Skip to main content

Advertisement

Log in

Advances in Biomarker Research in Parkinson’s Disease

  • Movement Disorders (S Fox, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disease, and the numbers are projected to double in the next two decades with the increase in the aging population. An important focus of current research is to develop interventions to slow the progression of the disease. However, prerequisites to it include the development of reliable biomarkers for early diagnosis which would identify at-risk groups and disease progression. In this review, we present updated evidence of already known clinical biomarkers (such as hyposmia and rapid eye movement (REM) sleep behavior disorder (RBD)) and neuroimaging biomarkers, as well as newer possible markers in the blood, CSF, and other tissues. While several promising candidates and methods to assess these biomarkers are on the horizon, it is becoming increasingly clear that no one candidate will clearly fulfill all the roles as a single biomarker. A multimodal and combinatorial approach to develop a battery of biomarkers will likely be necessary in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3):181–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of Parkinsonian syndromes in a specialist movement disorder service. Brain. 2002;125(Pt 4):861–70.

    Article  PubMed  Google Scholar 

  3. Adler CH, Beach TG, Hentz JG, et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study. Neurology. 2014;83(5):406–12.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69(3):89–95.

  5. Fox N, Growdon JH. Biomarkers and surrogates. NeuroRx. 2004;1(2):181.

    Article  PubMed Central  Google Scholar 

  6. Chahine LM, Stern MB, Chen-Plotkin A. Blood-based biomarkers for Parkinson’s disease. Parkinsonism Relat Disord. 2014;20 Suppl 1:S99–S103.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68(5):384–6.

    Article  PubMed  CAS  Google Scholar 

  8. The Parkinson Progression Marker Initiative (PPMI). Prog Neurobiol 2011;95(4):629–635.

  9. Stern MB, Siderowf A. Parkinson’s at risk syndrome: can Parkinson’s disease be predicted? Mov Disord. 2010;25 Suppl 1:S89–93.

    Article  PubMed  Google Scholar 

  10. Berg D, Godau J, Seppi K, et al. The PRIPS study: screening battery for subjects at risk for Parkinson’s disease. Eur J Neurol. 2013;20(1):102–8.

    Article  PubMed  CAS  Google Scholar 

  11. Ponsen MM, Stoffers D, Booij J, van Eck-Smit BL, Wolters E, Berendse HW. Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol. 2004;56(2):173–81.

    Article  PubMed  Google Scholar 

  12. Driver-Dunckley E, Adler CH, Hentz JG, et al. Olfactory dysfunction in incidental Lewy body disease and Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(11):1260–2.

    Article  PubMed  Google Scholar 

  13. Adler CH, Connor DJ, Hentz JG, et al. Incidental Lewy body disease: clinical comparison to a control cohort. Mov Disord. 2010;25(5):642–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Katzenschlager R, Lees AJ. Olfaction and Parkinson’s syndromes: its role in differential diagnosis. Curr Opin Neurol. 2004;17(4):417–23.

    Article  PubMed  Google Scholar 

  15. Wenning GK, Shephard B, Hawkes C, Petruckevitch A, Lees A, Quinn N. Olfactory function in atypical Parkinsonian syndromes. Acta Neurol Scand. 1995;91(4):247–50.

    Article  PubMed  CAS  Google Scholar 

  16. Postuma RB, Gagnon JF, Rompre S, Montplaisir JY. Severity of REM atonia loss in idiopathic REM sleep behavior disorder predicts Parkinson disease. Neurology. 2010;74(3):239–44.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Postuma RB, Gagnon J-F, Bertrand J-A, Génier Marchand D, Montplaisir JY. Parkinson risk in idiopathic REM sleep behavior disorder: preparing for neuroprotective trials. Neurology. 2015;84(11):1104–13. This paper presents data on conversion rates of a prospective cohort of RBD patients and other clinical risk factors to neurodegenerative disease over a 10 year follow-up period.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pont-Sunyer C, Iranzo A, Gaig C, et al. Sleep disorders in Parkinsonian and nonparkinsonian LRRK2 mutation carriers. PLoS One. 2015;10(7), e0132368.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chahine LM, Stern MB. Diagnostic markers for Parkinson’s disease. Curr Opin Neurol. 2011;24(4):309–17.

