Skip to main content

Advertisement

Log in

Amantadine Attenuated Hypoxia-Induced Mitochondrial Oxidative Neurotoxicity, Apoptosis, and Inflammation via the Inhibition of TRPM2 and TRPV4 Channels

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The hypoxia (HPX) acts the brain injury and apoptosis via the Ca2+ influx-induced excessive mitochondria free reactive oxygen species (mitROS) in neurons. The effective treatment of HPX is not possible yet. In addition to the antiviral and antiparkinsonian actions, amantadine (AMN) has been evaluated as a drug in treatments against brain injury. TRPM2 and TRPV4 channels are activated by mitROS. AMN attenuates NMDA receptor-induced Ca2+ influx, mitROS, inflammation, and apoptosis in the brain. However, the molecular pathways underlying AMN’s neuroprotection against HPX remain elusive. We investigated the protective role of AMN via attenuation of TRPM2 and TRPV4 on oxidative neurotoxicity, mitochondrial membrane potential (ΔΨm), inflammation, and apoptosis in neuronal cells (SH-SY5Y). The SH-SY5Y and HEK293 cells were divided into six groups as follows: control, AMN (750 µM for 48 h), HPX (200 µM CoCl2 for 24 h), HPX + AMN, HPX + TRPM2 blockers (25 µM ACA or 100 µM 2APB for 30 min), and HPX + TRPV4 blocker (ruthenium red (RuR)-1 µM for 30 min). The HPX caused to upregulation of Ca2+ influx with an upregulation of ΔΨm and mitROS. The changes were not observed in the absence of TRPM2 and TRPV4 in the HEK293 cells. When HPX induction, TRPV4 agonist (GSK1016790A) and TRPM2 agonists (ADP-ribose and H2O2)-induced channel activity were diminished by the incubation of AMN and channel antagonists (RuR, ACA, and 2APB). The changes of mitROS, apoptotic markers (caspase-3 and -9), cell death rate, cell viability, cytokine (IL-1β, IL-6, and TNF-α), ΔΨm, and Zn2+ concentrations were also restored by the incubation of AMN. In conclusion, the treatment of AMN attenuated HPX-mediated mitROS, apoptosis, and TRPM2/TRPV4-mediated overload Ca2+ influx and may provide an avenue for protecting the HPX-mediated neurodegenerative and cerebrovascular diseases associated with the upregulation of mitROS, Ca2+, and Zn2+ concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The present analyses were performed in BSN Health, Analyses, Innov., Consult., Org., Agricul., and Indust. Ltd, (Göller Bölgesi Teknokenti, Isparta, Turkey), and they are available from the Prof. Dr. M. Nazıroğlu on reasonable request.

Abbreviations

2APB:

2-Aminoethyl diphenyl borinate

ACA:

N-(p-amylcinnamoyl) anthranilic acid

AMN:

Amantadine

CASP-3:

Caspase-3

CASP-9:

Caspase-9

CNT:

Control

cytCa2 + :

Cytosolic free calcium ion

cytROS:

Cytosolic reactive oxygen species

cytZn2 + :

Cytosolic free zinc ion

GSK:

GSK1016790A

HPX:

Hypoxia

LSCM:

Laser scanning confocal microscope

LSM/800:

Laser scan confocal microscope

mitPOT:

Mitochondrial membrane potential

mitROS:

Mitochondrial reactive oxygen species

NMDA:

N-Methyl-D-aspartate

RuR:

Ruthenium red

TRP:

Transient receptor potential

TRPM2:

Transient receptor potential melastatin 2

TRPV4:

Transient receptor potential vanilloid 4

References

  1. Sekhon MS, Ainslie PN, Griesdale DE (2017) Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care 21(1):90. https://doi.org/10.1186/s13054-017-1670-9

    Article  PubMed  PubMed Central  Google Scholar 

  2. Choudhary R, Kumar M, Katyal A (2022) 12/15-Lipoxygenase debilitates mitochondrial health in intermittent hypobaric hypoxia induced neuronal damage: an in vivo study. Redox Biol 49:102228. https://doi.org/10.1016/j.redox.2021.102228

    Article  CAS  PubMed  Google Scholar 

  3. Gao Y, Liang W, Hu X, Zhang W, Stetler RA, Vosler P, Cao G, Chen J (2010) Neuroprotection against hypoxic-ischemic brain injury by inhibiting the apoptotic protease activating factor-1 pathway. Stroke 41(1):166–172. https://doi.org/10.1161/STROKEAHA.109.561852

