Skip to main content

Advertisement

Log in

Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accelerating cases of diabetes worldwide have given rise to higher incidences of diabetic complications. MiRNAs, a much-explored class of non-coding RNAs, play a significant role in the pathogenesis of diabetes mellitus by affecting insulin release, β-cell proliferation, and dysfunction. Besides, disrupted miRNAs contribute to various complications, diabetic retinopathy, nephropathy, and neuropathy as well as severe conditions like diabetic foot. MiRNAs regulate various processes involved in diabetic complications like angiogenesis, vascularization, inflammations, and various signaling pathways like PI3K, MAPK, SMAD, and NF-KB signaling pathways. Diabetic neuropathy is the most common diabetic complication, characterized mainly by pain and numbness, especially in the legs and feet. MiRNAs implicated in diabetic neuropathy include mir-9, mir-106a, mir-146a, mir-182, miR-23a and b, miR-34a, and miR-503. The diabetic foot is the most common diabetic neuropathy, often leading to amputations. Mir-203, miR-23c, miR-145, miR-29b and c, miR-126, miR-23a and b, miR-503, and miR-34a are associated with diabetic foot. This review has been compiled to summarize miRNA involved in initiation, progression, and miRNAs affecting various signaling pathways involved in diabetic neuropathy including the diabetic foot. Besides, potential applications of miRNAs as biomarkers and therapeutic targets in this microvascular complication will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

DM:

Diabetes mellitus

CHD:

Coronary heart disease

CVAs:

Cerebrovascular accidents

BMR:

Basal metabolic rate

IRAK1:

Interleukin-1 receptor-activated kinase

RAF6:

Tumor necrosis factor receptor-associated factor-6

PDN:

Painful diabetic neuropathy

CALHM1:

Calcium homeostasis modulator 1

KCC2:

K + Cl- cotransporter 2

GABA:

Gamma-aminobutyric acid

CCI:

Chronic constriction sciatic nerve injury

NP:

Neuropathic pain

STAT3:

Signal transducer and activator of transcription 3

SOCS1:

Suppressor of cytokine signaling 1

HMGB1:

High-mobility group box 1

MDA:

Malondialdehyde

VCAM-1:

Vascular cell adhesion molecule-1

GPX:

Glutathione peroxidase

SOD:

Superoxide dismutase

MDT:

Maggot debridement therapy

SDF-1α:

Stromal cell-derived factor-1α

FBN1:

Fibrillin 1

DFU:

Diabetic foot ulcer

References

  1. Fall CH (2001) Non-industrialised countries and affluence: relationship with type 2 diabetes. Br Med Bull 60:33–50

    Article  CAS  PubMed  Google Scholar 

  2. Vaz NC, Ferreira A, Kulkarni M, Vaz FS, Pinto N (2011) Prevalence of diabetic complications in rural Goa, India. Indian journal of community medicine: official publication of Indian Association of Preventive & Social Medicine 36:283

    Article  Google Scholar 

  3. Morgan CL, Currie C, Stott N, Smithers M, Butler CC, Peters J (2000) The prevalence of multiple diabetes-related complications. Diabet Med 17:146–151

    Article  CAS  PubMed  Google Scholar 

  4. Khazai M H, Khazai B, Zargaran Z, Moosavi Z, and Zand F K (2010) Diabetic complications and risk factors in recently diagnosed type II diabetes: a case-control study. ARYA Atherosclerosis, 2(2)

  5. Kozek E, Gorska A, Fross K, Marcinowska A, Citkowska A, Sieradzki J (2003) Chronic complications and risk factors in patients with type 1 diabetes mellitus–retrospective analysis. Przegl Lek 60:773–777

    PubMed  Google Scholar 

  6. Papatheodorou K, Papanas N, Banach M, Papazoglou D, Edmonds M (2016) Complications of diabetes

  7. Vinik AI (2008) Diabetic neuropathies. Controversies in Treating Diabetes. Springer, pp 135–156

    Chapter  Google Scholar 

  8. Vincent AM, Mclean LL, Backus C, Feldman EL (2005) Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J 19:638–640

    Article  CAS  PubMed  Google Scholar 

  9. Tavakoli M, Mojaddidi M, Fadavi H, Malik RA (2008) Pathophysiology and treatment of painful diabetic neuropathy. Curr Pain Headache Rep 12:192–197