    Article  PubMed  CAS  Google Scholar 

  20. Schapira AH. Recent developments in biomarkers in Parkinson disease. Curr Opin Neurol. 2013;26(4):395–400.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Morgan JC, Mehta SH, Sethi KD. Biomarkers in Parkinson’s disease. Curr Neurol Neurosci Rep. 2010;10(6):423–30.

    Article  PubMed  CAS  Google Scholar 

  22. Whone AL, Watts RL, Stoessl AJ, et al. Slower progression of Parkinson’s disease with Ropinirole versus levodopa: the REAL-PET study. Ann Neurol. 2003;54(1):93–101.

    Article  PubMed  CAS  Google Scholar 

  23. Lang AE, Gill S, Patel NK, et al. Randomized controlled trial of intraputamenal glial cell line-derived Neurotrophic factor infusion in Parkinson disease. Ann Neurol. 2006;59(3):459–66.

    Article  PubMed  CAS  Google Scholar 

  24. Perlmutter JS, Norris SA. Neuroimaging biomarkers for Parkinson disease: facts and fantasy. Ann Neurol. 2014;76(6):769–83. This is a very elegant review and discussion of state of radiotracer imaging in Parkinson's disease both from a clinical and research perspective.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351(24):2498–508.

    Article  PubMed  CAS  Google Scholar 

  26. Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K. Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology. 1995;45(1):182–4.

    Article  PubMed  CAS  Google Scholar 

  27. Berg D, Merz B, Reiners K, Naumann M, Becker G. Five-year follow-up study of hyperechogenicity of the substantia nigra in Parkinson’s disease. Mov Disord. 2005;20(3):383–5.

    Article  PubMed  Google Scholar 

  28. Berg D, Seppi K, Behnke S, et al. Enlarged substantia nigra hyperechogenicity and risk for Parkinson disease: a 37-month 3-center study of 1847 older persons. Arch Neurol. 2011;68(7):932–7.

    Article  PubMed  Google Scholar 

  29. Stockner H, Iranzo A, Seppi K, et al. Midbrain hyperechogenicity in idiopathic REM sleep behavior disorder. Mov Disord. 2009;24(13):1906–9.

    Article  PubMed  Google Scholar 

  30. Iwanami M, Miyamoto T, Miyamoto M, Hirata K, Takada E. Relevance of substantia nigra hyperechogenicity and reduced odor identification in idiopathic REM sleep behavior disorder. Sleep Med. 2010;11(4):361–5.

    Article  PubMed  Google Scholar 

  31. Pilotto A, Yilmaz R, Berg D. Developments in the role of transcranial sonography for the differential diagnosis of parkinsonism. Curr Neurol Neurosci Rep. 2015;15(7):43. This paper reviews the growing evidence of TCUS studies in patients with parkinsonism and their ability to distinguish PD from atypical parkinsonism.

    Article  PubMed  Google Scholar 

  32. van de Loo S, Walter U, Behnke S, et al. Reproducibility and diagnostic accuracy of substantia nigra sonography for the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010;81(10):1087–92.

    Article  PubMed  Google Scholar 

  33. Berardelli A, Wenning GK, Antonini A, et al. EFNS/MDS-ES/ENS [corrected] recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol. 2013;20(1):16–34.

    Article  PubMed  CAS  Google Scholar 

  34. Shi M, Zabetian CP, Hancock AM, et al. Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson’s disease. Neurosci Lett. 2010;480(1):78–82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Lin X, Cook TJ, Zabetian CP, et al. DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Sci Rep. 2012;2:954.

    PubMed  PubMed Central  Google Scholar 

  36. Davis JW, Grandinetti A, Waslien CI, Ross GW, White LR, Morens DM. Observations on serum uric acid levels and the risk of idiopathic Parkinson’s disease. Am J Epidemiol. 1996;144(5):480–4.

    Article  PubMed  CAS  Google Scholar 

  37. de Lau LM, Koudstaal PJ, Hofman A, Breteler MM. Serum uric acid levels and the risk of Parkinson disease. Ann Neurol. 2005;58(5):797–800.

    Article  PubMed  Google Scholar 

  38. Schwarzschild MA, Schwid SR, Marek K, et al. Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch Neurol. 2008;65(6):716–23.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Simon KC, Eberly S, Gao X, et al. Mendelian randomization of serum urate and Parkinson disease progression. Ann Neurol. 2014;76(6):862–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Schwarzschild MA, Ascherio A, Beal MF, et al. Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol. 2014;71(2):141–50. A large safety study showing the ability of inosine to raise urate levels in patients with PD. This has led to a larger study to assess the disease modifying potential of inosine.

