Skip to main content
Log in

Review of Metabolomics-Based Biomarker Research for Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD), as the second most common neurodegenerative disease, is seriously affecting the life quality of the elderly. However, there is still a lack of efficient medical methods to diagnosis PD before apparent symptoms occur. In recent years, clinical biomarkers including genetic, imaging, and tissue markers have exhibited remarkable benefits in assisting PD diagnoses. Due to the advantages of high-throughput detection of metabolites and almost non-invasive sample collection, metabolomics research of PD is widely used for diagnostic biomarker discovery. However, there are also a few shortages for those identified biomarkers, such as the scarcity of verifications regarding the sensitivity and specificity. Thus, reviewing the research progress of PD biomarkers based on metabolomics techniques is of great significance for developing PD diagnosis. To comprehensively clarify the progress of current metabolic biomarker studies in PD, we reviewed 20 research articles regarding the discovery and validation of biomarkers for PD diagnosis from three mainstream academic databases (NIH PubMed, ISI Web of Science, and Elsevier ScienceDirect). By analyzing those materials, we summarized the metabolic biomarkers identified by those metabolomics studies and discussed the potential approaches used for biomarker verifications. In conclusion, this review provides a comprehensive and updated overview of PD metabolomics research in the past two decades and particularly discusses the validation of disease biomarkers. We hope those discussions might provide inspiration for PD biomarker discovery and verification in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

ATP:

Adenosine triphosphate

BCAAs:

Branched chain amino acids

CSF:

Cerebrospinal fluid

CIS:

Clinically isolated syndrome of demyelination

ELISA:

Enzyme-linked immunosorbent assay

FFAs:

Free fatty acids

FMT:

Fecal microbiota transplantation

GBA:

Glucocerebrosidase

GC-MS:

Gas chromatography-mass spectrometry

GST:

Glutathione S-transferase

GSTT1:

Glutathione S-transferase theta 1

GSTM1:

Glutathione S-transferase mu 1

G2019S:

Glycine to serine substitution at amino acid 2019

HD:

Huntington’s disease

iPSC:

Induced pluripotent stem cells

ISI:

Institute for Scientific Information

KA:

Kynurenic acid

KYN:

Kynurenine

LBs:

Lowy bodies

LC-MS:

Liquid chromatography-mass spectrometry

LCECA:

High performance liquid chromatography coupled with electrochemical array detection

L-DOPA:

L-3,4-dihydroxyphenylalanine

LRRK2:

Leucine-rich repeat kinase-2

MDS-UPDRS:

Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale

MND:

Motor neuron disease

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MPP + :

1-Methyl-4-phenylpyridinium cation

MS:

Mass spectrometry

NAA:

N-acetyl aspartate

NDs:

Neurodegenerative diseases

NIH:

National Institutes of Health

NMR:

Nuclear magnetic resonance

PARK2:

Parkin RBR E3 ubiquitin-protein ligase

PD:

Parkinson’s disease

PUFAs:

Polyunsaturated free fatty acids

QA:

Quinolinic acid

SNpc:

Substantia nigra pars compacta

SD rats:

Sprague Dawley rats

TCA:

Tricarboxylic acid

UHPLC-MS:

Ultra high-performance liquid chromatography coupled with mass spectrometry

UHPLC-TOF-MS:

Ultra high-performance liquid chromatography coupled with time-of-flight mass spectrometry

6-OHDA:

6-Hydroxydopamine

References

  1. Skov J, Kristiansen K, Jespersen J, Olesen P (2021) Status and perspectives of biomarker validation for diagnosis, stratification, and treatment. Public Health 190:173–175. https://doi.org/10.1016/j.puhe.2020.11.002

    Article  CAS  PubMed  Google Scholar 

  2. Heemels M-T (2016) Neurodegenerative diseases. Nature 539(7628):179. https://doi.org/10.1038/539179a

    Article  PubMed  Google Scholar 

  3. GBDN Collaborators (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(5):459–480. https://doi.org/10.1016/S1474-4422(18)30499-X

    Article  Google Scholar 

  4. Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech 10(5):499–502. https://doi.org/10.1242/dmm.030205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abeliovich A, Gitler AD (2016) Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature 539(7628):207–216. https://doi.org/10.1038/nature20414

    Article  PubMed  Google Scholar 

  6. Canter RG, Penney J, Tsai LH (2016) The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 539(7628):187–196. https://doi.org/10.1038/nature20412

    Article  PubMed  Google Scholar 

  7. Taylor JP, Brown RH Jr, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539(7628):197–206. https://doi.org/10.1038/nature20413

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539(7628):180–186. https://doi.org/10.1038/nature20411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Erkkinen MG, Kim MO, Geschwind MD (2018) Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 10(4):a033118. https://doi.org/10.1101/cshperspect.a033118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Relja M (2004) Pathophysiology and classification of neurodegenerative diseases. Ejifcc 15(3):97–99

