Skip to main content

Metabolomic Biomarkers in Parkinson’s Disease

  • Protocol
  • First Online:
Neurodegenerative Diseases Biomarkers

Part of the book series: Neuromethods ((NM,volume 173))

Abstract

Metabolomics analysis has developed rapidly in recent decades and has become a powerful tool to understand comprehensive metabolic changes in biological systems. In Parkinson’s disease (PD) research, great efforts have been made toward the discovery of novel biomarkers and biochemical pathways to improve diagnosis, prognosis, and therapy. With the recent achievements in metabolomics, the identification of multiple novel biomarkers for PD has been greatly improved. In this chapter, we outline a detailed metabolomics workflow including sample pretreatment, instrumental analysis, and data interpretation and summarize recent advances in technology and bioinformatics implemented in metabolomics studies. Based on the current metabolomic findings in PD research, this chapter covers the most promising metabolic biomarkers and pathway disturbances in PD and discusses the progress made toward translating these findings to clinical practice, emphasizing the potential importance of endogenous small molecular metabolites in disease research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272. https://doi.org/10.1016/S1474-4422(16)30230-7

    Article  PubMed  Google Scholar 

  2. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912. https://doi.org/10.1016/s0140-6736(14)61393-3

    Article  CAS  PubMed  Google Scholar 

  3. Hayes MT (2019) Parkinson’s disease and parkinsonism. Am J Med 132(7):802–807. https://doi.org/10.1016/j.amjmed.2019.03.001

    Article  PubMed  Google Scholar 

  4. Gershanik OS (2017) Past, present, and future of Parkinson’s disease. Mov Disord 32(9):1263. https://doi.org/10.1002/mds.27113

    Article  PubMed  Google Scholar 

  5. Andersen AD, Binzer M, Stenager E, Gramsbergen JB (2017) Cerebrospinal fluid biomarkers for Parkinson’s disease—a systematic review. Acta Neurol Scand 135(1):34–56. https://doi.org/10.1111/ane.12590

    Article  CAS  PubMed  Google Scholar 

  6. Cova I, Priori A (2018) Diagnostic biomarkers for Parkinson’s disease at a glance: where are we? J Neural Transm 125(10):1417–1432. https://doi.org/10.1007/s00702-018-1910-4

    Article  CAS  PubMed  Google Scholar 

  7. Emamzadeh FN, Surguchov A (2018) Parkinson’s disease: biomarkers, treatment, and risk factors. Front Neurosci 12:612. https://doi.org/10.3389/fnins.2018.00612

    Article  PubMed  PubMed Central  Google Scholar 

  8. Delenclos M, Jones DR, McLean PJ, Uitti RJ (2016) Biomarkers in Parkinson’s disease: advances and strategies. Parkinsonism Relat Disord 22(Suppl 1):S106–S110. https://doi.org/10.1016/j.parkreldis.2015.09.048

    Article  PubMed  Google Scholar 

  9. Goldman JG, Andrews H, Amara A, Naito A, Alcalay RN, Shaw LM, Taylor P, Xie T, Tuite P, Henchcliffe C, Hogarth P, Frank S, Saint-Hilaire MH, Frasier M, Arnedo V, Reimer AN, Sutherland M, Swanson-Fischer C, Gwinn K, Fox Investigation of New Biomarker D, Kang UJ (2018) Cerebrospinal fluid, plasma, and saliva in the BioFIND study: relationships among biomarkers and Parkinson’s disease features. Mov Disord 33(2):282–288 https://doi.org/10.1002/mds.27232

  10. Htike TT, Mishra S, Kumar S, Padmanabhan P, Gulyas B (2019) Peripheral biomarkers for early detection of Alzheimer’s and Parkinson’s diseases. Mol Neurobiol 56(3):2256–2277. https://doi.org/10.1007/s12035-018-1151-4

    Article  CAS  PubMed  Google Scholar 

  11. Ren R, Sun Y, Zhao X, Pu X (2015) Recent advances in biomarkers for Parkinson’s disease focusing on biochemicals, omics and neuroimaging. Clin Chem Lab Med 53(10):1495–1506. https://doi.org/10.1515/cclm-2014-0783

    Article  CAS  PubMed  Google Scholar 

  12. Chen-Plotkin AS, Albin R, Alcalay R, Babcock D, Bajaj V, Bowman D, Buko A, Cedarbaum J, Chelsky D, Cookson MR, Dawson TM, Dewey R, Foroud T, Frasier M, German D, Gwinn K, Huang X, Kopil C, Kremer T, Lasch S, Marek K, Marto JA, Merchant K, Mollenhauer B, Naito A, Potashkin J, Reimer A, Rosenthal LS, Saunders-Pullman R, Scherzer CR, Sherer T, Singleton A, Sutherland M, Thiele I, van der Brug M, Van Keuren-Jensen K, Vaillancourt D, Walt D, West A, Zhang J (2018) Finding useful biomarkers for Parkinson’s disease. Sci Transl Med 10(454). https://doi.org/10.1126/scitranslmed.aam6003

  13. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455(7216):1054–1056. https://doi.org/10.1038/4551054a

    Article  CAS  PubMed  Google Scholar 

  14. Stoessel D, Schulte C, Teixeira Dos Santos MC, Scheller D, Rebollo-Mesa I, Deuschle C, Walther D, Schauer N, Berg D, Nogueira da Costa A, Maetzler W (2018) Promising metabolite profiles in the plasma and CSF of early clinical Parkinson’s disease. Front Aging Neurosci 10:51. https://doi.org/10.3389/fnagi.2018.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peng B, Li H, Peng XX (2015) Functional metabolomics: from biomarker discovery to metabolome reprogramming. Protein Cell 6(9):628–637. https://doi.org/10.1007/s13238-015-0185-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ibanez C, Cifuentes A, Simo C (2015) Recent advances and applications of metabolomics to investigate neurodegenerative diseases. Int Rev Neurobiol 122:95–132. https://doi.org/10.1016/bs.irn.2015.05.015

    Article  CAS  PubMed  Google Scholar 

  17. Shao Y, Le W (2019) Recent advances and perspectives of metabolomics-based investigations in Parkinson’s disease. Mol Neurodegener 14(1):3. https://doi.org/10.1186/s13024-018-0304-2

    Article  PubMed  PubMed Central  Google Scholar 

  18. Havelund JF, Heegaard NHH, Faergeman NJK, Gramsbergen JB (2017) Biomarker research in Parkinson’s disease using metabolite profiling. Metabolites 7(3). https://doi.org/10.3390/metabo7030042

  19. Chang KH, Cheng ML, Tang HY, Huang CY, Wu YR, Chen CM (2018) Alternations of metabolic profile and kynurenine metabolism in the plasma of Parkinson’s disease. Mol Neurobiol 55(8):6319–6328. https://doi.org/10.1007/s12035-017-0845-3

    Article  CAS  PubMed  Google Scholar 

  20. Mesa-Herrera F, Taoro-Gonzalez L, Valdes-Baizabal C, Diaz M, Marin R (2019) Lipid and lipid raft alteration in aging and neurodegenerative diseases: a window for the development of new biomarkers. Int J Mol Sci 20(15). https://doi.org/10.3390/ijms20153810

  21. Kim A, Nigmatullina R, Zalyalova Z, Soshnikova N, Krasnov A, Vorobyeva N, Georgieva S, Kudrin V, Narkevich V, Ugrumov M (2019) Upgraded methodology for the development of early diagnosis of Parkinson’s disease based on searching blood markers in patients and experimental models. Mol Neurobiol 56(5):3437–3450. https://doi.org/10.1007/s12035-018-1315-2