    Article  PubMed  Google Scholar 

  10. Gumy LF, Bampton ET, Tolkovsky AM (2008) Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol Cell Neurosci 37:298–311

    Article  CAS  PubMed  Google Scholar 

  11. Feldman EL, Nave K-A, Jensen TS, Bennett DL (2017) New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron 93:1296–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma J, Pan P, Anyika M, Blagg BS, Dobrowsky RT (2015) Modulating molecular chaperones improves mitochondrial bioenergetics and decreases the inflammatory transcriptome in diabetic sensory neurons. ACS Chem Neurosci 6:1637–1648

    Article  CAS  PubMed  Google Scholar 

  13. Legrand-Poels S, Esser N, L’homme L, Scheen A, Paquot N, Piette J (2014) Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochemical pharmacology 92:131–141

    Article  CAS  PubMed  Google Scholar 

  14. Stavniichuk R, Shevalye H, Lupachyk S, Obrosov A, Groves JT, Obrosova IG, Yorek MA (2014) Peroxynitrite and protein nitration in the pathogenesis of diabetic peripheral neuropathy. Diabetes Metab Res Rev 30:669–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Myers RR, Campana WM, Shubayev VI (2006) The role of neuroinflammation in neuropathic pain: mechanisms and therapeutic targets. Drug Discovery Today 11:8–20

    Article  CAS  PubMed  Google Scholar 

  16. Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A (2014) Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. International Journal of Endocrinology 2014:674987. https://doi.org/10.1155/2014/674987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vincent AM, Callaghan BC, Smith AL, Feldman EL (2011) Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 7:573–583. https://doi.org/10.1038/nrneurol.2011.137

    Article  CAS  PubMed  Google Scholar 

  18. Bergmann M, Barnes PJ (1997) Molecular biologic aspects of chronic inflammation reaction in bronchial asthma: incentive for new therapeutic concepts? Pneumologie 51:1071–1078

    CAS  PubMed  Google Scholar 

  19. Cameron NE, Cotter MA (2008) Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Curr Drug Targets 9:60–67. https://doi.org/10.2174/138945008783431718

    Article  CAS  PubMed  Google Scholar 

  20. Doupis J, Lyons TE, Wu S, Gnardellis C, Dinh T, Veves A (2009) Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J Clin Endocrinol Metab 94:2157–2163. https://doi.org/10.1210/jc.2008-2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hur J, Sullivan KA, Callaghan BC, Pop-Busui R, Feldman EL (2013) Identification of factors associated with sural nerve regeneration and degeneration in diabetic neuropathy. Diabetes Care 36:4043–4049. https://doi.org/10.2337/dc12-2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hur J, Sullivan KA, Pande M, Hong Y, Sima AA, Jagadish HV, Kretzler M, Feldman EL (2011) The identification of gene expression profiles associated with progression of human diabetic neuropathy. Brain 134:3222–3235. https://doi.org/10.1093/brain/awr228

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lieb DC, Parson HK, Mamikunian G, Vinik AI (2012) Cardiac autonomic imbalance in newly diagnosed and established diabetes is associated with markers of adipose tissue inflammation. Exp Diabetes Res 2012:878760. https://doi.org/10.1155/2012/878760

    Article  PubMed  Google Scholar 

  24. O’Shaughnessy TC, Ansari TW, Barnes NC, Jeffery PK (1997) Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1. Am J Respir Crit Care Med 155:852–857. https://doi.org/10.1164/ajrccm.155.3.9117016

    Article  CAS  PubMed  Google Scholar 

  25. Barnes PJ, Adcock IM (1997) NF-kB: a pivotal role in asthma and a new target for therapy. Trends Pharmacol Sci 18:46–50. https://doi.org/10.1016/S0165-6147(97)89796-9

    Article  CAS  PubMed  Google Scholar 

  26. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:1793–1801. https://doi.org/10.1172/jci29069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kellogg AP, Wiggin TD, Larkin DD, Hayes JM, Stevens MJ, Pop-Busui R (2007) Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes 56:2997–3005. https://doi.org/10.2337/db07-0740