    Article  PubMed  Google Scholar 

  4. Tang D, Wang C, Gao Y, Pu J, Long J, Xu W (2016) Deep hypothermia-enhanced autophagy protects PC12 cells against oxygen glucose deprivation via a mitochondrial pathway. Neurosci Lett 632:79–85. https://doi.org/10.1016/j.neulet.2016.08.049

    Article  CAS  PubMed  Google Scholar 

  5. Carrasco C, Naziroǧlu M, Rodríguez AB, Pariente JA (2018) Neuropathic pain: Delving into the oxidative origin and the possible implication of transient receptor potential channels. Front Physiol 9:95. https://doi.org/10.3389/fphys.2018.00095

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hoffman NE, Miller BA, Wang J, Elrod JW, Rajan S, Gao E et al (2015) Ca2+ entry via Trpm2 is essential for cardiac myocyte bioenergetics maintenance. Am J Physiol Heart Circ Physiol 308(6):H637–H650. https://doi.org/10.1152/ajpheart.00720.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bao L, Chen SJ, Conrad K et al (2016) Depletion of the human ion channel TRPM2 in neuroblastoma demonstrates its key role in cell survival through modulation of mitochondrial reactive oxygen species and bioenergetics. J Biol Chem 291(47):24449–24464. https://doi.org/10.1074/jbc.M116.747147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deveci HA, Akyuva Y, Nur G, Nazıroğlu M (2019) Alpha lipoic acid attenuates hypoxia-induced apoptosis, inflammation and mitochondrial oxidative stress via inhibition of TRPA1 channel in human glioblastoma cell line. Biomed Pharmacother 111:292–304. https://doi.org/10.1016/j.biopha.2018.12.077

    Article  CAS  PubMed  Google Scholar 

  9. Akyuva Y, Nazıroğlu M (2020) Resveratrol attenuates hypoxia-induced neuronal cell death, inflammation and mitochondrial oxidative stress by modulation of TRPM2 channel. Sci Rep 10(1):6449. https://doi.org/10.1038/s41598-020-63577-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Armağan HH, Nazıroğlu M (2021) Curcumin attenuates hypoxia-Induced oxidative neurotoxicity, apoptosis, calcium, and zinc ion influxes in a neuronal cell line: Involvement of TRPM2 channel. Neurotox Res 39(3):618–633. https://doi.org/10.1007/s12640-020-00314-w

    Article  CAS  PubMed  Google Scholar 

  11. Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001

    Article  Google Scholar 

  12. Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277(49):47044–47051. https://doi.org/10.1074/jbc.M208277200

    Article  CAS  PubMed  Google Scholar 

  13. Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W et al (2002) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277(16):13569–13577. https://doi.org/10.1074/jbc.M200062200

    Article  CAS  PubMed  Google Scholar 

  14. Zhang L, Papadopoulos P, Hamel E (2013) Endothelial TRPV4 channels mediate dilation of cerebral arteries: impairment and recovery in cerebrovascular pathologies related to Alzheimer’s disease. Br J Pharmacol 170(3):661–670. https://doi.org/10.1111/bph.12315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9(1):163–173. https://doi.org/10.1016/S1097-2765(01)00438-5

    Article  CAS  PubMed  Google Scholar 

  16. Nazıroğlu M, Lückhoff A (2008) Effects of antioxidants on calcium influx through TRPM2 channels in transfected cells activated by hydrogen peroxide. J Neurol Sci 270(1–2):152–158. https://doi.org/10.1016/j.jns.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  17. Kraft R, Grimm C, Frenzel H, Harteneck C (2006) Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl)anthranilic acid. Br J Pharmacol 148(3):264–273

    Article  CAS  Google Scholar 

  18. Togashi K, Inada H, Tominaga M (2008) Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br J Pharmacol 153(6):1324–1330. https://doi.org/10.1038/sj.bjp.0707675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nazıroğlu M (2022) A novel antagonist of TRPM2 and TRPV4 channels: Carvacrol. Metab Brain Dis 6:1–18. https://doi.org/10.1007/s11011-021-00887-1

