Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function. Mol Psychiatry 14(12):1083–1094

    Article  CAS  PubMed  Google Scholar 

  • Nelson PT, Wang WX, Rajeev BW (2008) MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18(1):130–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donovan MC, Owen MJ (1999) Candidate-gene association studies of schizophrenia. Am J Hum Genet 65(3):587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S et al (2008) Functional organization of the transcriptome in human brain. Nat Neurosci 11(11):1271–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA et al (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8(2):R27

    Article  PubMed  PubMed Central  Google Scholar 

  • Pries L-K, Gülöksüz S, Kenis G (2017) DNA methylation in schizophrenia. In: Delgado-Morales R (ed) Neuroepigenomics in Aging and Disease. Springer International Publishing, Cham, pp 211–236

    Chapter  Google Scholar 

  • Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256):748–752

    Article  CAS  PubMed  Google Scholar 

  • Radulescu E, Jaffe AE, Straub RE, Chen Q, Shin JH, Hyde TM et al (2020) Identification and prioritization of gene sets associated with schizophrenia risk by co-expression network analysis in human brain. Mol Psychiatry 25(4):791–804

    Article  CAS  PubMed  Google Scholar 

  • Reitz C, Tokuhiro S, Clark LN, Conrad C, Vonsattel J-P, Hazrati L-N et al (2011) SORCS1 alters amyloid precursor protein processing and variants may increase Alzheimer’s disease risk. Ann Neurol 69(1):47–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richetto J, Meyer U (2021) Epigenetic modifications in schizophrenia and related disorders: molecular scars of environmental exposures and source of phenotypic variability. Biol Psychiat 89(3):215–226

    Article  CAS  PubMed  Google Scholar 

  • Seven M, Karatas OF, Duz MB, Ozen M (2014) The role of miRNAs in cancer: from pathogenesis to therapeutic implications. Future Oncol 10(6):1027–1048

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma RP, Grayson DR, Gavin DP (2008) Histone deactylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: analysis of the National Brain Databank microarray collection. Schizophr Res 98(1–3):111–117

    Article  PubMed  Google Scholar 

  • Shen A, Tong X, Li H, Chu L, Jin X, Ma H et al (2021) TPPP3 inhibits the proliferation, invasion and migration of endometrial carcinoma targeted with miR-1827. Clin Exp Pharmacol Physiol 48(6):890–901

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Du J, Qi Y, Liang G, Wang T, Li S et al (2012) Aberrant expression of serum miRNAs in schizophrenia. J Psychiatr Res 46(2):198–204

    Article  PubMed  Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data. Springer, Bioinformatics and computational biology solutions using R and Bioconductor, pp 397–420

    Google Scholar 

  • Soleimani Zakeri NS, Pashazadeh S, MotieGhader H (2020) Gene biomarker discovery at different stages of Alzheimer using gene co-expression network approach. Sci Rep 10(1):12210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starnawska A, Demontis D, McQuillin A, O’Brien NL, Staunstrup NH, Mors O et al (2016) Hypomethylation of FAM63B in bipolar disorder patients. Clin Epigenetics 8(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Wang MJ, Cao XT, Liu WY, Chen HY, Ding XQ et al (2021) Expression of microRNAs in peripheral blood of patients with primary immune thrombocytopenia and its correlation with the imbalance of Th1/Th2 cell. Zhongguo Shi Yan Xue Ye Xue Za Zhi 29(5):1570–1576

    PubMed  Google Scholar 

  • Tang X, Tang G, Özcan S (2008) Role of microRNAs in diabetes. Biochim Et Biophys Acta (BBA)-Gene Reg Mech 1779(11):697–701

  • Taylor MA, Gaztanaga P, Abrams R (1974) Manic-depressive illness and acute schizophrenia: a clinical, family history, and treatment-response study. Am J Psychiatry 131(6):678–682

    Article  CAS  PubMed  Google Scholar 

  • Treiber T, Treiber N, Meister G (2012) Regulation of microRNA biogenesis and function. Thromb Haemost 107(04):605–610

    Article  CAS  PubMed  Google Scholar 

  • Torkamani A, Dean B, Schork NJ, Thomas EA (2010) Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia. Genome Res 20(4):403–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Wijnen AJ, Van De Peppel J, Van Leeuwen JP, Lian JB, Stein GS, Westendorf JJ et al (2013) MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Curr Osteoporos Rep 11(2):72–82

