Skip to main content

Advertisement

Log in

Recent Advances in Molecular Pathways and Therapeutic Implications Targeting Mitochondrial Dysfunction for Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder which leads to mental deterioration due to aberrant accretion of misfolded proteins in the brain. According to mitochondrial cascade hypothesis, mitochondrial dysfunction is majorly involved in the pathogenesis of AD. Many drugs targeting mitochondria to treat and prevent AD are in different phases of clinical trials for the evaluation of safety and efficacy as mitochondria are involved in various cellular and neuronal functions. Mitochondrial dynamics is regulated by fission and fusion processes mediated by dynamin-related protein (Drp1). Inner membrane fusion takes place by OPA1 and outer membrane fusion is facilitated by mitofusin1 and mitofusin2 (Mfn1/2). Excessive calcium release also impairs mitochondrial functions; to overcome this, calcium channel blockers like nilvadipine are used. Another process acting as a regulator of mitochondrial function is mitophagy which is involved in the removal of damaged and non-functional mitochondria however this process is also altered in AD due to mutations in Presenilin1 (PS1) and Amyloid Precursor Protein (APP) gene. Mitochondrial dynamics is altered in AD which led to the discovery of various fission protein (like Drp1) inhibitors and drugs that promote fusion. Modulations in AMPK, SIRT1 and Akt pathways can also come out to be better therapeutic strategies as these pathways regulate functions of mitochondria. Oxidative phosphorylation is major generator of Reactive Oxygen Species (ROS) leading to mitochondrial damage; therefore reduction in production of ROS by using antioxidants like MitoQ, Curcumin and Vitamin Eis quiteeffective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fawzi AA, Weintraub S, Fawzi W (2020) Retinal imaging in Alzheimer’s disease. In search of the holy grail. Ophthalmology 127:119–121

    Article  PubMed  Google Scholar 

  3. Bekris LM, Yu C-E, Bird TD, Tsuang DW (2010) Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23:213–227

    Article  PubMed  PubMed Central  Google Scholar 

  4. Castellani RJ, Rolston K, Smith MA (2010) Alzheimer disease. Disease-a-month: DM 56:484

  5. Hindupur K, Anandatheerthavarada BG et al (2003) Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161:41–54

    Article  CAS  Google Scholar 

  6. Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E (2017) The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 482:426–431

    Article  CAS  PubMed  Google Scholar 

  7. Flannery PJ, Trushina E (2019) Mitochondrial dysfunction in Alzheimer’s disease and progress in mitochondria-targeted therapeutics. Curr Behav Neurosci Rep 6:88–102

    Article  Google Scholar 

  8. Longo DL, Archer SL (2013) Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251

    Article  CAS  Google Scholar 

  9. Youle RJ, Van Der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramos ES, Motori E, Brüser C, Kühl I, Yeroslaviz A, Ruzzenente B, et al (2019) Mitochondrial fusion is required for regulation of mitochondrial DNA replication. PLoS Genet 15: e1008085

  11. Sheng ZHQC (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13:77–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kerr JS, Adriaanse BA, Greig NH et al (2017) Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci 40:151–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carolina CC, Diego R, Moran J (2018) ROS as regulators of mitochondrial dynamics in neurons. Cellular and Mol Neurobiol 38:995–1007

    Article  CAS  Google Scholar 

  14. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bordi M, Berg MJ, Mohan PS, Peterhoff CM, Alldred MJ, Che S et al (2016) Autophagy flux in CA1 neurons of Alzheimer hippocampus: Increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy 12:2467–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reddy PH, Yin XL, Manczak M, Kumar S, Pradeepkiran JA, Vijayan M et al (2018) Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. Hum Mol Genet 27:2502–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cai Q, Jeong YY (2020) Mitophagy in Alzheimer’s Disease and Other Age-Related Neurodegenerative Diseases. Cells 9:150

    Article  CAS  PubMed Central  Google Scholar 

  19. Hemono M, Ubrig É, Azeredo K, Salinas-Giegé T, Drouard L, Duchêne A-M (2020) Arabidopsis voltage-dependent anion channels (VDACs): overlapping and specific functions in mitochondria. Cells 9:1023

    Article  CAS  PubMed Central  Google Scholar 

  20. Shoshan-Barmatz V (2020) Novel piperazine and piperidine derivatives, their synthesis and use thereof in inhibiting vdac oligomerization, apoptosis and mitochondria dysfunction. Google Patents 2020.