    Article  CAS  Google Scholar 

  20. Özşimşek A, Nazıroğlu M (2021) The involvement of TRPV4 on the hypoxia-induced oxidative neurotoxicity and apoptosis in a neuronal cell line: protective role of melatonin. Neurotoxicology 87:136–148. https://doi.org/10.1016/j.neuro.2021.09.003

    Article  CAS  PubMed  Google Scholar 

  21. Duzgun Ergun D, Dursun S, Pastaci Ozsobaci N, Hatırnaz Ng O, Naziroglu M, Ozcelik D (2020) The potential protective roles of zinc, selenium and glutathione on hypoxia-induced TRPM2 channel activation in transfected HEK293 cells. J Recept Signal Transduct Res 40(6):521–530. https://doi.org/10.1080/10799893.2020.1759093

    Article  CAS  PubMed  Google Scholar 

  22. Portavella M, Rodriguez-Espinosa N, Galeano P, Blanco E, Romero JI, Holubiec MI, Rodriguez de Fonseca F, Fernández-Espejo E (2018) Oleoylethanolamide and palmitoylethanolamide protect cultured cortical neurons against hypoxia. Cannabis Cannabinoid Res 3(1):171–178. https://doi.org/10.1089/can.2018.0013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seyedsaadat SM, Kallmes DF (2019) Memantine for the treatment of ischemic stroke: experimental benefits and clinical lack of studies. Rev Neurosci 30(2):203–220. https://doi.org/10.1515/revneuro-2018-0025

    Article  CAS  PubMed  Google Scholar 

  24. Dos Santos DT, Imthon AK, Strelow MZ, Pille A, Schumacher-Schuh AF (2021) Parkinsonism-hyperpyrexia syndrome after amantadine withdrawal: case report and review of the literature. Neurologist 26(4):149–152. https://doi.org/10.1097/NRL.0000000000000330

    Article  PubMed  Google Scholar 

  25. Wang T, Huang XJ, Van KC, Went GT, Nguyen JT, Lyeth BG (2014) Amantadine improves cognitive outcome and increases neuronal survival after fluid percussion traumatic brain injury in rats. J Neurotrauma 31(4):370–377. https://doi.org/10.1089/neu.2013.2917

    Article  PubMed  Google Scholar 

  26. Rao VL, Dogan A, Todd KG, Bowen KK, Dempsey RJ (2001) Neuroprotection by memantine, a non-competitive NMDA receptor antagonist after traumatic brain injury in rats. Brain Res 911(1):96–100. https://doi.org/10.1016/s0006-8993(01)02617-8

    Article  CAS  PubMed  Google Scholar 

  27. Zhao J, Peng L, Zheng W, Wang R, Zhang L, Yang J, Chen H (2015) Chemically bonding of amantadine with gardenamide A enhances the neuroprotective effects against corticosterone-induced insults in PC12 cells. Int J Mol Sci 16(9):22795–22810. https://doi.org/10.3390/ijms160922795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zaitsev AV, Kim KKh, Vasilev DS, Lukomskaya NY, Lavrentyeva VV, Tumanova NL, Zhuravin IA, Magazanik LG (2015) N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons. J Neurosci Res 93(3):454–465. https://doi.org/10.1002/jnr.23500

    Article  CAS  PubMed  Google Scholar 

  29. O’Hare Doig RL, Bartlett CA, Smith NM, Hodgetts SI, Dunlop SA, Hool L, Fitzgerald M (2016) Specific combinations of ion channel inhibitors reduce excessive Ca2+ influx as a consequence of oxidative stress and increase neuronal and glial cell viability in vitro. Neuroscience 339:450–462. https://doi.org/10.1016/j.neuroscience.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  30. Sánchez JC, Muñoz LV, Ehrlich BE (2020) Modulating TRPV4 channels with paclitaxel and lithium. Cell Calcium 91:102266. https://doi.org/10.1016/j.ceca.2020.102266

    Article  CAS  PubMed  Google Scholar 

  31. Quarato G, Scrima R, Ripoli M, Agriesti F, Moradpour D, Capitanio N, Piccoli C (2014) Protective role of amantadine in mitochondrial dysfunction and oxidative stress mediated by hepatitis C virus protein expression. Biochem Pharmacol 89(4):545–556. https://doi.org/10.1016/j.bcp.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  32. Varier KM, Sumathi T (2019) Hinokitiol offers neuroprotection against 6-OHDA-induced toxicity in SH-SY5Y neuroblastoma cells by downregulating mRNA expression of MAO/α-synuclein/LRRK2/PARK7/PINK1/PTEN genes. Neurotox Res 35(4):945–954. https://doi.org/10.1007/s12640-018-9988-x