    PubMed  PubMed Central  Google Scholar 

  11. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535. https://doi.org/10.1016/s1474-4422(06)70471-9

    Article  PubMed  Google Scholar 

  12. Elbaz A, Carcaillon L, Kab S, Moisan F (2016) Epidemiology of Parkinson’s disease. Rev Neurol (Paris) 172(1):14–26. https://doi.org/10.1016/j.neurol.2015.09.012

    Article  CAS  Google Scholar 

  13. Marras C, Beck JC, Bower JH, Roberts E, Ritz B, Ross GW, Abbott RD, Savica R et al (2018) Prevalence of Parkinson’s disease across North America. NPJ Parkinson’s Dis 4:21. https://doi.org/10.1038/s41531-018-0058-0

    Article  CAS  Google Scholar 

  14. Beger RD, Dunn W, Schmidt MA, Gross SS, Kirwan JA, Cascante M, Brennan L, Wishart DS et al (2016) Metabolomics enables precision medicine: “a white paper, community perspective.” Metabolomics 12(10):149. https://doi.org/10.1007/s11306-016-1094-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pagonabarraga J, Kulisevsky J, Strafella AP, Krack P (2015) Apathy in Parkinson’s disease: clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol 14(5):518–531. https://doi.org/10.1016/s1474-4422(15)00019-8

    Article  PubMed  Google Scholar 

  16. Whone A, Luz M, Boca M, Woolley M, Mooney L, Dharia S, Broadfoot J, Cronin D et al (2019) Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson’s disease. Brain 142(3):512–525. https://doi.org/10.1093/brain/awz023

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barker RA, Studer L, Cattaneo E, Takahashi J (2015) G-Force PD: a global initiative in coordinating stem cell-based dopamine treatments for Parkinson’s disease. NPJ Parkinson’s disease 1:15017. https://doi.org/10.1038/npjparkd.2015.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jankovic J, Goodman I, Safirstein B, Marmon TK, Schenk DB, Koller M, Zago W, Ness DK et al (2018) Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-α-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. JAMA Neurol 75(10):1206–1214. https://doi.org/10.1001/jamaneurol.2018.1487

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hayes MW, Fung VS, Kimber TE, O’Sullivan JD (2019) Updates and advances in the treatment of Parkinson disease. Med J Aust 211(6):277–283. https://doi.org/10.5694/mja2.50224

    Article  PubMed  Google Scholar 

  20. Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. JAMA 323(6):548–560. https://doi.org/10.1001/jama.2019.22360

    Article  PubMed  Google Scholar 

  21. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM et al (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68(5):384–386. https://doi.org/10.1212/01.wnl.0000247740.47667.03

    Article  CAS  PubMed  Google Scholar 

  22. Pang SY, Ho PW, Liu HF, Leung CT, Li L, Chang EES, Ramsden DB, Ho SL (2019) The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease. Transl Neurodegener 8:23. https://doi.org/10.1186/s40035-019-0165-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palacios N, Hughes KC, Cereda E, Schwarzschild MA, Ascherio A (2018) Appendectomy and risk of Parkinson’s disease in two large prospective cohorts of men and women. Mov Disord 33(9):1492–1496. https://doi.org/10.1002/mds.109

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhu F, Li C, Gong J, Zhu W, Gu L, Li N (2019) The risk of Parkinson’s disease in inflammatory bowel disease: a systematic review and meta-analysis. Dig Liver Dis 51(1):38–42. https://doi.org/10.1016/j.dld.2018.09.017

    Article  PubMed  Google Scholar 

  25. Elfil M, Kamel S, Kandil M, Koo BB, Schaefer SM (2020) Implications of the gut microbiome in Parkinson’s disease. Mov Disord 35(6):921–933. https://doi.org/10.1002/mds.28004

    Article  CAS  PubMed  Google Scholar 

  26. Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 14(100):19–30. https://doi.org/10.1016/j.arr.2014.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ball N, Teo WP, Chandra S, Chapman J (2019) Parkinson’s disease and the environment. Front Neurol 10:218. https://doi.org/10.3389/fneur.2019.00218

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marras C, Canning CG, Goldman SM (2019) Environment, lifestyle, and Parkinson’s disease: Implications for prevention in the next decade. Mov Disord 34(6):801–811. https://doi.org/10.1002/mds.27720

    Article  PubMed  Google Scholar 

  29. Hancock DB, Martin ER, Mayhew GM, Stajich JM, Jewett R, Stacy MA, Scott BL, Vance JM et al (2008) Pesticide exposure and risk of Parkinson’s disease: a family-based case-control study. BMC Neurol 8:35–46. https://doi.org/10.1186/1471-2377-8-6

    Article  CAS  Google Scholar 

  30. Semchuk KM, Love EJ, Lee RG (1992) Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology 42(7):1328–1335. https://doi.org/10.1212/wnl.42.7.1328