    Article  CAS  PubMed  Google Scholar 

  22. Sussulini A (2017) Metabolomics: from fundamentals to clinical applications. Springer

    Book  Google Scholar 

  23. Zheng X, Yu J, Cairns TC, Zhang L, Zhang Z, Zhang Q, Zheng P, Sun J, Ma Y (2019) Comprehensive improvement of sample preparation methodologies facilitates dynamic metabolomics of Aspergillus niger. Biotechnol J 14(3):1800315. https://doi.org/10.1002/biot.201800315

    Article  CAS  Google Scholar 

  24. Kusonmano K, Vongsangnak W, Chumnanpuen P (2016) Informatics for metabolomics. Adv Exp Med Biol 939:91–115. https://doi.org/10.1007/978-981-10-1503-8_5

    Article  CAS  PubMed  Google Scholar 

  25. Ren S, Shao Y, Zhao X, Hong CS, Wang F, Lu X, Li J, Ye G, Yan M, Zhuang Z, Xu C, Xu G, Sun Y (2016) Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer. Mol Cell Proteomics 15(1):154–163. https://doi.org/10.1074/mcp.M115.052381

    Article  CAS  PubMed  Google Scholar 

  26. Shao Y, Ye G, Ren S, Piao HL, Zhao X, Lu X, Wang F, Ma W, Li J, Yin P, Xia T, Xu C, Yu JJ, Sun Y, Xu G (2018) Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer. Int J Cancer 143(2):396–407. https://doi.org/10.1002/ijc.31313

    Article  CAS  PubMed  Google Scholar 

  27. Bruce SJ, Tavazzi I, Parisod VR, Rezzi S, Kochhar S, Guy PA (2009) Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem 81(9):3285–3296

    Article  CAS  PubMed  Google Scholar 

  28. Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R (2003) Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry. J Chromatograph B Anal Technol Biomed Life Sci 785(2):263–275

    Article  CAS  Google Scholar 

  29. Want EJ, O’Maille G, Smith CA et al (2006) Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem 78(3):743–752

    Article  CAS  PubMed  Google Scholar 

  30. Chen S, Hoene M, Li J, Li Y, Zhao X, Haring HU, Schleicher ED, Weigert C, Xu G, Lehmann R (2013) Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry. J Chromatogr A 1298:9–16. https://doi.org/10.1016/j.chroma.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  31. Rammouz RE, Létisse F, Durand S, Portais JC, Moussa ZW, Fernandez X (2010) Analysis of skeletal muscle metabolome: evaluation of extraction methods for targeted metabolite quantification using liquid chromatography tandem mass spectrometry. Anal Biochem 398(2):169–177

    Article  PubMed  Google Scholar 

  32. Filla LA, Sanders KL, Filla RT, Edwards JL (2016) Automated sample preparation in a microfluidic culture device for cellular metabolomics. The Analyst 141(12):3858-3865. https://doi.org/10.1039/c6an00237d

  33. Silva RA, Pereira TCS, Souza AR, Ribeiro PR (2020) H-1 NMR-based metabolite profiling for biomarker identification. Clinica Chimica Acta 502:269–279. https://doi.org/10.1016/j.cca.2019.11.015

    Article  CAS  Google Scholar 

  34. Witting M, Böcker S (2020) Current status of retention time prediction in metabolite identification. J Sep Sci 43(9–10):1746–1754. https://doi.org/10.1002/jssc.202000060

  35. Liu X, Zhou L, Shi X, Xu G (2019) New advances in analytical methods for mass spectrometry-based large-scale metabolomics study. TrAC Trends Anal Chem 121:115665. https://doi.org/10.1016/j.trac.2019.115665

    Article  CAS  Google Scholar 

  36. Sun QS, Fan TWM, Lane AN, Higashi RM (2020) Applications of chromatography-ultra high-resolution MS for stable isotope-resolved metabolomics (SIRM) reconstruction of metabolic networks. Trac-Trends Anal Chem 123:9. https://doi.org/10.1016/j.trac.2019.115676

    Article  CAS  Google Scholar 

  37. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81(24):10038–10048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin S, Liu N, Yang Z, Song W, Wang P, Chen H, Lucio M, Schmitt-Kopplin P, Chen G, Cai Z (2010) GC/MS-based metabolomics reveals fatty acid biosynthesis and cholesterol metabolism in cell lines infected with influenza A virus. Talanta 83(1):262–268

    Article  CAS  PubMed  Google Scholar 

  39. Li MH, Liu YM, Li QL, Yang M, Pi YZ, Yang N, Zheng Y, Yue XQ (2020) Comparative exploration of free fatty acids in donkey colostrum and mature milk based on a metabolomics approach. J Dairy Sci 103(7):6022–6031. https://doi.org/10.3168/jds.2019-17720

    Article  CAS  PubMed  Google Scholar 

  40. Shackleton CH (2012) Role of a disordered steroid metabolome in the elucidation of sterol and steroid biosynthesis. Lipids 47(1):1–12

    Article  CAS  PubMed  Google Scholar 

  41. Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T (2006) Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78(4):1272–1281

    Article  CAS  PubMed  Google Scholar 

  42. Zhou Y, Song R, Zhang Z, Lu X, Zeng Z, Hu C, Liu X, Li Y, Hou J, Sun Y (2016) The development of plasma pseudotargeted GC-MS metabolic profiling and its application in bladder cancer. Anal Bioanal Chem 408(24):6741–6749

    Article  CAS  PubMed  Google Scholar 

  43. Koek MM, Jellema RH, van der Greef J, Tas AC, Hankemeier T (2011) Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics 7(3):307–328. https://doi.org/10.1007/s11306-010-0254-3

    Article  CAS  PubMed  Google Scholar 

  44. Li X, Xu Z, Lu X, Yang X, Yin P, Kong H, Yu Y, Xu G (2009) Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: biomarker discovery for diabetes mellitus. Anal Chim Acta 633(2):257–262

    Article  CAS  PubMed  Google Scholar 

  45. Yu Z, Huang H, Reim A, Charles PD, Northage A, Jackson D, Parry I, Kessler BM (2017) Optimizing 2D gas chromatography mass spectrometry for robust tissue, serum and urine metabolite profiling. Talanta 165:685–691. https://doi.org/10.1016/j.talanta.2017.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cui L, Lu H, Lee YH (2018) Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrom Rev 37(6):772–792. https://doi.org/10.1002/mas.21562

    Article  CAS  PubMed  Google Scholar 

  47. Tang D-Q, Zou L, Yin X-X, Ong CN (2016) HILIC-MS for metabolomics: an attractive and complementary approach to RPLC-MS. Mass Spectrom Rev 35(5):574–600. https://doi.org/10.1002/mas.21445

    Article  CAS  PubMed  Google Scholar 

  48. Wang S, Li J, Shi X, Qiao L, Lu X, Xu G (2013) A novel stop-flow two-dimensional liquid chromatography–mass spectrometry method for lipid analysis. J Chromatograp A 1321:65–72

    Article  CAS  Google Scholar 

  49. Wang S, Shi X, Xu G (2017) Online three dimensional liquid chromatography/mass spectrometry method for the separation of complex samples. Anal Chem 89(3):1433–1438