    Article  CAS  PubMed  Google Scholar 

  28. Purves T, Middlemas A, Agthong S, Jude EB, Boulton AJ, Fernyhough P, Tomlinson DR (2001) A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. Faseb j 15:2508–2514. https://doi.org/10.1096/fj.01-0253hyp

    Article  CAS  PubMed  Google Scholar 

  29. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL (2012) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11:521–534. https://doi.org/10.1016/s1474-4422(12)70065-0

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhou J, Zhou S (2014) Inflammation: therapeutic targets for diabetic neuropathy. Mol Neurobiol 49:536–546. https://doi.org/10.1007/s12035-013-8537-0

    Article  CAS  PubMed  Google Scholar 

  31. Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G et al., (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827–835. https://doi.org/10.1038/nn.3113

    Article  CAS  PubMed  Google Scholar 

  32. Bali KK, Kuner R (2014) Noncoding RNAs: key molecules in understanding and treating pain. Trends Mol Med 20:437–448. https://doi.org/10.1016/j.molmed.2014.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu Y, Cao X-C (2019) miR-190-5p in human diseases. Cancer Cell Int 19:257. https://doi.org/10.1186/s12935-019-0984-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gong Q, Lu Z, Huang Q, Ruan L, Chen J, Liang Y, Wang H, Yue Y et al., (2015) Altered microRNAs expression profiling in mice with diabetic neuropathic pain. Biochem Biophys Res Commun 456:615–620. https://doi.org/10.1016/j.bbrc.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  35. Di Yang QY, Wei X, Liu Y, Ma D, Li J, Wan Y, Luo Y (2017) The role of miR-190a-5p contributes to diabetic neuropathic pain via targeting SLC17A6. J Pain Res 10:2395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang L, Chopp M, Szalad A, Zhang Y, Wang X, Zhang R, Liu X, Jia L et al.,(2014) The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience 259:155–163

    Article  CAS  PubMed  Google Scholar 

  37. Li L, Chen XP, Li YJ (2010) MicroRNA-146a and human disease. Scand J Immunol 71:227–231. https://doi.org/10.1111/j.1365-3083.2010.02383.x

    Article  CAS  PubMed  Google Scholar 

  38. Yousefzadeh N, Alipour MR, Soufi FG (2015) Deregulation of NF-кB–miR-146a negative feedback loop may be involved in the pathogenesis of diabetic neuropathy. J Physiol Biochem 71:51–58

    Article  CAS  PubMed  Google Scholar 

  39. Meffert MK, Baltimore D (2005) Physiological functions for brain NF-κB. Trends Neurosci 28:37–43

    Article  CAS  PubMed  Google Scholar 

  40. Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radical Biol Med 50:567–575

    Article  CAS  Google Scholar 

  41. Mattson MP, Camandola S (2001) NF-κB in neuronal plasticity and neurodegenerative disorders. J Clin Investig 107:247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kallenborn-Gerhardt W, Schröder K, Del Turco D, Lu R, Kynast K, Kosowski J, Niederberger E, Shah AM et al.,(2012) NADPH Oxidase-4 maintains neuropathic pain after peripheral nerve injury. J Neurosci 32:10136–10145. https://doi.org/10.1523/jneurosci.6227-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Zhao X, Wu X, Dai Y, Chen P, Xie L (2016) microRNA-182 mediates Sirt1-induced diabetic corneal nerve regeneration. Diabetes 65:2020–2031

    Article  CAS  PubMed  Google Scholar 

  44. Tölle T, Xu X, Sadosky AB (2006) Painful diabetic neuropathy: a cross-sectional survey of health state impairment and treatment patterns. J Diabetes Complications 20:26–33

    Article  PubMed  Google Scholar 

  45. Kusuda R, Cadetti F, Ravanelli MI, Sousa TA, Zanon S, De Lucca FL, Lucas G (2011) Differential expression of microRNAs in mouse pain models. Mol Pain 7:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Elramah S, Landry M, Favereaux A (2014) MicroRNAs regulate neuronal plasticity and are involved in pain mechanisms. Front Cell Neurosci 8:31