    Article  CAS  PubMed  Google Scholar 

  31. Gatto NM, Cockburn M, Bronstein J, Manthripragada AD, Ritz B (2009) Well-water consumption and Parkinson’s disease in rural California. Environ Health Perspect 117(12):1912–1918. https://doi.org/10.1289/ehp.0900852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Silver MR, Racette BA, Dube U, Faust IM, Searles Nielsen S (2020) Well water and Parkinson’s disease in medicare beneficiaries: a nationwide case-control study. J Parkinsons Dis 10(2):693–705. https://doi.org/10.3233/jpd-191793

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gerlach M, Riederer P, Przuntek H, Youdim MB (1991) MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease. Eur J Pharmacol 208(4):273–286. https://doi.org/10.1016/0922-4106(91)90073-q

    Article  CAS  PubMed  Google Scholar 

  34. Kopin IJ, Markey SP (1988) MPTP toxicity: implications for research in Parkinson’s disease. Annu Rev Neurosci 11:81–96. https://doi.org/10.1146/annurev.ne.11.030188.000501

    Article  CAS  PubMed  Google Scholar 

  35. Corti O, Lesage S, Brice A (2011) What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev 91(4):1161–1218. https://doi.org/10.1152/physrev.00022.2010

    Article  CAS  PubMed  Google Scholar 

  36. Blauwendraat C, Nalls MA, Singleton AB (2020) The genetic architecture of Parkinson’s disease. Lancet Neurol 19(2):170–178. https://doi.org/10.1016/s1474-4422(19)30287-x

    Article  CAS  PubMed  Google Scholar 

  37. Billingsley KJ, Bandres-Ciga S, Saez-Atienzar S, Singleton AB (2018) Genetic risk factors in Parkinson’s disease. Cell Tissue Res 373(1):9–20. https://doi.org/10.1007/s00441-018-2817-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang B, Liu X, Xu S, Liu Z, Zhu Y, Zhang X, Xu R (2020) Sporadic Parkinson’s disease potential risk loci identified in han ancestry of Chinese mainland. Front Aging Neurosci 12:603793. https://doi.org/10.3389/fnagi.2020.603793

    Article  CAS  PubMed  Google Scholar 

  39. Metta V, Leta V, Mrudula KR, Prashanth LK, Goyal V, Borgohain R, Chung-Faye G, Chaudhuri KR (2021) Gastrointestinal dysfunction in Parkinson’s disease: molecular pathology and implications of gut microbiome, probiotics, and fecal microbiota transplantation. J Neurol. https://doi.org/10.1007/s00415-021-10567-w

  40. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W et al (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49. https://doi.org/10.1016/j.pneurobio.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  41. Alexander GE (2004) Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 6(3):259–280. https://doi.org/10.31887/DCNS.2004.6.3/galexander

    Article  PubMed  PubMed Central  Google Scholar 

  42. Juárez Olguín H, Calderón Guzmán D, Hernández García E, Barragán Mejía G (2016) The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid Med Cell Longev 2016:9730467. https://doi.org/10.1155/2016/9730467

    Article  CAS  PubMed  Google Scholar 

  43. Wood-Kaczmar A, Gandhi S, Wood NW (2006) Understanding the molecular causes of Parkinson’s disease. Trends Mol Med 12(11):521–528. https://doi.org/10.1016/j.molmed.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  44. Olanow CW (2007) The pathogenesis of cell death in Parkinson’s disease–2007. Mov Disord 22(Suppl 17):S335-342. https://doi.org/10.1002/mds.21675

    Article  PubMed  Google Scholar 

  45. Betarbet R, Sherer TB, Greenamyre JT (2005) Ubiquitin-proteasome system and Parkinson’s diseases. Exp Neurol 191(Suppl 1):S17-27. https://doi.org/10.1016/j.expneurol.2004.08.021

    Article  CAS  PubMed  Google Scholar 

  46. Przedborski S (2005) Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism Relat Disord 11(Suppl 1):S3-7. https://doi.org/10.1016/j.parkreldis.2004.10.012

    Article  PubMed  Google Scholar 

  47. McNaught KS, Olanow CW (2006) Protein aggregation in the pathogenesis of familial and sporadic Parkinson’s disease. Neurobiol Aging 27(4):530–545. https://doi.org/10.1016/j.neurobiolaging.2005.08.012

    Article  CAS  PubMed  Google Scholar 

  48. Greenamyre JT, Hastings TG (2004) Biomedicine. Parkinson’s–divergent causes, convergent mechanisms. Science (New York, NY) 304(5674):1120–1122. https://doi.org/10.1126/science.1098966

    Article  CAS  Google Scholar 

  49. Erekat NS (2018) Apoptosis and its role in Parkinson’s disease. In: Stoker TB, Greenland JC (eds) Parkinson’s disease: pathogenesis and clinical aspects. codon publications, Brisbane (AU), 65–82. https://doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch4