    Article  CAS  PubMed  Google Scholar 

  50. Shao Y, Zhu B, Zheng R, Zhao X, Yin P, Lu X, Jiao B, Xu G, Yao Z (2015) Development of urinary pseudotargeted LC-MS-based metabolomics method and its application in hepatocellular carcinoma biomarker discovery. J Proteome Res 14(2):906–916. https://doi.org/10.1021/pr500973d

    Article  CAS  PubMed  Google Scholar 

  51. Chen SL, Kong HW, Lu X, Li Y, Yin PY, Zeng ZD, Xu GW (2013) Pseudotargeted metabolomics method and its application in serum biomarker discovery for hepatocellular carcinoma based on ultra high-performance liquid chromatography/triple quadrupole mass spectrometry. Anal Chem 85(17):8326–8333. https://doi.org/10.1021/ac4016787

    Article  CAS  PubMed  Google Scholar 

  52. Zheng F, Zhao X, Zeng Z, Wang L, Lv W, Wang Q, Xu G (2020) Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography–mass spectrometry. Nature Protocols 15(8):2519–2537. https://doi.org/10.1038/s41596-020-0341-5

  53. Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517. https://doi.org/10.1093/bioinformatics/btm344

    Article  CAS  PubMed  Google Scholar 

  54. Monica C, Florencio P (2013) Tools for the functional interpretation of metabolomic experiments. Brief Bioinformatics 6:737–744

    Google Scholar 

  55. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27-30. https://doi.org/10.1093/nar/28.1.27

  56. Croft D, O’Kelly G, Wu G, Haw R, Stein L (2010) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39(Database issue):D691–D697

    PubMed  PubMed Central  Google Scholar 

  57. Jewison T, Su Y, Disfany FM, Liang Y, Knox C, Maciejewski A, Poelzer J, Huynh J, Zhou Y, Arndt D, Djoumbou Y, Liu Y, Deng L, Guo AC, Han B, Pon A, Wilson M, Rafatnia S, Liu P, Wishart DS (2014) SMPDB 2.0: big improvements to the Small Molecule Pathway Database. Nucleic Acids Res 42(Database issue):D478–484. https://doi.org/10.1093/nar/gkt1067

  58. Takuji Y, Ivica L, Shujiro O, Minoru K, Peer B (2011) iPath2.0: interactive pathway explorer. Nucleic Acids Res 39(Web Server issue):W412–W415

    Google Scholar 

  59. Barupal DK, Haldiya PK, Wohlgemuth G, Kind T, Kothari SL, Pinkerton KE, Fiehn O (2012) MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinformatics 13:99–99. https://doi.org/10.1186/1471-2105-13-99

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xia J, Wishart DS (2010) MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26(18):2342–2344. https://doi.org/10.1093/bioinformatics/btq418

  61. Keun HC (2011) Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27(20):2917–2918

    Article  PubMed  Google Scholar 

  62. Pazos F (2011) MBRole: enrichment analysis of metabolomic data. Bioinformatics 27(5):730–731

    Article  PubMed  Google Scholar 

  63. Kankainen M, Gopalacharyulu P, Holm L, Oresic M (2011) MPEA--metabolite pathway enrichment analysis. Bioinformatics 27spi2;(13):1878–1879. https://doi.org/10.1093/bioinformatics/btr278

  64. Persicke M, Rückert C, Plassmeier J, Stutz LJ, Kessler N, Kalinowski J, Goesmann A, Neuweger H (2012) MSEA: metabolite set enrichment analysis in the MeltDB metabolomics software platform: metabolic profiling of Corynebacterium glutamicum as an example. Metabolomics 8(2):310–322. https://doi.org/10.1007/s11306-011-0311-6

  65. Goldstein DS (2013) Biomarkers, mechanisms, and potential prevention of catecholamine neuron loss in Parkinson disease. Adv Pharmacol 68:235–272. https://doi.org/10.1016/B978-0-12-411512-5.00012-9

    Article  CAS  PubMed  Google Scholar 

  66. Goldstein DS, Holmes C, Lopez GJ, Wu T, Sharabi Y (2018) Cerebrospinal fluid biomarkers of central dopamine deficiency predict Parkinson’s disease. Parkinsonism Relat Disord 50:108–112. https://doi.org/10.1016/j.parkreldis.2018.02.023

  67. Goldstein DS, Holmes C, Sharabi Y (2012) Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson’s disease and other synucleinopathies. Brain 135(Pt 6):1900–1913. https://doi.org/10.1093/brain/aws055

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cerroni R, Liguori C, Stefani A, Conti M, Garasto E, Pierantozzi M, Mercuri N, Bernardini S, Fucci G, Massoud R (2020) Increased noradrenaline as an additional cerebrospinal fluid biomarker in PSP-like parkinsonism. Front Aging Neurosci 12:126. https://doi.org/10.3389/fnagi.2020.00126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Goldstein DS, Sullivan P, Holmes C, Kopin IJ, Basile MJ, Mash DC (2011) Catechols in post-mortem brain of patients with Parkinson disease. Eur J Neurol 18(5):703–710. https://doi.org/10.1111/j.1468-1331.2010.03246.x

    Article  CAS  PubMed  Google Scholar 

  70. Mattammal MB, Chung HD, Strong R, Hsu FF (1993) Confirmation of a dopamine metabolite in parkinsonian brain tissue by gas chromatography-mass spectrometry. J Chromatogr 614(2):205–212. https://doi.org/10.1016/0378-4347(93)80310-z

    Article  CAS  PubMed  Google Scholar 

  71. Burke W, Li S, Williams E, Nonneman R, Zahm D (2003) 3,4-Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson’s disease pathogenesis. Brain Res 989(2):205–213. https://doi.org/10.1016/s0006-8993(03)03354-7

    Article  CAS  PubMed  Google Scholar 

  72. Masato A, Plotegher N, Boassa D, Bubacco L (2019) Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegenerat 14:35. https://doi.org/10.1186/s13024-019-0332-6

    Article  CAS  Google Scholar 

  73. Ohmichi T, Kasai T, Kosaka T, Shikata K, Tatebe H, Ishii R, Shinomoto M, Mizuno T, Tokuda T (2018) Biomarker repurposing: therapeutic drug monitoring of serum theophylline offers a potential diagnostic biomarker of Parkinson’s disease. PLoS One 13(7):e0201260. https://doi.org/10.1371/journal.pone.0201260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim AR, Nodel MR, Pavlenko TA, Chesnokova NB, Yakhno NN, Ugrumov MV (2019) Tear fluid catecholamines as biomarkers of the Parkinson’s disease: a clinical and experimental study. Acta Nat 11(4):99–103. https://doi.org/10.32607/20758251-2019-11-4-99-103

    Article  CAS  Google Scholar 

  75. Le Witt P, Schultz L, Auinger P, Lu M, Parkinson Study Group DI (2011) CSF xanthine, homovanillic acid, and their ratio as biomarkers of Parkinson’s disease. Brain Res 1408:88–97. https://doi.org/10.1016/j.brainres.2011.06.057

    Article  CAS  Google Scholar 

  76. Han W, Sapkota S, Camicioli R, Dixon RA, Li L (2017) Profiling novel metabolic biomarkers for Parkinson’s disease using in-depth metabolomic analysis. Mov Disord 32(12):1720–1728. https://doi.org/10.1002/mds.27173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Abbas MM, Xu Z, Tan LCS (2018) Epidemiology of Parkinson’s disease-east versus west. Mov Disord Clin Pract 5(1):14–28. https://doi.org/10.1002/mdc3.12568