  21. Robinson A, Grösgen S, Mett J, Zimmer VC, Haupenthal VJ, Hundsdörfer B et al (2014) Upregulation of PGC-1α expression by Alzheimer’s disease-associated pathway: Presenilin 1/amyloid precursor protein (APP)/intracellular domain of APP. Aging Cell 13:263–272

    Article  CAS  PubMed  Google Scholar 

  22. Shen Y, Wu Q, Shi J, et al (2020) Regulation of SIRT3 on mitochondrial functions and oxidative stress in Parkinson's disease. Biomed and Pharmacother 132:110928

  23. Wu J, Zeng Z, Zhang W et al (2019) Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases. Free Radical Res 53:139–149

    Article  CAS  Google Scholar 

  24. Ban T, Kohno H, Ishihara T, Ishihara N (2018) Relationship between OPA1 and cardiolipin in mitochondrial inner-membrane fusion. Biochim Biophys Acta - Bioenerg 1859:951–957

    Article  CAS  PubMed  Google Scholar 

  25. Song Z, Ghochani M, McCaffery JM et al (2009) Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20:3525–3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gui C, Ren Y, Chen J, et al (2020) p38 MAPK-DRP1 signaling is involved in mitochondrial dysfunction and cell death in mutant A53T α-synuclein model of Parkinson’s disease. Toxicol Appl Pharmacol 388:114874

  27. Losó n OC, Song Z, Chen H, Chan DC, (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24:659–667

    Article  Google Scholar 

  28. Chen H, Chan DC (2010) Physiological functions of mitochondrial fusion. Ann N Y Acad Sci 1201:21–25

    Article  CAS  PubMed  Google Scholar 

  29. Kang I, Chu CT, Kaufman BA (2018) The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett 592:793–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797:113–128

    Article  CAS  PubMed  Google Scholar 

  31. Zhao M et al (2021) Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics 11:1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paupe V, Prudent J (2018) New insights into the role of mitochondrial calcium homeostasis in cell migration. Biochem Biophys Res Commun 500:75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Calvo-Rodriguez M, Bacskai BJ (2021) Mitochondria and calcium in Alzheimer’s disease: from cell signaling to neuronal cell death. Trends Neurosci 44:136–151

    Article  CAS  PubMed  Google Scholar 

  34. Prole DL, Taylor CW (2019) Structure and function of ip3 receptors. Cold Spring Harb Perspect Biol 11:a035063

  35. Marchi S, Patergnani S, Missiroli S et al (2018) Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 69:62–72

    Article  CAS  PubMed  Google Scholar 

  36. Gaidin SG, Zinchenko VP, Teplov IY, Tuleukhanov ST, Kosenkov AM (2019) Epileptiform activity promotes decreasing of Ca2+ conductivity of NMDARs, AMPARs, KARs, and voltage-gated calcium channels in Mg2+-free model. Epilepsy Res 158:106224

  37. Krieger C (2002) Mitochondria, Ca2+ and neurodegenerative disease. Eur J Pharmacol 447:177–188

    Article  CAS  PubMed  Google Scholar 

  38. Gunter T, Buntinas L, Sparagna G et al (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28:285–296

    Article  CAS  PubMed  Google Scholar 

  39. Ord C, Jack R, Knopman DS, Jagust WJ, Petersen RC, Weiner MW et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurol 12:207–216

    Article  CAS  Google Scholar 

  40. Maruszak ACŻ (2011) Mitochondrial dysfunction and Alzheimer’s disease. Prog Neuro-Psychopharmacology Biol Psychiatry 35:320–330

    Article  CAS  Google Scholar 

  41. Mancuso M, Coppedè F, Murri L, Siciliano G (2007) Mitochondrial cascade hypothesis of Alzheimer’s disease: Myth or reality? Antioxidants Redox Signal 9:1631–1646

    Article  CAS  Google Scholar 

  42. Swerdlow R, Burns JMSK-B, BA, (2014) U (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta - Mol Basis Dis 1842:1219–1231

    Article  CAS  Google Scholar 

  43. Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA (2005) Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J Neurochem 93:953–962