    Article  CAS  PubMed  Google Scholar 

  33. Ertilav K (2019) Pregabalin protected cisplatin-induced oxidative neurotoxicity in neuronal cell line. J Cell Neurosci Oxid Stress 11(1):815–824

    Article  Google Scholar 

  34. Akyuva Y (2020) Clostridium botulinum neurotoxin A inhibits DBTRG glioblastoma cell proliferation and TRPV1 channel signaling pathways. J Cell Neurosci Oxid Stress 12(1):903–913. https://doi.org/10.37212/jcnos.809635

    Article  Google Scholar 

  35. Joshi DC, Bakowska JC (2011) Determination of mitochondrial membrane potential and reactive oxygen species in live rat cortical neurons. J Vis Exp 51:2704. https://doi.org/10.3791/2704

    Article  CAS  Google Scholar 

  36. Keil VC, Funke F, Zeug A, Schild D, Müller M (2011) Ratiometric high-resolution imaging of JC-1 fluorescence reveals the subcellular heterogeneity of astrocytic mitochondria. Pflugers Arch 462:693–708. https://doi.org/10.1007/s00424-011-1012-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ (2003) Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278(13):11002–11006. https://doi.org/10.1074/jbc.M210810200

    Article  CAS  PubMed  Google Scholar 

  38. Espino J, Bejarano I, Paredes SD, Barriga C, Rodríguez AB, Pariente JA (2011) Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions. J Pineal Res 51(2):195–206. https://doi.org/10.1111/j.1600-079X.2011.00876.x

    Article  CAS  PubMed  Google Scholar 

  39. Uguz AC, Cig B, Espino J, Bejarano I, Nazıroğlu M, Rodríguez AB, Pariente JA (2012) Melatonin potentiates chemotherapy-induced cytotoxicity and apoptosis in rat pancreatic tumor cells. J Pineal Res 53(1):91–98. https://doi.org/10.1111/j.1600-079X.2012.00974.x

    Article  CAS  PubMed  Google Scholar 

  40. Dineley KE, Richards LL, Votyakova TV, Reynolds IJ (2005) Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5(1):55–65. https://doi.org/10.1016/j.mito.2004.11.001

    Article  CAS  PubMed  Google Scholar 

  41. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q et al (2011) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411(6837):595–599. https://doi.org/10.1038/35079100

    Article  CAS  Google Scholar 

  42. Yazğan Y, Nazıroğlu M (2021) Involvement of TRPM2 in the neurobiology of experimental migraine: focus on oxidative stress and apoptosis. Mol Neurobiol 58(11):5581–5601. https://doi.org/10.1007/s12035-021-02503-w

    Article  CAS  PubMed  Google Scholar 

  43. Muramatsu Y, Furuichi Y, Tojo N, Moriguchi A, Maemoto T, Nakada H, Hino M, Matsuoka N (2007) Neuroprotective efficacy of FR901459, a novel derivative of cyclosporin A, in in vitro mitochondrial damage and in vivo transient cerebral ischemia models. Brain Res 1149:181–190. https://doi.org/10.1016/j.brainres.2007.02.036

    Article  CAS  PubMed  Google Scholar 

  44. Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, Ferroni S, Anderova M (2012) The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS ONE 7(6):e39959. https://doi.org/10.1371/journal.pone.0039959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bai JZ, Lipski J (2014) Involvement of TRPV4 channels in Aβ(40)-induced hippocampal cell death and astrocytic Ca(2+) signalling. Neurotoxicology 41:64–72. https://doi.org/10.1016/j.neuro.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  46. Jie P, Hong Z, Tian Y, Li Y, Lin L, Zhou L, Du Y, Chen L et al (2015) Activation of transient receptor potential vanilloid 4 induces apoptosis in hippocampus through downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways. Cell Death Dis 6(6):e1775. https://doi.org/10.1038/cddis.2015.146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jie P, Lu Z, Hong Z, Li L, Zhou L, Li Y, Zhou R, Zhou Y et al (2016) Activation of transient receptor potential vanilloid 4 is involved in neuronal injury in middle cerebral artery occlusion in mice. Mol Neurobiol 53(1):8–17. https://doi.org/10.1007/s12035-014-8992-2