    Article  PubMed  Google Scholar 

  78. Hatano T, Saiki S, Okuzumi A, Mohney RP, Hattori N (2016) Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. J Neurol Neurosurg Psyc 87(3):295–301. https://doi.org/10.1136/jnnp-2014-309676

    Article  Google Scholar 

  79. LeWitt PA, Li J, Lu M, Guo L, Auinger P (2017) Metabolomic biomarkers as strong correlates of Parkinson disease progression. Neurology 88(9):862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fujimaki M, Saiki S, Li Y, Kaga N, Taka H, Hatano T, Ishikawa KI, Oji Y, Mori A, Okuzumi A, Koinuma T, Ueno SI, Imamichi Y, Ueno T, Miura Y, Funayama M, Hattori N (2018) Serum caffeine and metabolites are reliable biomarkers of early Parkinson disease. Neurology 90(5):e404–e411. https://doi.org/10.1212/WNL.0000000000004888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu K, Xu YH, Chen JF, Schwarzschild MA (2010) Neuroprotection by caffeine: time course and role of its metabolites in the MPTP model of Parkinson’s disease. Neuroscience 167(2):475–481. https://doi.org/10.1016/j.neuroscience.2010.02.020

    Article  CAS  PubMed  Google Scholar 

  82. Prediger RD (2010) Effects of caffeine in Parkinson’s disease: from neuroprotection to the management of motor and non-motor symptoms. J Alzheimers Dis 20(Suppl 1):S205–S220. https://doi.org/10.3233/JAD-2010-091459

    Article  CAS  PubMed  Google Scholar 

  83. Tadaiesky MT, Dombrowski PA, Figueiredo CP, Cargnin-Ferreira E, Da Cunha C, Takahashi RN (2008) Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson’s disease. Neuroscience 156(4):830–840. https://doi.org/10.1016/j.neuroscience.2008.08.035

    Article  CAS  PubMed  Google Scholar 

  84. Obeso JA, Rodriguez-Oroz M, Marin C, Alonso F, Zamarbide I, Lanciego JL, Rodriguez-Diaz M (2004) The origin of motor fluctuations in Parkinson’s disease. Neurology 62(1 suppl 1):S17. https://doi.org/10.1212/WNL.62.1_suppl_1.S17

    Article  CAS  PubMed  Google Scholar 

  85. Ferre S, Diaz-Rios M, Salamone JD, Prediger RD (2018) New developments on the adenosine mechanisms of the central effects of caffeine and their implications for neuropsychiatric disorders. J Caffeine Adenosine Res 8(4):121–131. https://doi.org/10.1089/caff.2018.0017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xu K, Xu Y, Brown-Jermyn D, Chen J-F, Ascherio A, Dluzen DE, Schwarzschild MA (2006) Estrogen prevents neuroprotection by caffeine in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 26(2):535–541. https://doi.org/10.1523/JNEUROSCI.3008-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Palacios N, Gao X, McCullough ML, Schwarzschild MA, Shah R, Gapstur S, Ascherio A (2012) Caffeine and risk of Parkinson’s disease in a large cohort of men and women. Mov Disord 27(10):1276–1282. https://doi.org/10.1002/mds.25076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lawton KA, Cudkowicz ME, Brown MV, Alexander D, Caffrey R, Wulff JE, Bowser R, Lawson R, Jaffa M, Milburn MV (2012) Biochemical alterations associated with ALS. Amyotrophic Lateral Sclerosis 13(1):110–118

    Article  CAS  PubMed  Google Scholar 

  89. Takeshige-Amano H, Saiki S, Fujimaki M, Ueno SI, Li Y, Hatano T, Ishikawa KI, Oji Y, Mori A, Okuzumi A, Tsunemi T, Daida K, Ishiguro Y, Imamichi Y, Nanmo H, Nojiri S, Funayama M, Hattori N (2020) Shared metabolic profile of caffeine in Parkinsonian disorders. Mov Disord 35(8):1438–1447. https://doi.org/10.1002/mds.28068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bogie JFJ, Haidar M, Kooij G, Hendriks JJA (2020) Fatty acid metabolism in the progression and resolution of CNS disorders. Adv Drug Deliv Rev 159:198–213. https://doi.org/10.1016/j.addr.2020.01.004

    Article  CAS  PubMed  Google Scholar 

  91. Shah A, Han P, Wong MY, Chang RC, Legido-Quigley C (2019) Palmitate and stearate are increased in the plasma in a 6-OHDA model of Parkinson’s disease. Metabolites 9(2). https://doi.org/10.3390/metabo9020031

  92. Li XZ, Zhang SN, Lu F, Liu CF, Wang Y, Bai Y, Wang N, Liu SM (2013) Cerebral metabonomics study on Parkinson’s disease mice treated with extract of Acanthopanax senticosus harms. Phytomedicine 20(13):1219–1229. https://doi.org/10.1016/j.phymed.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  93. Lu Z, Wang J, Li M, Liu Q, Wei D, Yang M, Kong L (2014) (1)H NMR-based metabolomics study on a goldfish model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Chem Biol Interact 223:18–26. https://doi.org/10.1016/j.cbi.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  94. Ren C, Hu X, Li X, Zhou Q (2016) Ultra-trace graphene oxide in a water environment triggers Parkinson’s disease-like symptoms and metabolic disturbance in zebrafish larvae. Biomaterials 93:83–94. https://doi.org/10.1016/j.biomaterials.2016.03.036

    Article  CAS  PubMed  Google Scholar 

  95. Okuzumi A, Hatano T, Ueno SI, Ogawa T, Saiki S, Mori A, Koinuma T, Oji Y, Ishikawa KI, Fujimaki M, Sato S, Ramamoorthy S, Mohney RP, Hattori N (2019) Metabolomics-based identification of metabolic alterations in PARK2. Ann Clin Transl Neurol 6(3):525–536. https://doi.org/10.1002/acn3.724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Willkommen D, Lucio M, Moritz F, Forcisi S, Kanawati B, Smirnov KS, Schroeter M, Sigaroudi A, Schmitt-Kopplin P, Michalke B (2018) Metabolomic investigations in cerebrospinal fluid of Parkinson’s disease. PLoS One 13(12):e0208752. https://doi.org/10.1371/journal.pone.0208752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Trupp M, Jonsson P, Ohrfelt A, Zetterberg H, Obudulu O, Malm L, Wuolikainen A, Linder J, Moritz T, Blennow K, Antti H, Forsgren L (2014) Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. J Parkinsons Dis 4(3):549–560. https://doi.org/10.3233/JPD-140389

    Article  CAS  PubMed  Google Scholar 

  98. Schulte EC, Elisabeth A, Berger HS, Trinh DK, Gabi K, Simone W, Jerzy A, Annette P, Jan K, Karsten S (2016) Alterations in lipid and inositol metabolisms in two dopaminergic disorders. PLoS One 11(1):e0147129

    Article  PubMed  PubMed Central  Google Scholar 

  99. Alecu I, Bennett SAL (2019) Dysregulated lipid metabolism and its role in alpha-synucleinopathy in Parkinson’s disease. Front Neurosci 13:328. https://doi.org/10.3389/fnins.2019.00328

    Article  PubMed  PubMed Central  Google Scholar 

  100. Li P, Song C (2020) Potential treatment of Parkinson’s disease with omega-3 polyunsaturated fatty acids. Nutritional Neuroscience (18):1–12