    Article  CAS  PubMed  Google Scholar 

  44. Fišar Z, Hansíková H, Křížová J, Jirák R, Kitzlerová E, Zvěřová M et al (2019) Activities of mitochondrial respiratory chain complexes in platelets of patients with Alzheimer’s disease and depressive disorder. Mitochondrion 48:67–77

    Article  PubMed  CAS  Google Scholar 

  45. Adav SS, Park JE, Sze SK (2019) Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer’s disease. Mol Brain 12:1–12

    Article  Google Scholar 

  46. Trimmer PA et al (2000) Abnormal Mitochondrial Morphology in Sporadic Parkinson’s and Alzheimer’s Disease Cybrid Cell Lines. Exp Neurol 162:37–50

    Article  CAS  PubMed  Google Scholar 

  47. Weidling I, Swerdlow RH (2020) Mitochondria in Alzheimer’s disease and their potential role in Alzheimer’s proteostasis. Exp. Neurol 330:113321

  48. Onyango I, Dennis J (2016) Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis 7:201–214

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ułamek-Kozioł M, Czuczwar SJ, Kocki J, Januszewski S, Bogucki J, Bogucka-Kocka A et al (2019) Dysregulation of autophagy, mitophagy, and apoptosis genes in the CA3 region of the hippocampus in the ischemic model of Alzheimer’s disease in the rat. J Alzheimer’s Dis 72:1279–1286

    Article  CAS  Google Scholar 

  50. Martín-Maestro P, Gargini R, Perry G, Avila J, García-Escudero V (2016) PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer’s disease. Hum Mol Genet 25:792–806

    Article  PubMed  CAS  Google Scholar 

  51. Cheng Y, Bai F (2018) The association of tau with mitochondrial dysfunction in Alzheimer’s disease. Front Neurosci 12:163

    Article  PubMed  PubMed Central  Google Scholar 

  52. Abtahi SL, Masoudi R, Haddadi M (2020) The distinctive role of tau and amyloid beta in mitochondrial dysfunction through alteration in Mfn2 and Drp1 mRNA Levels: A comparative study in Drosophila melanogaster. Gene 754:144854

  53. Manczak M, Kandimalla R, Yin X, Reddy PH (2018) Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Hum Mol Genet 27:1332–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Y, Liu Q, Sun J et al (2018) Mitochondrial protective mechanism of simvastatin protects against amyloid β peptide-induced injury in SH-SY5Y cells. Int J Mol Med 41:2997–3005

    CAS  PubMed  Google Scholar 

  55. Swerdlow RH (2018) Mitochondria and mitochondrial cascades in Alzheimer’s disease. J Alzheimer’s Dis 62:1403–1416

    Article  CAS  Google Scholar 

  56. Du H, Guo L, Fang F, Chen D, Medicine AS (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nature Med 14:1097–1105

    Article  CAS  PubMed  Google Scholar 

  57. Birnbaum JH, Wanner D, Gietl AF, Saake A, Kündig TM, Hock C et al (2018) Oxidative stress and altered mitochondrial protein expression in the absence of amyloid-β and tau pathology in iPSC-derived neurons from sporadic Alzheimer’s disease patients. Stem Cell Res 27:121–130

    Article  CAS  PubMed  Google Scholar 

  58. Physiology C, Ferrer MD, Sureda A, Mestre A, Tur JA, Pons A et al (2010) Cellular physiology cellular physiology cellular physiology cellular physiology the double edge of reactive oxygen species as damaging and signaling molecules in HL60 cell culture. Cell PhysiolBiochem 25:241–252

    Google Scholar 

  59. Reddy P, Tripathi R, Troung Q et al (2012) Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: implications to mitochondria-targeted antioxidant. Biochim Biophys basis Dis 1822:639–649

    Article  CAS  Google Scholar 

  60. Du F, Yu Q, Yan S et al (2017) PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer’s disease. Brain 140:3233–3251

    Article  PubMed  PubMed Central  Google Scholar 

  61. Blanco-Bose Amazentis W, Ryu D, Burdet F (2019) The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nature metabol 1:595–603

    Article  CAS  Google Scholar 

  62. Lee J, Kim Y, Liu T, et al (2018) SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer’s disease. Aging Cell 17:e12679

  63. Geng X, Yang B, Li R et al (2020) Effects of docosahexaenoic acid and its peroxidation product on amyloid-β peptide-stimulated microglia. Mol Neurobiol 57:1085–1098

    Article  CAS  PubMed  Google Scholar 

  64. Shoshan-Barmatz V (2018) Piperazine and piperidine derivatives, their synthesis and use thereof in inhibiting VDAC oligomerization, apoptosis and mitochondria dysfunction. Google Patents 2018.