  50. Mahul-Mellier AL, Burtscher J, Maharjan N, Weerens L, Croisier M, Kuttler F, Leleu M, Knott GW et al (2020) The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc Natl Acad Sci USA 117(9):4971–4982. https://doi.org/10.1073/pnas.1913904117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stefanis L (2012) α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009399. https://doi.org/10.1101/cshperspect.a009399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rinalduzzi S, Trompetto C, Marinelli L, Alibardi A, Missori P, Fattapposta F, Pierelli F, Currà A (2015) Balance dysfunction in Parkinson’s disease. Biomed Res Int 2015:434683. https://doi.org/10.1155/2015/434683

    Article  PubMed  PubMed Central  Google Scholar 

  53. Levin J, Kurz A, Arzberger T, Giese A, Höglinger GU (2016) The differential diagnosis and treatment of atypical Parkinsonism. Dtsch Arztebl Int 113(5):61–69. https://doi.org/10.3238/arztebl.2016.0061

    Article  PubMed  PubMed Central  Google Scholar 

  54. Caproni S, Colosimo C (2020) Diagnosis and differential diagnosis of Parkinson disease. Clin Geriatr Med 36(1):13–24. https://doi.org/10.1016/j.cger.2019.09.014

    Article  PubMed  Google Scholar 

  55. Cova I (1996) Priori A (2018) Diagnostic biomarkers for Parkinson’s disease at a glance: where are we? Journal of neural transmission (Vienna. Austria 125(10):1417–1432. https://doi.org/10.1007/s00702-018-1910-4

    Article  CAS  Google Scholar 

  56. Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson’s disease. Lancet Neurol 5(1):75–86. https://doi.org/10.1016/s1474-4422(05)70285-4

    Article  PubMed  Google Scholar 

  57. Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G (2016) Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology 86(6):566–576. https://doi.org/10.1212/wnl.0000000000002350

    Article  PubMed  Google Scholar 

  58. Tolosa E, Garrido A, Scholz SW, Poewe W (2021) Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol 20(5):385–397. https://doi.org/10.1016/s1474-4422(21)00030-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601. https://doi.org/10.1002/mds.26424

    Article  PubMed  Google Scholar 

  60. Postuma RB, Poewe W, Litvan I, Lewis S, Lang AE, Halliday G, Goetz CG, Chan P et al (2018) Validation of the MDS clinical diagnostic criteria for Parkinson’s disease. Move Disord 33(10):1601–1608. https://doi.org/10.1002/mds.27362

    Article  CAS  Google Scholar 

  61. Salat D, Noyce AJ, Schrag A, Tolosa E (2016) Challenges of modifying disease progression in prediagnostic Parkinson’s disease. Lancet Neurol 15(6):637–648. https://doi.org/10.1016/s1474-4422(16)00060-0

    Article  PubMed  Google Scholar 

  62. Ren R, Sun Y, Zhao X, Pu X (2015) Recent advances in biomarkers for Parkinson’s disease focusing on biochemicals, omics and neuroimaging. Clin Chem Lab Med 53(10):1495–1506. https://doi.org/10.1515/cclm-2014-0783

    Article  CAS  PubMed  Google Scholar 

  63. Miller DB, O’Callaghan JP (2015) Biomarkers of Parkinson’s disease: present and future. Metabolism 64(3 Suppl 1):S40-46. https://doi.org/10.1016/j.metabol.2014.10.030

    Article  CAS  PubMed  Google Scholar 

  64. Mehta SH, Adler CH (2016) Advances in biomarker research in Parkinson’s disease. Curr Neurol Neurosci Rep 16(1):7. https://doi.org/10.1007/s11910-015-0607-4

    Article  CAS  PubMed  Google Scholar 

  65. Quinones MP, Kaddurah-Daouk R (2009) Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol Dis 35(2):165–176. https://doi.org/10.1016/j.nbd.2009.02.019

    Article  CAS  PubMed  Google Scholar 

  66. Haehner A, Hummel T, Hummel C, Sommer U, Junghanns S, Reichmann H (2007) Olfactory loss may be a first sign of idiopathic Parkinson’s disease. Mov Disord 22(6):839–842. https://doi.org/10.1002/mds.21413

    Article  PubMed  Google Scholar 

  67. Villa C, Lavitrano M, Salvatore E, Combi R (2020) Molecular and imaging biomarkers in Alzheimer’s disease: a focus on recent insights. J Per Med 10(3):61. https://doi.org/10.3390/jpm10030061

    Article  Google Scholar 

  68. Perlmutter JS, Norris SA (2014) Neuroimaging biomarkers for Parkinson disease: facts and fantasy. Ann Neurol 76(6):769–783. https://doi.org/10.1002/ana.24291