    Article  PubMed  PubMed Central  Google Scholar 

  47. Coolen M, Katz S, Bally-Cuif L (2013) miR-9: a versatile regulator of neurogenesis. Front Cell Neurosci 7:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xue Q, Yu C, Wang Y, Liu L, Zhang K, Fang C, Liu F, Bian G et al., (2016) miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3β pathway by targeting Rap2a. Sci Rep 6:26781. https://doi.org/10.1038/srep26781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma Z, Siebert AP, Cheung K-H, Lee RJ, Johnson B, Cohen AS, Vingtdeux V, Marambaud P et al., (2012) Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability. Proc Natl Acad Sci 109:E1963–E1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dreses-Werringloer U, Lambert J-C, Vingtdeux V, Zhao H, Vais H, Siebert A, Jain A, Koppel J et al., (2008) A polymorphism in CALHM1 influences Ca2+ homeostasis, Aβ levels, and Alzheimer’s disease risk. Cell 133:1149–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, Li A, Adrien L, Zhao H et al., (2013) CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495:223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu W, Ao Q, Guo Q, He W, Peng L, Jiang J, Hu X (2017) miR-9 mediates CALHM1-activated ATP-P2X7R signal in painful diabetic neuropathy rats. Mol Neurobiol 54:922–929

    Article  CAS  PubMed  Google Scholar 

  53. Bai X, Hua S, Zhang J, Xu S (2019) The microRNA Family both in normal development and in different diseases: the miR-17-92 cluster. Biomed Res Int 2019:9450240. https://doi.org/10.1155/2019/9450240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tanaka M, Oikawa K, Takanashi M, Kudo M, Ohyashiki J, Ohyashiki K, Kuroda M (2009) Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS ONE 4:e5532–e5532. https://doi.org/10.1371/journal.pone.0005532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61:820–838. https://doi.org/10.1016/j.neuron.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  56. Campos AJdA (2015) Unraveling the role of microRNA-92 in Painful Diabetic Neuropathy (Doctoral dissertation)

  57. Mao L, Liu S, Hu L, Jia L, Wang H, Guo M, Chen C, Liu Y et al., (2018) miR-30 family: a promising regulator in development and disease. Biomed Res Int 2018:9623412. https://doi.org/10.1155/2018/9623412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dib-Hajj SD, Black JA, Waxman SG (2009) Voltage-gated sodium channels: therapeutic targets for pain. Pain Med 10:1260–1269. https://doi.org/10.1111/j.1526-4637.2009.00719.x

    Article  PubMed  Google Scholar 

  59. Su S, Shao J, Zhao Q, Ren X, Cai W, Li L, Bai Q, Chen X et al., (2017) MiR-30b attenuates neuropathic pain by regulating voltage-gated sodium channel Nav1.3 in rats. Front Mol Neurosci 10:126. https://doi.org/10.3389/fnmol.2017.00126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shao J, Cao J, Wang J, Ren X, Su S, Li M, Li Z, Zhao Q et al., (2016) MicroRNA-30b regulates expression of the sodium channel Nav1. 7 in nerve injury-induced neuropathic pain in the rat. Molecular pain 12:1744806916671523

    Article  PubMed  PubMed Central  Google Scholar 

  61. Qian Y, Song J, Ouyang Y, Han Q, Chen W, Zhao X, Xie Y, Chen Y et al., (2017) Advances in roles of miR-132 in the nervous system. Front Pharmacol 8:770–770. https://doi.org/10.3389/fphar.2017.00770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Arai M, Genda Y, Ishikawa M, Shunsuke T, Okabe T, Sakamoto A (2013) The miRNA and mRNA changes in rat hippocampi after chronic constriction injury. Pain Med 14:720–729. https://doi.org/10.1111/pme.12066

    Article  PubMed  Google Scholar 

  63. Zhang R, Huang M, Cao Z, Qi J, Qiu Z, Chiang LY (2015) MeCP2 plays an analgesic role in pain transmission through regulating CREB / miR-132 pathway. Mol Pain 11:19. https://doi.org/10.1186/s12990-015-0015-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 9:984–997. https://doi.org/10.1038/sj.mp.4001551