  65. Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A (2017) Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther 23:5–22

    Article  PubMed  Google Scholar 

  66. Yang L, Jiang Y, Shi L et al (2020) AMPK: potential therapeutic target for Alzheimer’s disease. Curr protein Pept Sci 21:66–77

    Article  CAS  PubMed  Google Scholar 

  67. Chiang M, Cheng Y, Chen S et al (2016) Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against Amyloid-beta-induced mitochondrial dysfunction. Exp Cell Res 347:322–331

    Article  CAS  PubMed  Google Scholar 

  68. Kanthasamy A, B Kalyanaraman - US Patent 9, 956 233, 2018 U (2018) Neuroprotection by mitochondria-targeted metformin. Google Patents

  69. Kanthasamy A, B Kalyanaraman - US Patent 10, 576 093, 2020 U (2020) Neuroprotection by mitochondria-targeted metformin. Google Patents

  70. Kim DI, Lee KH, Gabr AA, etal (2016) Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1863:2820–2834

  71. Qi X, Qvit N, Su Y-C, Mochly-Rosen D (2013) A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci 126:789–802

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cenini G, Voos W (2019) Mitochondria as potential targets in Alzheimer disease therapy: An update. Front Pharmacol 10:902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu Y, Mei Y, Shi X et al (2019) Albiflorin ameliorates memory deficits in APP/PS1 transgenic mice via ameliorating mitochondrial dysfunction. Brain Res 1719:113–123

    Article  CAS  PubMed  Google Scholar 

  74. Oliver D (2019) Small molecules as therapeutic drugs for Alzheimer’s disease. Mol Cell Neurosci 96:47–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kisby B, Jarrell J, Agar M et al (2019) Alzheimer’s disease and its potential alternative therapeutics. J Alzheimers Dis Parkinsonism 9:477

    PubMed  PubMed Central  Google Scholar 

  76. Magadmi RM, Alsulaimani MA, Al-Rafiah AR, Ahmad MS, Esmat A (2021) Carvedilol exerts neuroprotective effect on rat model of diabetic neuropathy. Front Pharmacol 12:613–634

    Article  CAS  Google Scholar 

  77. Liu J, Wang M (2018) Carvedilol protection against endogenous Aβ-induced neurotoxicity in N2a cells. Cell Stress Chaperones 23:695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang CY, Xu Y, Wang X et al (2019) Dl-3-n-Butylphthalide inhibits NLRP3 inflammasome and mitigates Alzheimer’s-like pathology via Nrf2-TXNIP-TrX Axis. Antioxidants Redox Signal 30:1411–1431

    Article  Google Scholar 

  79. Liu Z, Wang H, Xiaofeng S, Liwen L, Zhou M, Hui D, et al (2017) dl-3-n-Butylphthalide (NBP) Provides neuroprotection in the mice models after traumatic brain injury via Nrf2-ARE signaling pathway. Neurochem Res 42:1375–86

  80. Luo R, Wangqin R, Zhu L, Bi W (2019) Neuroprotective mechanisms of 3-n-butylphthalide in neurodegenerative diseases. Biomed Reports 11:235–240

    CAS  Google Scholar 

  81. Vasilieva NA, Shevtsova EF, Van’kin GI, et al (2019) Wave-like dose-dependence of the stimulating effects of dimebon on cognition in a wide dose range. Bull Exp Biol Med 167:740–743

    Article  CAS  PubMed  Google Scholar 

  82. Doody RS, Gavrilova SI, Sano M, Thomas RG, Aisen PS, Bachurin SO et al (2008) Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. The Lancet 372:207–215

    Article  CAS  Google Scholar 

  83. Eckert SH, Gaca J, Kolesova N, Friedland K, Eckert GP, Muller WE (2018) Mitochondrial pharmacology of dimebon (latrepirdine) calls for a new look at its possible therapeutic potential in alzheimer’s disease. Aging Dis 9:729–744