    Google Scholar 

  101. Saiki S, Hatano T, Fujimaki M, Ishikawa KI, Mori A, Oji Y, Okuzumi A, Fukuhara T, Koinuma T, Imamichi Y, Nagumo M, Furuya N, Nojiri S, Amo T, Yamashiro K, Hattori N (2017) Decreased long-chain acylcarnitines from insufficient β-oxidation as potential early diagnostic markers for Parkinson’s disease. Sci Rep 7(1):7328. https://doi.org/10.1038/s41598-017-06767-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fan Y, Xiao S (2018) Progression rate associated peripheral blood biomarkers of Parkinson’s disease. J Molecular Neurosci 65(3):312–318. https://doi.org/10.1007/s12031-018-1102-6

    Article  CAS  Google Scholar 

  103. Schulte EC, Altmaier E, Berger HS, Do KT, Kastenmuller G, Wahl S, Adamski J, Peters A, Krumsiek J, Suhre K, Haslinger B, Ceballos-Baumann A, Gieger C, Winkelmann J (2016) Alterations in lipid and inositol metabolisms in two dopaminergic disorders. PLoS One 11(1):e0147129. https://doi.org/10.1371/journal.pone.0147129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee PH, Lee G, Paik MJ (2008) Polyunsaturated fatty acid levels in the cerebrospinal fluid of patients with Parkinson’s disease and multiple system atrophy. Mov Disord 23(2):309–310. https://doi.org/10.1002/mds.21846

    Article  PubMed  Google Scholar 

  105. Kawahata I, Bousset L, Melki R, Fukunaga K (2019) Fatty acid-binding protein 3 is critical for alpha-synuclein uptake and MPP(+)-induced mitochondrial dysfunction in cultured dopaminergic neurons. Int J Mol Sci 20(21). https://doi.org/10.3390/ijms20215358

  106. Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ (2003) The formation of highly soluble oligomers of α-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 37(4):583–595. https://doi.org/10.1016/S0896-6273(03)00024-2

    Article  CAS  PubMed  Google Scholar 

  107. Mori MA, Delattre AM, Carabelli B, Pudell C, Bortolanza M, Staziaki PV, Visentainer JV, Montanher PF, Del Bel EA, Ferraz AC (2018) Neuroprotective effect of omega-3 polyunsaturated fatty acids in the 6-OHDA model of Parkinson’s disease is mediated by a reduction of inducible nitric oxide synthase. Nutr Neurosci 21(5):341–351. https://doi.org/10.1080/1028415x.2017.1290928

    Article  CAS  PubMed  Google Scholar 

  108. Chitre NM, Wood BJ, Ray A, Moniri NH, Murnane KS (2020) Docosahexaenoic acid protects motor function and increases dopamine synthesis in a rat model of Parkinson’s disease via mechanisms associated with increased protein kinase activity in the striatum. Neuropharmacology 167:107976. https://doi.org/10.1016/j.neuropharm.2020.107976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ådén E, Carlsson M, Poortvliet E, Stenlund H, Linder J, Edström M, Forsgren L, Håglin L (2011) Dietary intake and olfactory function in patients with newly diagnosed Parkinson’s disease: a case-control study. Nutr Neurosci 14(1):25–31. https://doi.org/10.1179/174313211x12966635733312

    Article  PubMed  Google Scholar 

  110. de Lau LM, Bornebroek M, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM (2005) Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology 64(12):2040–2045. https://doi.org/10.1212/01.wnl.0000166038.67153.9f

    Article  PubMed  Google Scholar 

  111. Bohar Z, Toldi J, Fulop F, Vecsei L (2015) Changing the face of kynurenines and neurotoxicity: therapeutic considerations. Int J Mol Sci 16(5):9772–9793. https://doi.org/10.3390/ijms16059772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Szabo N, Kincses ZT, Toldi J, Vecsei L (2011) Altered tryptophan metabolism in Parkinson’s disease: a possible novel therapeutic approach. J Neurol Sci 310(1-2):256–260. https://doi.org/10.1016/j.jns.2011.07.021

    Article  CAS  PubMed  Google Scholar 

  113. Németh H, Toldi J, Vécsei L (2006) Kynurenines, Parkinson’s disease and other neurodegenerative disorders: preclinical and clinical studies. In: Riederer P, Reichmann H, Youdim MBH, Gerlach M (eds). Parkinson’s disease and related disorders, Springer, pp 285–304

    Chapter  Google Scholar 

  114. Wang Q, Liu D, Song P, Zou MH (2015) Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Front Biosci 20:1116–1143

    Article  CAS  Google Scholar 

  115. Havelund JF, Andersen AD, Binzer M, Blaabjerg M, Heegaard NHH, Stenager E, Faergeman NJ, Gramsbergen JB (2017) Changes in kynurenine pathway metabolism in Parkinson patients with L-DOPA-induced dyskinesia. J Neurochem 142(5):756–766. https://doi.org/10.1111/jnc.14104

    Article  CAS  PubMed  Google Scholar 

  116. Luan H, Liu L-F, Tang Z, Zhang M, Chua K-K, Song J-X, Mok VCT, Li M, Cai Z (2015) Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Sci Report 5(1):13888. https://doi.org/10.1038/srep13888

    Article  Google Scholar 

  117. Ogawa T, Matson WR, Beal MF, Myers RH, Bird ED, Milbury P, Saso S (1992) Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 42(9):1702–1706. https://doi.org/10.1212/wnl.42.9.1702

    Article  CAS  PubMed  Google Scholar 

  118. Lewitt PA, Li J, Lu M, Beach TG, Adler CH, Guo L, Arizona Parkinson’s Disease C (2013) 3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov Disord 28(12):1653–1660. https://doi.org/10.1002/mds.25555

    Article  CAS  PubMed  Google Scholar 

  119. Schwarcz R (2004) The kynurenine pathway of tryptophan degradation as a drug target. Curr Opin Pharmacol 4(1):12–17

    Article  CAS  PubMed  Google Scholar 

  120. Zadori D, Klivenyi P, Toldi J, Fulop F, Vecsei L (2012) Kynurenines in Parkinson’s disease: therapeutic perspectives. J Neural Transm 119(2):275–283. https://doi.org/10.1007/s00702-011-0697-3

    Article  CAS  PubMed  Google Scholar 

  121. Fulop F, Szatmári I, Vamos E, Zadori D, Toldi J, Vecsei L (2009) Syntheses, transformations and pharmaceutical applications of kynurenic acid derivatives. Curr Med Chem 16(36):4828–4842

    Article  CAS  PubMed  Google Scholar 

  122. Miranda AF, Boegman RJ, Beninger RJ, Jhamandas K (1997) Protection against quinolinic acid-mediated excitotoxicity in nigrostriatal dopaminergic neurons by endogenous kynurenic acid. Neuroscience 78(4):967

    Article  CAS  PubMed  Google Scholar 

  123. Parasram K (2018) Phytochemical treatments target kynurenine pathway induced oxidative stress. Redox Rep 23(1):25–28. https://doi.org/10.1080/13510002.2017.1343223

    Article  CAS  PubMed  Google Scholar 

  124. Ackerman HD, Gerhard GS (2016) Bile acids in neurodegenerative disorders. Front Aging Neurosci 8:263. https://doi.org/10.3389/fnagi.2016.00263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kiriyama Y, Nochi H (2019) The biosynthesis, signaling, and neurological functions of bile acids. Biomolecules 9(6):232. https://doi.org/10.3390/biom9060232

    Article  CAS  PubMed Central  Google Scholar 

  126. Rosa AI, Duarte-Silva S, Silva-Fernandes A, Nunes MJ, Carvalho AN, Rodrigues E, Gama MJ, Rodrigues CMP, Maciel P, Castro-Caldas M (2018) Tauroursodeoxycholic acid improves motor symptoms in a mouse model of Parkinson’s disease. Mol Neurobiol 55(12):9139–9155. https://doi.org/10.1007/s12035-018-1062-4