    Article  PubMed  PubMed Central  Google Scholar 

  69. Halbgebauer S, Öckl P, Wirth K, Steinacker P, Otto M (2016) Protein biomarkers in Parkinson’s disease: focus on cerebrospinal fluid markers and synaptic proteins. Mov Disord 31(6):848–860. https://doi.org/10.1002/mds.26635

    Article  CAS  PubMed  Google Scholar 

  70. Zhang AH, Sun H, Wang XJ (2013) Recent advances in metabolomics in neurological disease, and future perspectives. Anal Bioanal Chem 405(25):8143–8150. https://doi.org/10.1007/s00216-013-7061-4

    Article  CAS  PubMed  Google Scholar 

  71. Aizat WM, Ismail I, Noor NM (2018) Recent development in omics studies. In: Aizat WM, Goh HH, Baharum SN (eds) Omics Applications for Systems Biology, vol 1102. Advances in Experimental Medicine and Biology. Springer International Publishing Ag, Cham, 1–9. https://doi.org/10.1007/978-3-319-98758-3_1

  72. Wilkins JM, Trushina E (2017) Application of metabolomics in Alzheimer’s disease. Front Neurol 8:00719. https://doi.org/10.3389/fneur.2017.00719

    Article  Google Scholar 

  73. Sancesario GM, Bernardini S (2018) Alzheimer’s disease in the omics era. Clin Biochem 59:9–16. https://doi.org/10.1016/j.clinbiochem.2018.06.011

    Article  CAS  PubMed  Google Scholar 

  74. Olivier M, Asmis R, Hawkins GA, Howard TD, Cox LA (2019) The need for multi-omics biomarker signatures in precision medicine. Int J Mol Sci 20(19):4781. https://doi.org/10.3390/ijms20194781

    Article  CAS  PubMed Central  Google Scholar 

  75. Zhao YY, Cheng XL, Lin RC, Wei F (2015) Lipidomics applications for disease biomarker discovery in mammal models. Biomark Med 9(2):153–168. https://doi.org/10.2217/bmm.14.81

    Article  CAS  PubMed  Google Scholar 

  76. Martins Nery TG, Silva EM, Tavares R, Passetti F (2019) The challenge to search for new nervous system disease biomarker candidates: the opportunity to use the proteogenomics approach. J Mol Neurosci 67(1):150–164. https://doi.org/10.1007/s12031-018-1220-1

    Article  CAS  Google Scholar 

  77. Huynh RA, Mohan C (2017) Alzheimer’s disease: biomarkers in the genome, blood, and cerebrospinal fluid. Front Neurol 8:102. https://doi.org/10.3389/fneur.2017.00102

    Article  PubMed  PubMed Central  Google Scholar 

  78. Andersen AD, Binzer M, Stenager E, Gramsbergen JB (2017) Cerebrospinal fluid biomarkers for Parkinson’s disease - a systematic review. Acta Neurol Scand 135(1):34–56. https://doi.org/10.1111/ane.12590

    Article  CAS  PubMed  Google Scholar 

  79. Stephenson DJ, Hoeferlin LA, Chalfant CE (2017) Lipidomics in translational research and the clinical significance of lipid-based biomarkers. Transl Res 189:13–29. https://doi.org/10.1016/j.trsl.2017.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Frederich M, Pirotte B, Fillet M, de Tullio P (2016) Metabolomics as a challenging approach for medicinal chemistry and personalized medicine. J Med Chem 59(19):8649–8666. https://doi.org/10.1021/acs.jmedchem.5b01335

    Article  CAS  PubMed  Google Scholar 

  81. Gowda GA, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D (2008) Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn 8(5):617–633. https://doi.org/10.1586/14737159.8.5.617

    Article  CAS  PubMed  Google Scholar 

  82. Sethi S, Brietzke E (2015) Omics-based biomarkers: application of metabolomics in neuropsychiatric disorders. Int J Neuropsychopharmacol 19(3):1–13. https://doi.org/10.1093/ijnp/pyv096

    Article  CAS  Google Scholar 

  83. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, Knowles JD et al (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6(7):1060–1083. https://doi.org/10.1038/nprot.2011.335

    Article  CAS  PubMed  Google Scholar 

  84. Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, Shockcor J, Loftus N et al (2013) Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc 8(1):17–32. https://doi.org/10.1038/nprot.2012.135

    Article  CAS  PubMed  Google Scholar 

  85. Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, Holmes E, Nicholson JK (2010) Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc 5(6):1005–1018. https://doi.org/10.1038/nprot.2010.50

    Article  CAS  PubMed  Google Scholar 

  86. Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS, Beal MF (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131:389–396. https://doi.org/10.1093/brain/awm304

    Article  PubMed  Google Scholar 

  87. Johansen KK, Wang L, Aasly JO, White LR, Matson WR, Henchcliffe C, Beal MF, Bogdanov M (2009) Metabolomic profiling in LRRK2-Related Parkinson’s disease. Plos One 4 (10):e7551. https://doi.org/10.1371/journal.pone.0007551