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhang T, Wu P, Zhang JH, Li Y, Xu S, Wang C et al (2018) Docosahexaenoic acid alleviates oxidative stress-based apoptosis via improving mitochondrial dynamics in early brain injury after subarachnoid hemorrhage. Cell Mol Neurobiol 38:1413–1423

    Article  CAS  PubMed  Google Scholar 

  85. Farr S, Roesler E, Neihoff ML et al (2019) Metformin improves learning and memory in the SAMP8 mouse model of Alzheimer’s disease. Journal of Alzheimer’s disease 68:1699–1710

    Article  CAS  PubMed  Google Scholar 

  86. Docrat TF, Nagiah S, Naicker N, Baijnath S, Singh S, Chuturgoon AA (2020) The protective effect of metformin on mitochondrial dysfunction and endoplasmic reticulum stress in diabetic mice brain. Eur J Pharmacol 875:173059

  87. Izzo A, Nitti M, Mollo N, Paladino S, Procaccini C, Faicchia D et al (2017) Metformin restores the mitochondrial network and reverses mitochondrial dysfunction in Down syndrome cells. Hum Mol Genet 26:1056–1069

    CAS  PubMed  Google Scholar 

  88. Lawlor B, Segurado R, Kennelly S, et al (2018) Nilvadipine in mild to moderate Alzheimer disease: A randomised controlled trial. PLoS Med 15:e1002660

  89. Singh SK, Srivastav S, Castellani RJ et al (2019) Neuroprotective and antioxidant effect of ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics 16:666–674

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chen L, Zhang C, Han Y, Meng X, Zhang Y, Chu H, et al (2019) Gingko biloba Extract (EGb) inhibits oxidative stress in neuro 2A cells overexpressing APPsw. Biomed Res Int 2019

  91. Chen W-P, Cheng Z-J, Zhang G, Luo Q-H, Li M, Tu J-L, et al (2020) EGb761 ameliorates cell necroptosis by attenuating RIP1-mediated mitochon-drial dysfunction and ROS production in both in vivo and in vitro models of Alzheimer’s disease. Brain Res 1736:146730

  92. Khalatbary AR, Khademi E (2020) The green tea polyphenolic catechin epigallocatechin gallate and neuroprotection. Nutr Neurosci 23:281–294

    Article  CAS  PubMed  Google Scholar 

  93. Qin S, Chen MH, Fang W, Tan XF, Xie L, Yang YG et al (2019) Cerebral protection of epigallocatechin gallate (EGCG) via preservation of mitochondrial function and ERK inhibition in a rat resuscitation model. Drug Des Devel Ther 13:2759–2768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mi Y, Qi G, Gao Y, Li R, Wang Y, Li X et al (2017) (-)-Epigallocatechin-3-gallate ameliorates insulin resistance and mitochondrial dysfunction in HepG2 cells: involvement of Bmal1. Mol Nutr Food Res 61:1700440

    Article  CAS  Google Scholar 

  95. Grimm MOW, Mett J, Stahlmann CP et al (2016) Eicosapentaenoic acid and docosahexaenoic acid increase the degradation of amyloid-β by affecting insulin-degrading enzyme1. Biochem Cell Biol 94:534–542

    Article  CAS  PubMed  Google Scholar 

  96. Quitterer U, Research SA-P, 2020 U (2020) Improvements of symptoms of Alzheimers disease by inhibition of the angiotensin system. Pharmacol Res 154:104230

  97. Márquez-Ramírez CA, Hernández de la Paz JL, Ortiz-Avila O, Raya-Farias A, González-Hernández JC, Rodríguez-Orozco AR et al (2018) Comparative effects of avocado oil and losartan on blood pressure, renal vascular function, and mitochondrial oxidative stress in hypertensive rats. Nutrition 54:60–67

    Article  PubMed  CAS  Google Scholar 

  98. Alawdi S, Eidi H, … MS-N, 2019 U (2019) Loading amlodipine on diamond nanoparticles: a novel drug delivery system. Nanotechnol Sci Appl 12:47–53

  99. Nili-Ahmadabadi A, Ali-Heidar F, Ranjbar A, Mousavi L, Ahmadimoghaddam D, Larki-Harchegani A et al (2018) Protective effect of amlodipine on diazinon-induced changes on oxidative/antioxidant balance in rat hippocampus. Res Pharm Sci 13:368–376