    Article  PubMed  PubMed Central  Google Scholar 

  • van Os J, Kapur S (2009a) Schizophrenia. Lancet (london, England) 374(9690):635–645

    Article  Google Scholar 

  • van Os J, Kapur S (2009b) Schizophrenia. The Lancet 374(9690):635–645

    Article  Google Scholar 

  • Wang F, Li Z, Zhao M, Ye W, Wu H, Liao Q et al (2021a) Circulating miRNAs miR-574-5p and miR-3135b are potential metabolic regulators for serum lipids and blood glucose in gestational diabetes mellitus. Gynecol Endocrinol 37(7):665–671

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Xie S, Liu J, Li T, Wang W, Xie Z (2021b) MicroRNA-4429 suppresses proliferation of prostate cancer cells by targeting distal-less homeobox 1 and inactivating the Wnt/β-catenin pathway. BMC Urol 21(1):40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Lu M, Qiu C, Cui Q (2010) TransmiR: a transcription factor–microRNA regulation database. Nucleic Acid Res 38(suppl_1):D119-D122

  • Wen Y-D, Xia Z-W, Li D-J, Cheng Q, Zhao Q, Cao H (2020) Genetic profiles playing opposite roles of pathogenesis in schizophrenia and glioma. Journal of Oncology 2020:3656841

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Gao R, Li J, Tang S, Li S, Tong Q et al (2020) Circular RNA hsa_circ_0003141 promotes tumorigenesis of hepatocellular carcinoma via a miR-1827/UBAP2 axis. Aging 12(10):9793–9806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Wu D, Yan W, Wang Y, You J, Wan X et al (2021) Interferon-induced macrophage-derived exosomes mediate antiviral activity against hepatitis B virus through miR-574-5p. J Infect Dis 223(4):686–698

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Liu R, Sheng J, Liao J, Wang Y, Pan E et al (2013) Differential expression profiles of microRNAs as potential biomarkers for the early diagnosis of esophageal squamous cell carcinoma. Oncol Rep 29(1):169–176

    Article  PubMed  Google Scholar 

  • Zhang Y, You X, Li S, Long Q, Zhu Y, Teng Z et al (2020) Peripheral blood leukocyte RNA-Seq identifies a set of genes related to abnormal psychomotor behavior characteristics in patients with schizophrenia. Medic Sci Moni: Int Med J Experiment Clin Res 26:e922426-e

  • Zhou Z, Zheng X, Mei X, Li W, Qi S, Deng Y et al (2021a) Hsa_circ_0080229 upregulates the expression of murine double minute-2 (MDM2) and promotes glioma tumorigenesis and invasion via the miR-1827 sponging mechanism. Ann Translat Med 9(9):762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Qian K, Yu S, Zhao Y, Shen Q, Li Y (2021b) MiR-4429 alleviates malignant behaviors of lung adenocarcioma through Wnt/β-catenin pathway. Cancer Biother Radiopharma

  • Zhu S, Peng W, Li X, Weng J, Zhang X, Guo J et al (2017) miR-1827 inhibits osteogenic differentiation by targeting IGF1 in MSMSCs. Sci Rep 7:46136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This article is the result of the findings of the research project 97542 that was approved and financed by Vice Chancellor for Research and Research and Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Yazdan Rahmati and Omran Davarinejad; computational analyses and experiments: Yazdan Rahmati, Sajad Najafi, and Hossein Zhaleh; writing manuscript: Yazdan Rahmati, Sajad Najafi, Farzaneh Golmohammadia, Farnaz Radmehra, Mostafa Alikhania, and Reza Heidari Moghadam; and supervision and finalization: Yazdan Rahmati.

Corresponding author

Correspondence to Yazdan Rahmati.

Ethics declarations

Ethics Approval and Consent to Participate

All patients gave their signed written informed consent letters. Medical Research and Ethical Committee of Kermanshah University of Medical Sciences (Kermanshah, Iran; registration no. IR.KUMS.REC.1397.490; grant number 97542) approved the study performed under ethical principles contained in the 7th and current (2013) editions of Helsinki Declaration.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3226 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davarinejad, O., Najafi, S., Zhaleh, H. et al. MiR-574-5P, miR-1827, and miR-4429 as Potential Biomarkers for Schizophrenia. J Mol Neurosci 72, 226–238 (2022). https://doi.org/10.1007/s12031-021-01945-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01945-0

Keywords

Navigation