  88. Ravina B, Eberly S, Oakes D, Lang AE, Dodelet V, Roos P, Harman J, Shoulson I, Schipper HM (2015) Plasma near-infrared spectroscopy for diagnosis of idiopathic Parkinson’s disease: the SPIN-PD study. Biomark Med 9(2):89–97. https://doi.org/10.2217/bmm.14.103

    Article  CAS  PubMed  Google Scholar 

  89. Chang KH, Cheng ML, Tang HY, Huang CY, Wu YR, Chen CM (2018) Alternations of metabolic profile and kynurenine metabolism in the plasma of Parkinson’s disease. Mol Neurobiol 55(8):6319–6328. https://doi.org/10.1007/s12035-017-0845-3

    Article  CAS  PubMed  Google Scholar 

  90. Zhao H, Wang C, Zhao N, Li W, Yang Z, Liu X, Le W, Zhang X (2018) Potential biomarkers of Parkinson’s disease revealed by plasma metabolic profiling. J Chromatogr B 1081–1082:101–108. https://doi.org/10.1016/j.jchromb.2018.01.025

    Article  CAS  Google Scholar 

  91. Rebai A, Reçber T, Nemutlu E, Chbili C, Kurbanoglu S, Kir S, Amor SB, Özkan SA et al (2020) GC-MS based metabolic profiling of Parkinson’s disease with glutathione S-transferase M1 and T1 polymorphism in tunisian patients. Comb Chem High Throughput Screen 23(10):1041–1048. https://doi.org/10.2174/1386207323666200428082815

    Article  CAS  PubMed  Google Scholar 

  92. Shao Y, Li T, Liu Z, Wang X, Xu X, Li S, Xu G, Le W (2021) Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol Neurodegener 16(1):4–4. https://doi.org/10.1186/s13024-021-00425-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Burte F, Houghton D, Lowes H, Pyle A, Nesbitt S, Yarnall A, Yu-Wai-Man P, Burn DJ et al (2017) Metabolic profiling of Parkinson’s disease and mild cognitive impairment. Mov Disord 32(6):927–932. https://doi.org/10.1002/mds.26992

    Article  PubMed  PubMed Central  Google Scholar 

  94. Picca A, Calvani R, Landi G, Marini F, Biancolillo A, Gervasoni J, Persichilli S, Primiano A et al (2019) Circulating amino acid signature in older people with Parkinson’s disease: a metabolic complement to the exosomes in Parkinson disease (EXPAND) study. Exp Gerontol 128:110766. https://doi.org/10.1016/j.exger.2019.110766

    Article  CAS  PubMed  Google Scholar 

  95. Calvani R, Picca A, Landi G, Marini F, Biancolillo A, Coelho-Junior HJ, Gervasoni J, Persichilli S et al (2020) A novel multi-marker discovery approach identifies new serum biomarkers for Parkinson’s disease in older people: an exosomes in Parkinson disease (EXPAND) ancillary study. GeroScience 42(5):1323–1334. https://doi.org/10.1007/s11357-020-00192-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Troisi J, Landolfi A, Vitale C, Longo K, Cozzolino A, Squillante M, Savanelli MC, Barone P et al (2019) A metabolomic signature of treated and drug-naïve patients with Parkinson’s disease: a pilot study. Metabolomics 15(6):90. https://doi.org/10.1007/s11306-019-1554-x

    Article  CAS  PubMed  Google Scholar 

  97. LeWitt PA, Li J, Lu M, Beach TG, Adler CH, Guo L, Arizona Parkinson’s Dis C (2013) 3-Hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov Disord 28(12):1653–1660. https://doi.org/10.1002/mds.25555

    Article  CAS  PubMed  Google Scholar 

  98. Trezzi JP, Galozzi S, Jaeger C, Barkovits K, Brockmann K, Maetzler W, Berg D, Marcus K et al (2017) Distinct metabolomic signature in cerebrospinal fluid in early Parkinson’s disease. Mov Disord 32(10):1401–1408. https://doi.org/10.1002/mds.27132

    Article  CAS  PubMed  Google Scholar 

  99. Trupp M, Jonsson P, Ohrfelt A, Zetterberg H, Obudulu O, Malm L, Wuolikainen A, Linder J et al (2014) Metabolite and peptide levels in plasma and csf differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. J Parkinsons Dis 4(3):549–560. https://doi.org/10.3233/jpd-140389

    Article  CAS  PubMed  Google Scholar 

  100. Wuolikainen A, Jonsson P, Ahnlund M, Antti H, Marklund SL, Moritz T, Forsgren L, Andersen PM, Trupp M (2016) Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson’s disease and control subjects. Mol BioSyst 12(4):1287–1298. https://doi.org/10.1039/c5mb00711a