    Article  PubMed  PubMed Central  Google Scholar 

  100. Khatoon R, Sciences SP-J of the N, 2019 U (2019) Pramipexole improves mitochondrial function in aβ42 induced transgenic ad model of drosophila melanogaster. J Neurol Sci 405

  101. Andrabi SS, Ali M, Tabassum H, Parveen S, Parvez S (2019) Pramipexole prevents ischemic cell death via mitochondrial pathways in ischemic stroke. DMM Dis Model Mech 12:dmm033860

  102. Voulgaropoulou S, Amelsvoort T van, Research JP-B, 2019 U (2019) The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies. Brain Res 1725:146476

  103. Farkhondeh T, Samarghandian S, Pourbagher-Shahri AM, Sedaghat M (2019) The impact of curcumin and its modified formulations on Alzheimer’s disease. J Cell Physiol 234:16953–16965

    Article  CAS  PubMed  Google Scholar 

  104. Tsai M, Lin S, Hidayah K et al (2019) Equol pretreatment protection of SH-SY5Y cells against Aβ (25–35)-induced cytotoxicity and cell-cycle reentry via sustaining estrogen receptor alpha expression. Nutrients 11:2356

    Article  CAS  PubMed Central  Google Scholar 

  105. Lanzillotta C, Di Domenico F, Perluigi M, Butterfield DA (2019) Targeting mitochondria in Alzheimer disease: rationale and perspectives. CNS Drugs 33:957–969

    Article  PubMed  PubMed Central  Google Scholar 

  106. Eser Faki H, Tras B, Uney K (2020) Alpha lipoic acid and vitamin E improve atorvastatin-induced mitochondrial dysfunctions in rats. Mitochondrion 52:83–88

    Article  CAS  PubMed  Google Scholar 

  107. Zhao H, Zhao X, Liu L, Zhang H, Xuan M, Guo Z et al (2017) Neurochemical effects of the R form of α-lipoic acid and its neuroprotective mechanism in cellular models of Parkinson’s disease. Int J Biochem Cell Biol 87:86–94

    Article  CAS  PubMed  Google Scholar 

  108. Young M (2019) The mitochondria-targeted antioxidant MitoQ inhibits memory loss, neuropathology, and extends lifespan in aged 3xTg-AD mice. Mol Cell Neurosci 101:103409

  109. Xi Y, Feng D, Tao K, Wang R, Shi Y, Qin H et al (2018) MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α. Biochim Biophys Acta - Mol Basis Dis 1864:2859–2870

    Article  CAS  PubMed  Google Scholar 

  110. Polyak E, Ostrovsky J, Peng M, Dingley SD, Tsukikawa M, Kwon YJ et al (2018) N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease. Mol Genet Metab 123:449–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hinnoutondji Toffa D, Annick Magnerou M, Kassab A et al (2019) Can magnesium reduce central neurodegeneration in Alzheimer’s disease? Basic evidences and research needs. Neurochem Int 126:195–202

    Article  CAS  Google Scholar 

  112. Mohammadi H, Shamshirian A, Eslami S, Shamshirian D, Ebrahimzadeh MA (2020) Magnesium Sulfate Attenuates Lethality and Oxidative Damage Induced by Different Models of Hypoxia in Mice. Biomed Res Int 2020

  113. Soares R et al (2018) Tauroursodeoxycholic acid enhances mitochondrial biogenesis, neural stem cell pool, and early neurogenesis in adult rats. Mol Neurobiol 55:3725–3738

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Rishika Dhapola wrote the manuscript, Phulen Sarma wrote the manuscript, Bikash Medhi design and edited manuscript, Ajay Prakash edited manuscript, and Dibbanti HariKrishna Reddy designed, wrote, and edited manuscript.

Corresponding author

Correspondence to Dibbanti HariKrishna Reddy.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhapola, R., Sarma, P., Medhi, B. et al. Recent Advances in Molecular Pathways and Therapeutic Implications Targeting Mitochondrial Dysfunction for Alzheimer’s Disease. Mol Neurobiol 59, 535–555 (2022). https://doi.org/10.1007/s12035-021-02612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02612-6

Keywords

Navigation