    Article  CAS  PubMed  Google Scholar 

  48. Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH (2003) Modulation of mitochondrial function by endogenous Zn2+ pools. Proc Natl Acad Sci U S A 100(10):6157–6162. https://doi.org/10.1073/pnas.1031598100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ji SG, Medvedeva YV, Weiss JH (2020) Zn2+ entry through the mitochondrial calcium uniporter is a critical contributor to mitochondrial dysfunction and neurodegeneration. Exp Neurol 325:113161. https://doi.org/10.1016/j.expneurol.2019.113161

    Article  CAS  PubMed  Google Scholar 

  50. Gündüz ZB, Aktas F, Vatansev H, Solmaz M, Erdoğan E (2021) Effects of amantadine and topiramate on neuronal damage in rats with experimental cerebral ischemia-reperfusion. Adv Clin Exp Med. 30(10):1013–1023. https://doi.org/10.17219/acem/138327

    Article  PubMed  Google Scholar 

  51. Agrawal A, Rathor R, Kumar R, Suryakumar G, Ganju L (2018) Role of altered proteostasis network in chronic hypobaric hypoxia induced skeletal muscle atrophy. PLoS ONE 13(9):e0204283. https://doi.org/10.1371/journal.pone.0204283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Khan M, Elango C, Ansari MA, Singh I, Singh AK (2007) Caffeic acid phenethyl ester reduces neurovascular inflammation and protects rat brain following transient focal cerebral ischemia. J Neurochem 102(2):365–377. https://doi.org/10.1111/j.1471-4159.2007.04526.x

    Article  CAS  PubMed  Google Scholar 

  53. Özkaya D, Nazıroğlu M, Vanyorek L, Muhamad S (2021) Involvement of TRPM2 channel on hypoxia-induced oxidative injury, inflammation, and cell death in retinal pigment epithelial cells: modulator action of selenium nanoparticles. Biol Trace Elem Res 199(4):1356–1369. https://doi.org/10.1007/s12011-020-02556-3

    Article  CAS  PubMed  Google Scholar 

  54. Zhang J, Tan H, Jiang W, Zuo Z (2014) Amantadine alleviates postoperative cognitive dysfunction possibly by increasing glial cell line-derived neurotrophic factor in rats. Anesthesiology 121(4):773–785. https://doi.org/10.1097/ALN.0000000000000352

    Article  CAS  PubMed  Google Scholar 

  55. Juul SE, Ferriero DM (2014) Pharmacologic neuroprotective strategies in neonatal brain injury. Clin Perinatol 41(1):119–131. https://doi.org/10.1016/j.clp.2013.09.004

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The cell culture, apoptosis, caspases, cytokine, and cell viability analyses in the current study in 4th International Brain Research School, 24 and 30 June 2019, Isparta, Turkey, by Dr. Özgür Öcal and Dr. Aymer Coşar (http://2019.brs.org.tr/). The authors wish to thank technician Fatih Şahin (BSN Health LTD., Isparta, Turkey) for helping the patch-clamp analyses.

Funding

The study was supported by BSN Health, Analysis and Innovation Ltd. Inc. Göller Bölgesi Teknokenti, Isparta, Turkey (Project No: 2019–06).

Author information

Authors and Affiliations

Authors

Contributions

Dr. Özgür Öcal: conceptualization, validation, formal analysis, investigation, visualization, project administration, funding acquisition, writing — review and editing. Dr. Aymer Coşar: conceptualization, validation, formal analysis, investigation, visualization. Prof. Dr. Mustafa Nazıroğlu: conceptualization, methodology, validation, formal analysis, investigation, resources, data curation, graphic preparations, writing — review and editing.

Corresponding author

Correspondence to Mustafa Nazıroğlu.

Ethics declarations

Ethics Approval

This article does not contain any studies with animal and human performed by any of the authors.

Consent for Publication

All authors approved the final manuscript as submitted.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öcal, Ö., Coşar, A. & Nazıroğlu, M. Amantadine Attenuated Hypoxia-Induced Mitochondrial Oxidative Neurotoxicity, Apoptosis, and Inflammation via the Inhibition of TRPM2 and TRPV4 Channels. Mol Neurobiol 59, 3703–3720 (2022). https://doi.org/10.1007/s12035-022-02814-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02814-6

Keywords

Navigation