    Article  CAS  PubMed  Google Scholar 

  65. Leinders M, Üçeyler N, Pritchard R, Sommer C, Sorkin L (2016) Increased miR-132-3p expression is associated with chronic neuropathic pain. Exp Neurol 283:276–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu Y, Xu D, Zhu X, Yang G, Ren M (2017) MiR-106a associated with diabetic peripheral neuropathy through the regulation of 12/15-LOX-meidiated oxidative/nitrative stress. Curr Neurovasc Res 14:117–124

    Article  CAS  PubMed  Google Scholar 

  67. Vila-Navarro E, Fernandez-Castañer E, Rovira-Rigau M, Raimondi G, Vila-Casadesus M, Lozano JJ, Soubeyran P, Iovanna J et al., (2020) MiR-93 is related to poor prognosis in pancreatic cancer and promotes tumor progression by targeting microtubule dynamics. Oncogenesis 9:43. https://doi.org/10.1038/s41389-020-0227-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen X, Yang H, Zhou X, Zhang L, Lu X (2016) MiR-93 targeting EphA4 promotes neurite outgrowth from spinal cord neurons. J Mol Neurosci 58:517–524

    Article  CAS  PubMed  Google Scholar 

  69. Lattanzi A, Gentner B, Corno D, Di Tomaso T, Mestdagh P, Speleman F, Naldini L, Gritti A (2013) Dynamic activity of miR-125b and miR-93 during murine neural stem cell differentiation in vitro and in the subventricular zone neurogenic niche. PLoS One 8:e67411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu S, Li Q, Zhang M T, Mao-Ying Q L, Hu L Y, Wu G C, Mi W L, and Wang Y Q (2016) Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Scientific Reports 6: https://doi.org/10.1038/srep28956

  71. Yan X-T, Ji L-J, Wang Z, Wu X, Wang Q, Sun S, Lu J-M, Zhang Y (2017) MicroRNA-93 alleviates neuropathic pain through targeting signal transducer and activator of transcription 3. Int Immunopharmacol 46:156–162

    Article  CAS  PubMed  Google Scholar 

  72. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  CAS  PubMed  Google Scholar 

  73. Davey GM, Heath WR, Starr R (2006) SOCS1: a potent and multifaceted regulator of cytokines and cell-mediated inflammation. Tissue Antigens 67:1–9. https://doi.org/10.1111/j.1399-0039.2005.00532.x

    Article  CAS  PubMed  Google Scholar 

  74. Recio C, Oguiza A, Lazaro I, Mallavia B, Egido J, Gomez-Guerrero C (2014) Suppressor of cytokine signaling 1–derived peptide inhibits Janus Kinase/signal transducers and activators of transcription pathway and improves inflammation and atherosclerosis in diabetic mice. Arterioscler Thromb Vasc Biol 34:1953–1960

    Article  CAS  PubMed  Google Scholar 

  75. Tan Y, Yang J, Xiang K, Tan Q, Guo Q (2015) Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signalling pathway. Neurochem Res 40:550–560

    Article  CAS  PubMed  Google Scholar 

  76. El-Lithy GM, El-Bakly WM, Matboli M, Abd-Alkhalek HA, Masoud SI, Hamza M (2016) Prophylactic L-arginine and ibuprofen delay the development of tactile allodynia and suppress spinal miR-155 in a rat model of diabetic neuropathy. Translational Research 177:85-971. e1

    Article  CAS  PubMed  Google Scholar 

  77. Tang J, Yao D, Yan H, Chen X, Wang L, Zhan H (2019) The role of microRNAs in the pathogenesis of diabetic nephropathy. International journal of endocrinology 2019:8719060–8719060. https://doi.org/10.1155/2019/8719060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang J, Zhang H, Zi T (2015) Overexpression of microRNA-141 relieves chronic constriction injury-induced neuropathic pain via targeting high-mobility group box 1. Int J Mol Med 36:1433–1439

    Article  CAS  PubMed  Google Scholar 

  79. Lipsky BA, Berendt AR, Deery HG, Embil JM, Joseph WS, Karchmer AW, LeFrock JL, Lew DP et al. (2004) Diagnosis and treatment of diabetic foot infections. Clinical infectious diseases, 885–910