    Article  CAS  PubMed  Google Scholar 

  101. Wu J, Wuolikainen A, Trupp M, Jonsson P, Marklund SL, Andersen PM, Forsgren L, Ohman A (2016) NMR analysis of the CSF and plasma metabolome of rigorously matched amyotrophic lateral sclerosis, Parkinson's disease and control subjects. Metabolomics 12 (6):101. https://doi.org/10.1007/s11306-016-1041-6

  102. Stoessel D, Schulte C, Teixeira Dos Santos MC, Scheller D, Rebollo-Mesa I, Deuschle C, Walther D, Schauer N et al (2018) Promising metabolite profiles in the plasma and CSF of early clinical Parkinson’s disease. Front Aging Neurosci 10:51. https://doi.org/10.3389/fnagi.2018.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Luan H, Liu L-F, Tang Z, Zhang M, Chua K-K, Song J-X, Mok VCT, Li M et al (2015) Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Sci Rep 5:13888. https://doi.org/10.1038/srep13888

    Article  PubMed  PubMed Central  Google Scholar 

  104. Michell AW, Mosedale D, Grainger DJ, Barker RA (2008) Metabolomic analysis of urine and serum in Parkinson’s disease. Metabolomics 4(3):191–201. https://doi.org/10.1007/s11306-008-0111-9

    Article  CAS  Google Scholar 

  105. Kumari S, Goyal V, Kumaran SS, Dwivedi SN, Srivastava A, Jagannathan NR (2020) Quantitative metabolomics of saliva using proton NMR spectroscopy in patients with Parkinson’s disease and healthy controls. Neurol Sci 41(5):1201–1210. https://doi.org/10.1007/s10072-019-04143-4

    Article  PubMed  Google Scholar 

  106. Johansen KK, Wang L, Aasly JO, White LR, Matson WR, Henchcliffe C, Beal MF, Bogdanov M (2009) Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS ONE 4(10):e7551. https://doi.org/10.1371/journal.pone.0007551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhao H, Wang C, Zhao N, Li W, Yang Z, Liu X, Le W, Zhang X (2018) Potential biomarkers of Parkinson’s disease revealed by plasma metabolic profiling. J Chromatogr B Analyt Technol Biomed Life Sci 1081–1082:101–108. https://doi.org/10.1016/j.jchromb.2018.01.025

    Article  CAS  PubMed  Google Scholar 

  108. Mulak A (2021) Bile acids as key modulators of the brain-gut-microbiota axis in Alzheimer’s disease. JAD 84 (2):461–477. https://doi.org/10.3233/jad-210608

  109. Burté F, Houghton D, Lowes H, Pyle A, Nesbitt S, Yarnall A, Yu-Wai-Man P, Burn DJ et al (2017) metabolic profiling of Parkinson’s disease and mild cognitive impairment. Mov Disord 32(6):927–932. https://doi.org/10.1002/mds.26992

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lewitt PA, Li J, Lu M, Beach TG, Adler CH, Guo L (2013) 3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov Disord 28(12):1653–1660. https://doi.org/10.1002/mds.25555

    Article  CAS  PubMed  Google Scholar 

  111. Trupp M, Jonsson P, Ohrfelt A, Zetterberg H, Obudulu O, Malm L, Wuolikainen A, Linder J et al (2014) Metabolite and peptide levels in plasma and csf differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. J Parkinsons Dis 4(3):549–560. https://doi.org/10.3233/jpd-140389

    Article  CAS  PubMed  Google Scholar 

  112. Wu J, Wuolikainen A, Trupp M, Jonsson P, Marklund SL, Andersen PM, Forsgren L, Ohman A (2016) NMR analysis of the CSF and plasma metabolome of rigorously matched amyotrophic lateral sclerosis, Parkinson’s disease and control subjects. Metabolomics 12(6):101. https://doi.org/10.1007/s11306-016-1041-6

    Article  CAS  Google Scholar 

  113. Luan H, Liu L-F, Tang Z, Zhang M, Chua K-K, Song J-X, Mok VCT, Li M et al (2015) Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Sci Rep 5:13888. https://doi.org/10.1038/srep13888

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ruiz HH, Chi T, Shin AC, Lindtner C, Hsieh W, Ehrlich M, Gandy S, Buettner C (2016) Increased susceptibility to metabolic dysregulation in a mouse model of Alzheimer’s disease is associated with impaired hypothalamic insulin signaling and elevated BCAA levels. Alzheimers Dement 12(8):851–861. https://doi.org/10.1016/j.jalz.2016.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kumari S, Goyal V, Kumaran SS, Dwivedi SN, Srivastava A, Jagannathan NR (2020) Quantitative metabolomics of saliva using proton NMR spectroscopy in patients with Parkinson’s disease and healthy controls. Neurol Sci 41(5):1201–1210. https://doi.org/10.1007/s10072-019-04143-4