    Article  CAS  PubMed  Google Scholar 

  127. Abdelkader NF, Safar MM, Salem HA (2016) Ursodeoxycholic acid ameliorates apoptotic cascade in the rotenone model of Parkinson’s disease: modulation of mitochondrial perturbations. Mol Neurobiol 53(2):810–817. https://doi.org/10.1007/s12035-014-9043-8

    Article  CAS  PubMed  Google Scholar 

  128. Mortiboys H, Furmston R, Bronstad G, Aasly J, Elliott C, Bandmann O (2015) UDCA exerts beneficial effect on mitochondrial dysfunction in LRRK2(G2019S) carriers and in vivo. Neurology 85(10):846–852. https://doi.org/10.1212/wnl.0000000000001905

  129. Mortiboys H, Aasly J, Bandmann O (2013) Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson’s disease. Brain 136(Pt 10):3038–3050. https://doi.org/10.1093/brain/awt224

    Article  PubMed  Google Scholar 

  130. Castro-Caldas M, Carvalho AN, Rodrigues E, Henderson CJ, Wolf CR, Rodrigues CM, Gama MJ (2012) Tauroursodeoxycholic acid prevents MPTP-induced dopaminergic cell death in a mouse model of Parkinson’s disease. Mol Neurobiol 46(2):475–486. https://doi.org/10.1007/s12035-012-8295-4

    Article  CAS  PubMed  Google Scholar 

  131. Mendes MO, Rosa AI, Carvalho AN, Nunes MJ, Dionisio P, Rodrigues E, Costa D, Duarte-Silva S, Maciel P, Rodrigues CMP, Gama MJ, Castro-Caldas M (2019) Neurotoxic effects of MPTP on mouse cerebral cortex: modulation of neuroinflammation as a neuroprotective strategy. Mol Cell Neurosci 96:1–9. https://doi.org/10.1016/j.mcn.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  132. Rosa AI, Fonseca I, Nunes MJ, Moreira S, Rodrigues E, Carvalho AN, Rodrigues CMP, Gama MJ, Castro-Caldas M (2017) Novel insights into the antioxidant role of tauroursodeoxycholic acid in experimental models of Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis 1863(9):2171–2181. https://doi.org/10.1016/j.bbadis.2017.06.004

    Article  CAS  PubMed  Google Scholar 

  133. Moreira S, Fonseca I, Nunes MJ, Rosa A, Lemos L, Rodrigues E, Carvalho AN, Outeiro TF, Rodrigues CMP, Gama MJ, Castro-Caldas M (2017) Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson’s disease. Exp Neurol 295:77–87. https://doi.org/10.1016/j.expneurol.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  134. Graham SF, Rey NL, Ugur Z, Yilmaz A, Sherman E, Maddens M, Bahado-Singh RO, Becker K, Schulz E, Meyerdirk LK, Steiner JA, Ma J, Brundin P (2018) Metabolomic profiling of bile acids in an experimental model of prodromal Parkinson’s disease. Metabolites 8(4). https://doi.org/10.3390/metabo8040071

  135. Huang A, Martin ER, Vance JM, Cai X (2014) Detecting genetic interactions in pathway-based genome-wide association studies. Genet Epidemiol 38(4):300–309. https://doi.org/10.1002/gepi.21803

    Article  PubMed  Google Scholar 

  136. Hasuike Y, Endo T, Koroyasu M, Matsui M, Mori C, Yamadera M, Fujimura H, Sakoda S (2019) Bile acid abnormality induced by intestinal dysbiosis might explain lipid metabolism in Parkinson’s disease. Med Hypotheses 134:109436. https://doi.org/10.1016/j.mehy.2019.109436

    Article  CAS  PubMed  Google Scholar 

  137. Hertel J, Harms AC, Heinken A, Baldini F, Thinnes CC, Glaab E, Vasco DA, Pietzner M, Stewart ID, Wareham NJ, Langenberg C, Trenkwalder C, Kruger R, Hankemeier T, Fleming RMT, Mollenhauer B, Thiele I (2019) Integrated analyses of microbiome and longitudinal metabolome data reveal microbial-host interactions on sulfur metabolism in Parkinson’s disease. Cell Rep 29(7):1767–1777.e1768. https://doi.org/10.1016/j.celrep.2019.10.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. O’Donovan SM, Crowley EK, Brown JR, O’Sullivan O, O’Leary OF, Timmons S, Nolan YM, Clarke DJ, Hyland NP, Joyce SA, Sullivan AM, O’Neill C (2020) Nigral overexpression of alpha-synuclein in a rat Parkinson’s disease model indicates alterations in the enteric nervous system and the gut microbiome. Neurogastroenterol Motil 32(1):e13726. https://doi.org/10.1111/nmo.13726

    Article  CAS  PubMed  Google Scholar 

  139. Quinones MP, Kaddurah-Daouk R (2009) Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol Dis 35(2):165–176. https://doi.org/10.1016/j.nbd.2009.02.019

    Article  CAS  PubMed  Google Scholar 

  140. Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS, Flint Beal M (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131(Pt 2):389–396. https://doi.org/10.1093/brain/awm304

    Article  PubMed  Google Scholar 

  141. Meiser J, Delcambre S, Wegner A, Jager C, Ghelfi J, d’Herouel AF, Dong X, Weindl D, Stautner C, Nonnenmacher Y, Michelucci A, Popp O, Giesert F, Schildknecht S, Kramer L, Schneider JG, Woitalla D, Wurst W, Skupin A, Weisenhorn DM, Kruger R, Leist M, Hiller K (2016) Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism. Neurobiol Dis 89:112–125. https://doi.org/10.1016/j.nbd.2016.01.019

    Article  CAS  PubMed  Google Scholar 

  142. Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142(2):128–130

    Article  CAS  PubMed  Google Scholar 

  143. Kumar P, Kaundal RK, More S, Sharma SS (2009) Beneficial effects of pioglitazone on cognitive impairment in MPTP model of Parkinson’s disease. Behav Brain Res 197(2):398–403

    Article  CAS  PubMed  Google Scholar 

  144. Heo H, Ahn JB, Lee HH, Kwon E, Yun JW, Kim H, Kang BC (2017) Neurometabolic profiles of the substantia nigra and striatum of MPTP-intoxicated common marmosets: an in vivo proton MRS study at 9.4 T. NMR Biomed 30(2). https://doi.org/10.1002/nbm.3686

  145. Ascherio A, Lewitt PA, Xu K, Eberly S, Watts A, Matson WR, Marras C, Kieburtz K, Rudolph A, Bogdanov MB, Schwid SR, Tennis M, Tanner CM, Beal MF, Lang AE, Oakes D, Fahn S, Shoulson I, Schwarzschild MA, Parkinson Study Group DI (2009) Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch Neurol 66(12):1460–1468. https://doi.org/10.1001/archneurol.2009.247

    Article  PubMed  PubMed Central  Google Scholar 

  146. Cipriani S, Chen X, Schwarzschild MA (2010) Urate: a novel biomarker of Parkinson’s disease risk, diagnosis and prognosis. Biomark Med 4(5):701–712. https://doi.org/10.2217/bmm.10.94