  80. Barshes NR, Gold B, Garcia A, Bechara CF, Pisimisis G, Kougias P (2014) Minor amputation and palliative wound care as a strategy to avoid major amputation in patients with foot infections and severe peripheral arterial disease. Int J Low Extrem Wounds 13:211–219

    Article  PubMed  Google Scholar 

  81. Rdeini W, Agbenorku P,  Mitish V (2014) Strategy of surgical management of peripheral neuropathy form of diabetic foot syndrome in Ghana. Plastic surgery international

  82. Dinh TL, Veves A (2005) A review of the mechanisms implicated in the pathogenesis of the diabetic foot. Int J Low Extrem Wounds 4:154–159

    Article  PubMed  Google Scholar 

  83. Dinh T, Tecilazich F, Kafanas A, Doupis J, Gnardellis C, Leal E, Tellechea A, Pradhan L et al., (2012) Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes 61:2937–2947. https://doi.org/10.2337/db12-0227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Aumiller WD, Dollahite HA (2015) Pathogenesis and management of diabetic foot ulcers. Journal of the American Academy of PAs 28:28–34. https://doi.org/10.1097/01.JAA.0000464276.44117.b1

    Article  Google Scholar 

  85. Clayton W, Elasy TA (2009) A review of the pathophysiology, classification, and treatment of foot ulcers in diabetic patients. Clinical diabetes 27:52–58

    Article  Google Scholar 

  86. Paraskevas KI, Baker DM, Pompella A, Mikhailidis DP (2008) Does diabetes mellitus play a role in restenosis and patency rates following lower extremity peripheral arterial revascularization? A critical overview. Ann Vasc Surg 22:481–491

    Article  PubMed  Google Scholar 

  87. Simeoli R and Fierabracci A (2019) Insights into the role of microRNAs in the onset and development of diabetic neuropathy. Int J Mol Sci 20: https://doi.org/10.3390/ijms20184627

  88. Lyu X-Y, Wang Z-J (2019) Correlation of miR-29b expression level with oxidative stress mediators and inflammatory cytokines in diabetic foot wound. Journal of Hainan Medical University 25:61–64

    Google Scholar 

  89. Zhang J, Guan M, Xie C, Luo X, Zhang Q, and Xue Y (2014) Increased growth factors play a role in wound healing promoted by noninvasive oxygen-ozone therapy in diabetic patients with foot ulcers. Oxidative medicine and cellular longevity 2014

  90. Cicha I, Yilmaz A, Klein M, Raithel D, Brigstock DR, Daniel WG, Goppelt-Struebe M, Garlichs CD (2005) Connective tissue growth factor is overexpressed in complicated atherosclerotic plaques and induces mononuclear cell chemotaxis in vitro. Arterioscler Thromb Vasc Biol 25:1008–1013. https://doi.org/10.1161/01.ATV.0000162173.27682.7b

    Article  CAS  PubMed  Google Scholar 

  91. Kanaan RA, Aldwaik M, Al-Hanbali OA (2006) The role of connective tissue growth factor in skeletal growth and development. Med Sci Monit 12:Ra277-281

    CAS  PubMed  Google Scholar 

  92. Hameedaldeen A, Liu J, Batres A, Graves GS, Graves DT (2014) FOXO1, TGF-β regulation and wound healing. Int J Mol Sci 15:16257–16269. https://doi.org/10.3390/ijms150916257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Okizaki S, Ito Y, Hosono K, Oba K, Ohkubo H, Amano H, Shichiri M, Majima M (2015) Suppressed recruitment of alternatively activated macrophages reduces TGF-β1 and impairs wound healing in streptozotocin-induced diabetic mice. Biomed Pharmacother 70:317–325. https://doi.org/10.1016/j.biopha.2014.10.020

    Article  CAS  PubMed  Google Scholar 

  94. Zhang F, Ren Y, Liu P, Ren Y, Wang D (2016) Expression of TGF-β1 and miRNA-145 in patients with diabetic foot ulcers. Exp Ther Med 11:2011–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liang L, Stone RC, Stojadinovic O, Ramirez H, Pastar I, Maione AG, Smith A, Yanez V et al., (2016) Integrative analysis of miRNA and mRNA paired expression profiling of primary fibroblast derived from diabetic foot ulcers reveals multiple impaired cellular functions. Wound Repair and Regeneration 24:943–953