    Article  PubMed  Google Scholar 

  116. Stewart AG (2017) Translational pharmacology. Front Pharmacol 8:8. https://doi.org/10.3389/fphar.2017.00008

    Article  PubMed  PubMed Central  Google Scholar 

  117. Yu XQ, Wilson AGE (2010) The role of pharmacokinetic and pharmacokinetic/pharmacodynamic modeling in drug discovery and development. Future Med Chem 2(6):923–928. https://doi.org/10.4155/fmc.10.181

    Article  CAS  PubMed  Google Scholar 

  118. Troisi J, Landolfi A, Vitale C, Longo K, Cozzolino A, Squillante M, Savanelli MC, Barone P et al (2019) A metabolomic signature of treated and drug-naive patients with Parkinson’s disease: a pilot study. Metabolomics 15(6):90. https://doi.org/10.1007/s11306-019-1554-x

    Article  CAS  PubMed  Google Scholar 

  119. Havelund JF, Andersen AD, Binzer M, Blaabjerg M, Heegaard NHH, Stenager E, Faergeman NJ, Gramsbergen JB (2017) Changes in kynurenine pathway metabolism in Parkinson patients with L-DOPA-induced dyskinesia. J Neurochem 142(5):756–766. https://doi.org/10.1111/jnc.14104

    Article  CAS  PubMed  Google Scholar 

  120. Kantae V, Krekels EHJ, Van Esdonk MJ, Lindenburg P, Harms AC, Knibbe CAJ, Van der Graaf PH, Hankemeier T (2017) Integration of pharmacometabolomics with pharmacokinetics and pharmacodynamics: towards personalized drug therapy. Metabolomics 13(1):9. https://doi.org/10.1007/s11306-016-1143-1

    Article  CAS  PubMed  Google Scholar 

  121. Abu Aboud O, Weiss RH (2013) New opportunities from the cancer metabolome. Clin Chem 59(1):138–146. https://doi.org/10.1373/clinchem.2012.184598

    Article  CAS  Google Scholar 

  122. Stoop MP, Runia TF, Stingl C, de Vries RMV, Luider TM, Hintzen RQ (2017) Decreased neuro-axonal proteins in CSF at first attack of suspected multiple sclerosis. Proteom Clin Appl 11(11–12):1700005. https://doi.org/10.1002/prca.201700005

    Article  CAS  Google Scholar 

  123. Sharma N, Nehru B (2015) Characterization of the lipopolysaccharide induced model of Parkinson’s disease: role of oxidative stress and neuroinflammation. Neurochem Int 87:92–105. https://doi.org/10.1016/j.neuint.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  124. Shah A, Han P, Wong MY, Chang RC, Legido-Quigley C (2019) Palmitate and stearate are increased in the plasma in a 6-OHDA model of Parkinson’s disease. Metabolites 9(2):8. https://doi.org/10.3390/metabo9020031

    Article  CAS  Google Scholar 

  125. Okarmus J, Havelund JF, Ryding M, Schmidt SI, Bogetofte H, Heon-Roberts R, Wade-Martins R, Cowley SA et al (2021) Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: altered mitochondrial and energy metabolism. Stem Cell Reports 16(6):1510–1526. https://doi.org/10.1016/j.stemcr.2021.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ren X, Hinchie A, Swomley A, Powell DK, Butterfield DA (2019) Profiles of brain oxidative damage, ventricular alterations, and neurochemical metabolites in the striatum of PINK1 knockout rats as functions of age and gender: relevance to Parkinson disease. Free Radical Biol Med 143:146–152. https://doi.org/10.1016/j.freeradbiomed.2019.08.008

    Article  CAS  Google Scholar 

  127. Samadi P, Grégoire L, Rassoulpour A, Guidetti P, Izzo E, Schwarcz R, Bédard PJ (2005) Effect of kynurenine 3-hydroxylase inhibition on the dyskinetic and antiparkinsonian responses to levodopa in Parkinsonian monkeys. Mov Disord 20(7):792–802. https://doi.org/10.1002/mds.20596

    Article  PubMed  Google Scholar 

  128. Warepam M, Mishra AK, Sharma GS, Kumari K, Krishna S, Khan MSA, Rahman H, Singh LR (2021) Brain metabolite, N-acetylaspartate is a potent protein aggregation inhibitor. Front Cell Neurosci 15:617308. https://doi.org/10.3389/fncel.2021.617308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is financially supported by the National Natural Science Foundation of China (81403177), the Innovative Talents Support Program of Liaoning Province (LR2018047), and the Natural Science Foundation of Liaoning Province (2021-MS-150).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Literature collection and analysis were performed by Xin Li, Xiaoying Fan, and Hongtian Yang. The manuscript was written by Xin Li and proved by Xin Li, Xiaoying Fan, Hongtian Yang and Yufeng Liu. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Yufeng Liu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Fan, X., Yang, H. et al. Review of Metabolomics-Based Biomarker Research for Parkinson’s Disease. Mol Neurobiol 59, 1041–1057 (2022). https://doi.org/10.1007/s12035-021-02657-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02657-7

Keywords

Navigation