    Article  CAS  PubMed  Google Scholar 

  147. Scheperjans F, Pekkonen E, Kaakkola S, Auvinen P (2015) Linking smoking, coffee, urate, and Parkinson’s disease—a Role for gut microbiota? J Parkinsons Dis 5(2):255–262. https://doi.org/10.3233/JPD-150557

    Article  PubMed  Google Scholar 

  148. Stoessel D, Stellmann JP, Willing A, Behrens B, Rosenkranz SC, Hodecker SC, Sturner KH, Reinhardt S, Fleischer S, Deuschle C, Maetzler W, Berg D, Heesen C, Walther D, Schauer N, Friese MA, Pless O (2018) Metabolomic profiles for primary progressive multiple sclerosis stratification and disease course monitoring. Front Hum Neurosci 12:226. https://doi.org/10.3389/fnhum.2018.00226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Roede JR, Uppal K, Park Y, Lee K, Tran V, Walker D, Strobel FH, Rhodes SL, Ritz B, Jones DP (2013) Serum metabolomics of slow vs. rapid motor progression Parkinson’s disease: a pilot study. PLoS One 8(10):e77629. https://doi.org/10.1371/journal.pone.0077629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (2002) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in Substantia Nigra. J Neurochem 69(3):1196–1203. https://doi.org/10.1046/j.1471-4159.1997.69031196.x

    Article  Google Scholar 

  151. Kikuchi A, Takeda A, Onodera H, Kimpara T, Hisanaga K, Sato N, Nunomura A, Castellani RJ, Perry G, Smith MA, Itoyama Y (2002) Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 9(2):244–248. https://doi.org/10.1006/nbdi.2002.0466

    Article  CAS  PubMed  Google Scholar 

  152. Bolner A, Pilleri M, De Riva V, Nordera GP (2011) Plasma and urinary HPLC-ED determination of the ratio of 8-OHdG/2-dG in Parkinson’s disease. Clin Lab 57(11-12):859–866

    CAS  PubMed  Google Scholar 

  153. Sato S, Mizuno Y, Hattori N (2005) Urinary 8-hydroxydeoxyguanosine levels as a biomarker for progression of Parkinson disease. Neurology 64(6):1081

    Article  CAS  PubMed  Google Scholar 

  154. Schipper HM, Song W, Zukor H, Hascalovici JR, Zeligman D (2009) Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J Neurochem 110(2):469–485. https://doi.org/10.1111/j.1471-4159.2009.06160.x

    Article  CAS  PubMed  Google Scholar 

  155. Luan H, Liu LF, Tang Z, Mok VC, Li M, Cai Z (2015) Elevated excretion of biopyrrin as a new marker for idiopathic Parkinson’s disease. Parkinsonism Relat Disord 21(11):1371–1372. https://doi.org/10.1016/j.parkreldis.2015.09.009

    Article  PubMed  Google Scholar 

  156. Glaab E, Trezzi JP, Greuel A, Jager C, Hodak Z, Drzezga A, Timmermann L, Tittgemeyer M, Diederich NJ, Eggers C (2019) Integrative analysis of blood metabolomics and PET brain neuroimaging data for Parkinson’s disease. Neurobiol Dis 124:555–562. https://doi.org/10.1016/j.nbd.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  157. Trezzi JP, Galozzi S, Jaeger C, Barkovits K, Brockmann K, Maetzler W, Berg D, Marcus K, Betsou F, Hiller K, Mollenhauer B (2017) Distinct metabolomic signature in cerebrospinal fluid in early Parkinson’s disease. Mov Disord 32(10):1401–1408. https://doi.org/10.1002/mds.27132

    Article  CAS  PubMed  Google Scholar 

  158. van Kessel SP, El Aidy S (2019) Bacterial metabolites mirror altered gut microbiota composition in patients with Parkinson’s disease. J Parkinsons Dis 9(s2):S359–S370. https://doi.org/10.3233/JPD-191780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Luan H, Wang X, Cai Z (2019) Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders. Mass Spectrom Rev 38(1):22–33. https://doi.org/10.1002/mas.21553

  160. Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Burmann J, Fassbender K, Schwiertz A, Schafer KH (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019

    Article  PubMed  Google Scholar 

  161. Ahmed SS, Santosh W, Kumar S, Christlet HT (2009) Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection. J Biomed Sci 16:63. https://doi.org/10.1186/1423-0127-16-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Shin C, Lim Y, Lim H, Ahn T-B (2020) Plasma short-chain fatty acids in patients with Parkinson’s disease. Mov Disord 35(6):1021–1027. https://doi.org/10.1002/mds.28016

    Article  CAS  PubMed  Google Scholar 

  163. Kumari S, Goyal V, Kumaran SS, Dwivedi SN, Srivastava A, Jagannathan NR (2020) Quantitative metabolomics of saliva using proton NMR spectroscopy in patients with Parkinson’s disease and healthy controls. Neurol Sci 41(5):1201–1210. https://doi.org/10.1007/s10072-019-04143-4

    Article  PubMed  Google Scholar 

  164. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermöhlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977. https://doi.org/10.1038/nn.4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Flint HJ, Duncan SH, Scott KP, Louis P (2015) Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 74(1):13–22. https://doi.org/10.1017/s0029665114001463

    Article  CAS  PubMed  Google Scholar 

  166. Cirstea MS, Yu AC, Golz E, Sundvick K, Kliger D, Radisavljevic N, Foulger LH, Mackenzie M, Huan T, Finlay BB, Appel-Cresswell S (2020) Microbiota Composition and Metabolism Are Associated With Gut Function in Parkinson’s Disease. Mov Disord 35(7):1208–1217. https://doi.org/10.1002/mds.28052

  167. Diether N, Willing B (2019) Microbial fermentation of dietary protein: an important factor in diet–microbe–host interaction. Microorganisms 7(1):19

    Article  CAS  PubMed Central  Google Scholar 

  168. Okuzumi A, Hatano T, Ueno S-I, Ogawa T, Saiki S, Mori A, Koinuma T, Oji Y, Ishikawa K-I, Fujimaki M (2019) Metabolomics-based identification of metabolic alterations in PARK2. Ann Clin Transl Neurol 6(3):525–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Burte F, Houghton D, Lowes H, Pyle A, Nesbitt S, Yarnall A, Yu-Wai-Man P, Burn DJ, Santibanez-Koref M, Hudson G (2017) Metabolic profiling of Parkinson’s disease and mild cognitive impairment. Mov Disord 32(6):927–932. https://doi.org/10.1002/mds.26992

    Article  PubMed  PubMed Central  Google Scholar 

  170. Rooks MG, Veiga P, Wardwell-Scott LH, Tickle T, Segata N, Michaud M, Gallini CA, Beal C, Van Hylckama-Vlieg JE, Ballal SA (2014) Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J 8(7):1403–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, Mutlu E, Shannon KM (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30(10):1351–1360

    Article  CAS  PubMed  Google Scholar 

  172. Luan H, Liu LF, Meng N, Tang Z, Chua KK, Chen LL, Song JX, Mok VC, Xie LX, Li M, Cai Z (2015) LC-MS-based urinary metabolite signatures in idiopathic Parkinson’s disease. J Proteome Res 14(1):467–478. https://doi.org/10.1021/pr500807t