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E, Xifra G, Martínez C et al., (2014) Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 37:1375–1383. https://doi.org/10.2337/dc13-1847

    Article  CAS  PubMed  Google Scholar 

  97. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R et al., (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15:261–271. https://doi.org/10.1016/j.devcel.2008.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang J, Sun X-J, Hu ZW, Wang L, Gu DM, Wang A-p (2017) Increasing the miR-126 expression in the peripheral blood of patients with diabetic foot ulcers treated with maggot debridement therapy. J Diabetes Complications 31:241–244

    Article  PubMed  Google Scholar 

  99. Amin KN, Umapathy D, Anandharaj A, Ravichandran J, Sasikumar CS, Chandra SKR, Kesavan R, Mohanram RK (2020) miR-23c regulates wound healing by targeting stromal cell-derived factor-1α (SDF-1α/CXCL12) among patients with diabetic foot ulcer. Microvascular research 127:103924

    Article  CAS  PubMed  Google Scholar 

  100. Brem H, Tomic-Canic M (2007) Cellular and molecular basis of wound healing in diabetes. J Clin Invest 117:1219–1222. https://doi.org/10.1172/jci32169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang M-L, Chen J, Zhou Y, Zhao Y-J, Sun D-R, Wu Q, Bi C-L (2018) MiR-503 promotes wound healing of diabetic foot ulcer by targeting FBN1. Asian Pac J Trop Med 11:245

    Article  CAS  Google Scholar 

  102. Narayanan S K (2019) A multifactorial approach to targeting signalling pathways in diabetic foot ulcers (Doctoral dissertation, Karolinska Institutet (Sweden))

  103. Liu C, Xu L, Gao H, Ye J, Huang Y, Wu M, Xie T, Ni P et al., (2015) The association between skin autofluorescence and vascular complications in Chinese patients with diabetic foot ulcer: an observational study done in Shanghai. Int J Low Extrem Wounds 14:28–36

    Article  PubMed  Google Scholar 

  104. Yuan L, Sun Y, Xu M, Zeng F, Xiong X (2019) miR-203 acts as an inhibitor for epithelial-mesenchymal transition process in diabetic foot ulcers via targeting interleukin-8. NeuroImmunoModulation 26:239–249

    Article  CAS  PubMed  Google Scholar 

  105. Cavalli E, Mammana S, Nicoletti F, Bramanti P, and Mazzon E, The neuropathic pain: an overview of the current treatment and future therapeutic approaches. 2019, SAGE Publications Sage UK: London, England

  106. Khdour MR (2020) Treatment of diabetic peripheral neuropathy: a review. Journal of Pharmacy and Pharmacology 72(7):863–872

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

 Council of Scientific and Industrial Research (CSIR), New Delhi, is acknowledged for Senior Research Fellowship (SRF) to P.K. for Ph.D. Declarations. DST-FIST grant (SR/FST/LS-I/2017/49) to department of Human Genetics and Molecular Medicine, Central University of Punjab is acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Contributions

The idea of the article was framed by PK, SK, SS, and AM. Literature was searched by PK and AM, and data analysis was done by PK, SK, and SS. The draft was jointly prepared by PK, SK, SS, and AM. It was critically revised by AM and SS.

Corresponding author

Correspondence to Anjana Munshi.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Disclosure

The authors also declare that all data were generated in-house and that no paper mill was used.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

(a) Diabetic neuropathy is the most common microvascular complication affecting at least 50% of diabetic patients.

(b) MiRNAs have been reported to play a key role in vascularization, angiogenesis, inflammation, various signaling cascades, and other mechanisms that contribute to oxidative and nitrative stress and, thus, diabetic neuropathy.

(c) With promising findings and lesser side effects, miRNA can be investigated as a therapeutic target for the complication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Kotru, S., Singh, S. et al. Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions. Mol Neurobiol 59, 1836–1849 (2022). https://doi.org/10.1007/s12035-021-02662-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02662-w

Keywords

Navigation