    Article  PubMed  Google Scholar 

  41. Valdes AM, Glass D, Spector TD. Omics technologies and the study of human ageing. Nat Rev Genet. 2013;14(9):601–7.

    PubMed  Google Scholar 

  42. Hatano T, Saiki S, Okuzumi A, Mohney RP, Hattori N. Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. J Neurol Neurosurg Psychiatry. 2015.

  43. Lewitt PA, Li J, Lu M, Beach TG, Adler CH, Guo L. 3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov Disord. 2013;28(12):1653–60.

    Article  PubMed  CAS  Google Scholar 

  44. Zetterberg H, Petzold M, Magdalinou N. Cerebrospinal fluid alpha-synuclein levels in Parkinson's disease—changed or unchanged? Eur J Neurol. 2014;21(3):365–7.

    Article  PubMed  CAS  Google Scholar 

  45. Kang JH, Irwin DJ, Chen-Plotkin AS, et al. Association of cerebrospinal fluid beta-amyloid 1-42, T-tau, P-tau181, and alpha-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol. 2013;70(10):1277–87.

    PubMed  PubMed Central  Google Scholar 

  46. Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Doring F, Trenkwalder C, Schlossmacher MG. Alpha-synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol. 2011;10(3):230–40.

    Article  PubMed  CAS  Google Scholar 

  47. Hall S, Surova Y, Ohrfelt A, Zetterberg H, Lindqvist D, Hansson O. CSF biomarkers and clinical progression of Parkinson disease. Neurology. 2015;84(1):57–63. This is a unique propspective study of CSF biomarkers which showed higher CSF α-synuclein levels were associated with a faster progression of motor symptoms and cognitive decline over 2 years.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Alves G, Lange J, Blennow K, et al. CSF Abeta42 predicts early-onset dementia in Parkinson disease. Neurology. 2014;82(20):1784–90.

    Article  PubMed  CAS  Google Scholar 

  49. Siderowf A, Xie SX, Hurtig H, et al. CSF amyloid {beta} 1-42 predicts cognitive decline in Parkinson disease. Neurology. 2010;75(12):1055–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Schneider SA, Boettner M, Alexoudi A, Zorenkov D, Deuschl G, Wedel T. Can we use peripheral tissue biopsies to diagnose Parkinson’s disease? A review of the literature. Eur J Neurol. 2015.

  51. Fasano A, Visanji NP, Liu LW, Lang AE, Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol. 2015;14(6):625–39.

    Article  PubMed  CAS  Google Scholar 

  52. Beach TG, Adler CH, Sue LI, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 2010;119(6):689–702. This paper describes the distribution of phos-α-synuclein in the different organs in the body and led to the finding of submandibular gland having higher concentrations of phos-α-synuclein in Lewy body diseases.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Beach TG, Adler CH, Dugger BN, et al. Submandibular gland biopsy for the diagnosis of Parkinson disease. J Neuropathol Exp Neurol. 2013;72(2):130–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Adler CH, Dugger BN, Hinni ML, et al. Submandibular gland needle biopsy for the diagnosis of Parkinson disease. Neurology. 2014;82(10):858–64.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Beach TG, White 3rd CL, Hladik CL, et al. Olfactory bulb alpha-synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta Neuropathol. 2009;117(2):169–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Del Tredici K, Hawkes CH, Ghebremedhin E, Braak H. Lewy pathology in the submandibular gland of individuals with incidental Lewy body disease and sporadic Parkinson’s disease. Acta Neuropathol. 2010;119(6):703–13.

    Article  PubMed  Google Scholar 

  57. Campbell MC, Koller JM, Snyder AZ, Buddhala C, Kotzbauer PT, Perlmutter JS. CSF proteins and resting-state functional connectivity in Parkinson disease. Neurology. 2015;84(24):2413–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamal H. Mehta.

Ethics declarations

Conflict of Interest

Shyamal H. Mehta and Charles H. Adler declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Movement Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, S.H., Adler, C.H. Advances in Biomarker Research in Parkinson’s Disease. Curr Neurol Neurosci Rep 16, 7 (2016). https://doi.org/10.1007/s11910-015-0607-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0607-4

Keywords

Navigation