    Article  CAS  PubMed  Google Scholar 

  173. Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M, Taketani M, Ishihara A, Kashyap PC, Fraser JS, Fischbach MA (2014) Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16(4):495–503. https://doi.org/10.1016/j.chom.2014.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Krishnan S, Ding Y, Saedi N, Choi M, Sridharan GV, Sherr DH, Yarmush ML, Alaniz RC, Jayaraman A, Lee K (2018) Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep 23(4):1099–1111. https://doi.org/10.1016/j.celrep.2018.03.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kim DC, Quang TH, Yoon CS, Ngan NTT, Lim SI, Lee SY, Kim YC, Oh H (2016) Anti-neuroinflammatory activities of indole alkaloids from kanjang (Korean fermented soy source) in lipopolysaccharide-induced BV2 microglial cells. Food Chem 213:69–75. https://doi.org/10.1016/j.foodchem.2016.06.068

    Article  CAS  PubMed  Google Scholar 

  176. Amo T, Oji Y, Saiki S, Hattori N (2019) Metabolomic analysis revealed mitochondrial dysfunction and aberrant choline metabolism in MPP(+)-exposed SH-SY5Y cells. Biochem Biophys Res Commun 519(3):540–546. https://doi.org/10.1016/j.bbrc.2019.09.031

    Article  CAS  PubMed  Google Scholar 

  177. Lei S, Zavala-Flores L, Garcia-Garcia A, Nandakumar R, Huang Y, Madayiputhiya N, Stanton RC, Dodds ED, Powers R, Franco R (2014) Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity. ACS Chem Biol 9(9):2032–2048. https://doi.org/10.1021/cb400894a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Powers R, Lei S, Anandhan A, Marshall DD, Worley B, Cerny RL, Dodds ED, Huang Y, Panayiotidis MI, Pappa A, Franco R (2017) Metabolic investigations of the molecular mechanisms associated with Parkinson’s disease. Metabolites 7(2). https://doi.org/10.3390/metabo7020022

  179. Anandhan A, Lei S, Levytskyy R, Pappa A, Panayiotidis MI, Cerny RL, Khalimonchuk O, Powers R, Franco R (2017) Glucose metabolism and AMPK signaling regulate dopaminergic cell death induced by gene (alpha-synuclein)-environment (paraquat) interactions. Mol Neurobiol 54(5):3825–3842. https://doi.org/10.1007/s12035-016-9906-2

    Article  CAS  PubMed  Google Scholar 

  180. Melnikova A, Pozdyshev D, Barinova K, Kudryavtseva S, Muronetz VI (2020) α-Synuclein overexpression in SH-SY5Y human neuroblastoma cells leads to the accumulation of thioflavin S-positive aggregates and impairment of glycolysis. Biochemistry 85(5):604–613. https://doi.org/10.1134/s0006297920050090

    Article  CAS  PubMed  Google Scholar 

  181. Tang BL (2020) Glucose, glycolysis, and neurodegenerative diseases. J Cell Physiol 235(11):7653–7662. https://doi.org/10.1002/jcp.29682

  182. Cai R, Zhang Y, Simmering JE, Schultz JL, Liu L (2019) Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J Clin Investig 129(Suppl 3):4539–4549

    Article  PubMed  PubMed Central  Google Scholar 

  183. Chen X, Zhao C, Li X et al (2015) Terazosin activates Pgk1 and Hsp90 to promote stress resistance. Nat Chem Biol 11(1):19–25

    Article  CAS  PubMed  Google Scholar 

  184. Saiki S, Hatano T, Fujimaki M, Ishikawa KI, Mori A, Oji Y, Okuzumi A, Fukuhara T, Koinuma T, Imamichi Y, Nagumo M, Furuya N, Nojiri S, Amo T, Yamashiro K, Hattori N (2017) Decreased long-chain acylcarnitines from insufficient beta-oxidation as potential early diagnostic markers for Parkinson’s disease. Sci Rep 7(1):7328. https://doi.org/10.1038/s41598-017-06767-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zheng H, Zhao L, Xia H, Xu C, Wang D, Liu K, Lin L, Li X, Yan Z, Gao H (2016) NMR-based metabolomics reveal a recovery from metabolic changes in the striatum of 6-OHDA-induced rats treated with basic fibroblast growth factor. Mol Neurobiol 53(10):6690–6697. https://doi.org/10.1007/s12035-015-9579-2

    Article  CAS  PubMed  Google Scholar 

  186. Rappley I, Myers DS, Milne SB, Ivanova PT, Lavoie MJ, Brown HA, Selkoe DJ (2009) Lipidomic profiling in mouse brain reveals differences between ages and genders, with smaller changes associated with alpha-synuclein genotype. J Neurochem 111(1):15–25. https://doi.org/10.1111/j.1471-4159.2009.06290.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Tyurina YY, Polimova AM, Maciel E, Tyurin VA, Kapralova VI, Winnica DE, Vikulina AS, Domingues MR, McCoy J, Sanders LH, Bayir H, Greenamyre JT, Kagan VE (2015) LC/MS analysis of cardiolipins in substantia nigra and plasma of rotenone-treated rats: implication for mitochondrial dysfunction in Parkinson’s disease. Free Radic Res 49(5):681–691. https://doi.org/10.3109/10715762.2015.1005085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Johansen KK, Wang L, Aasly JO, White LR, Matson WR, Henchcliffe C, Beal MF, Bogdanov M (2009) Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS One 4(10):e7551. https://doi.org/10.1371/journal.pone.0007551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Seraji-Bozorgzad N, Bao F, George E, Krstevska S, Gorden V, Chorostecki J, Santiago C, Zak I, Caon C, Khan O (2015) Longitudinal study of the substantia nigra in Parkinson disease: a high-field 1H-MR spectroscopy imaging study. Mov Disord 30(10):1400–1404

    Article  CAS  PubMed  Google Scholar 

  190. Boska MD, Lewis TB, Destache CJ et al (2005) Quantitative 1H magnetic resonance spectroscopic imaging determines therapeutic immunization efficacy in an animal model of Parkinson’s disease. J Neuroence 25(7):1691–1700

    CAS  Google Scholar 

  191. Hernandez-Diaz S, Soukup SF (2020) The role of lipids in autophagy and its implication in neurodegeneration. Cell Stress 4(7):167–186. https://doi.org/10.15698/cst2020.07.225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mori A, Imai Y, Hattori N (2020) Lipids: key players that modulate alpha-synuclein toxicity and neurodegeneration in Parkinson’s disease. Int J Mol Sci 21(9). https://doi.org/10.3390/ijms21093301

  193. Fanning S, Selkoe D, Dettmer U (2021) Vesicle trafficking and lipid metabolism in synucleinopathy. Acta Neuropathol 141(4):491–510. https://doi.org/10.1007/s00401-020-02177-z

  194. Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G (2016) Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology 86(6):566–576. https://doi.org/10.1212/wnl.0000000000002350

    Article  PubMed  Google Scholar 

  195. Fayyad M, Salim S, Majbour N, Erskine D, Stoops E, Mollenhauer B, El-Agnaf OMA (2019) Parkinson’s disease biomarkers based on alpha-synuclein. J Neurochem 150(5):626–636. https://doi.org/10.1111/jnc.14809

    Article  CAS  PubMed  Google Scholar 

  196. Atik A, Stewart T, Zhang J (2016) Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol 26(3):410–418. https://doi.org/10.1111/bpa.12370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC 81771521), Key Research & Development Plan of Liaoning Science and Technology Department (2018225051) and Doctoral Scientific Research Foundation of Liaoning Science and Technology Department (2020-BS-200).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shao, Y., Xu, X., Wang, N., Xu, G., Le, W. (2022). Metabolomic Biomarkers in Parkinson’s Disease . In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1712-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1712-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1711-3

  • Online ISBN: 978-1-0716-1712-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics