Skip to main content

Advertisement

Log in

Exploring the Role of Autophagy Dysfunction in Neurodegenerative Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Autophagy is a catabolic pathway by which misfolded proteins or damaged organelles are engulfed by autophagosomes and then transported to lysosomes for degradation. Recently, a great improvement has been done to explain the molecular mechanisms and roles of autophagy in several important cellular metabolic processes. Besides being a vital clearance pathway or a cell survival pathway in response to different stresses, autophagy dysfunction, either upregulated or down-regulated, has been suggested to be linked with numerous neurodegenerative disorders like Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and Amyotrophic lateral sclerosis. Impairment at different stages of autophagy results in the formation of large protein aggregates and damaged organelles, which leads to the onset and progression of different neurodegenerative disorders. This article elucidates the recent progress about the role of autophagy in neurodegenerative disorders and explains how autophagy dysfunction is linked with the pathogenesis of such disorders as well as the novel potential autophagy-associated therapies for treating them.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Corti O, Blomgren K, Poletti A, Beart PM (2020) Autophagy in neurodegeneration: new insights underpinning therapy for neurological diseases. J Neurochem 154:354–371

    Article  CAS  PubMed  Google Scholar 

  2. Rodolfo C, Di Bartolomeo S, Cecconi F (2016) Autophagy in stem and progenitor cells. Cell Mol Life Sci 73:475–496. https://doi.org/10.1007/s00018-015-2071-3

    Article  CAS  PubMed  Google Scholar 

  3. Klionsky DJ, Codogno P, Cuervo AM, Deretic V, Elazar Z, Fueyo-Margareto J, Gewirtz DA, Kroemer G, Levine B, Mizushima N et al (2010) A comprehensive glossary of autophagy-related molecules and processes. Autophagy 6:438–448

    Article  PubMed  Google Scholar 

  4. Lin Y, Huang Y, Chen L, Chu P (2015) Autophagy in cancer stem/progenitor cells. Cancer Chemother Pharmacol 75:879–886. https://doi.org/10.1007/s00280-014-2634-2

    Article  PubMed  Google Scholar 

  5. Guan J, Simon A, Prescott M, Menendez J, Liu F, Wang F, Wang C, Wolvetang E, Vazquez-Martin A, Zhang J (2013) Autophagy in stem cells. Autophagy 9:830–849. https://doi.org/10.4161/auto.24132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lei Y, Zhang D, Yu J, Dong H, Zhang J, Yang S (2017) Targeting autophagy in cancer stem cells as an anticancer therapy. Cancer Lett 393:33–39. https://doi.org/10.1016/j.canlet.2017.02.012

    Article  CAS  PubMed  Google Scholar 

  7. Guo JY, White E (2017) Autophagy, metabolism, and cancer. Cold Spring Harb Symp Quant Biol 81:73–78. https://doi.org/10.1101/sqb.2016.81.030981

    Article  PubMed Central  Google Scholar 

  8. Hua F, Shang S, Hu ZW (2017) Seeking new anti-cancer agents from autophagy-regulating natural products. J Asian Nat Prod Res 19:305–313. https://doi.org/10.1080/10286020.2017.1304385

    Article  CAS  PubMed  Google Scholar 

  9. Jacob JA, Salmani JM, Jiang Z, Feng L, Song J, Jia X, Chen B (2017) Autophagy: an overview and its roles in cancer and obesity. Clin Chim Acta 468:85–89. https://doi.org/10.1016/j.cca.2017.01.028

    Article  CAS  PubMed  Google Scholar 

  10. Chen K, Yuan R, Geng S, Zhang Y, Ran T, Kowalski E, Liu J, Li L (2017) Toll-interacting protein deficiency promotes neurodegeneration via impeding autophagy completion in high-fat diet-fed ApoE-/- mouse model. Brain Behav Immun 59:200–210. https://doi.org/10.1016/j.bbi.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  11. Hwang CJ, Kim YE, Son DJ, Park MH, Choi DY, Park PH, Hellstrom M, Han SB, Oh KW, Park EK, Hong JT (2017) Parkin deficiency exacerbate ethanol-induced dopaminergic neurodegeneration by P38 pathway dependent inhibition of autophagy and mitochondrial function. Redox Biol 11:456–468. https://doi.org/10.1016/j.redox.2016.12.008

    Article  CAS  PubMed  Google Scholar 

  12. Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A et al (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93:1015–1034. https://doi.org/10.1016/j.neuron.2017.01.022

    Article  CAS  PubMed  Google Scholar 

  13. Plaza-Zabala A, Sierra-Torre V, Sierra A (2017) Autophagy and microglia: novel partners in neurodegeneration and aging. Int J Mol Sci 18:E598. https://doi.org/10.3390/ijms18030598

    Article  CAS  PubMed  Google Scholar 

  14. Yuan B, Shen H, Lin L, Su T, Zhong L, Yang Z (2017) Autophagy promotes microglia activation through Beclin-1-Atg5 pathway in intracerebral hemorrhage. Mol Neurobiol 54:115–124. https://doi.org/10.1007/s12035-015-9642-z

    Article  CAS  PubMed  Google Scholar 

  15. Zhong Z, Sanchez-Lopez E, Karin M (2016) Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases. Clin Exp Rheumatol 34:12–16

    PubMed  Google Scholar 

  16. Suh HW, Kim JK, Kim TS, Jo EK (2017) New insights into vitamin D and autophagy in inflammatory bowel diseases. Curr Med Chem 24:898–910. https://doi.org/10.2174/0929867323666161202151856

    Article  CAS  PubMed  Google Scholar 

  17. Miettinen TP, Bjorklund M (2016) The mevalonate pathway as a metabolic requirement for autophagy-implications for growth control, proteostasis, and disease. Mol Cell Oncol 3:e1143546. https://doi.org/10.1080/23723556.2016.1143546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jia G, Sowers JR (2015) Autophagy: a housekeeper in cardiorenal metabolic health and disease. Biochim Biophys Acta 1852:219–224. https://doi.org/10.1016/j.bbadis.2014.06.025

    Article  CAS  PubMed  Google Scholar 

  19. Wang F, Jia J, Rodrigues B (2017) Autophagy, metabolic disease, and pathogenesis of heart dysfunction. Can J Cardiol 33:850–859. https://doi.org/10.1016/j.cjca.2017.01.002

    Article  PubMed  Google Scholar 

  20. Zhang S, Lin X, Li G, Shen X, Niu D, Lu G, Fu X, Chen Y, Cui M, Bai Y (2017) Knockout of Eva1a leads to rapid development of heart failure by impairing autophagy. Cell Death Dis 8:e2586. https://doi.org/10.1038/cddis.2017.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ren SY, Xu X (2015) Role of autophagy in metabolic syndrome-associated heart disease. Biochim Biophys Acta 1852:225–231. https://doi.org/10.1016/j.bbadis.2014.04.029

    Article  CAS  PubMed  Google Scholar 

  22. Rubinsztein David C, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695. https://doi.org/10.1016/j.cell.2011.07.030

    Article  CAS  PubMed  Google Scholar 

  23. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830. https://doi.org/10.1038/ncb0910-823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741. https://doi.org/10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  25. He L, Zhang J, Zhao J, Ma N, Kim SW, Qiao S et al (2018) Autophagy: the last defense against cellular nutritional stress. Adv Nutr Bethesda Md 9:493–504

    Article  Google Scholar 

  26. Doherty J, Baehrecke EH (2018) Life, death and autophagy. Nat Cell Biol 20:1110–1117

    Article  CAS  PubMed  Google Scholar 

  27. Xilouri M, Stefanis L (2010) Autophagy in the central nervous system: implications for neurodegenerative disorders. CNS Neurol Disord Drug Targets 9:701–719. https://doi.org/10.2174/187152710793237421

    Article  CAS  PubMed  Google Scholar 

  28. Cai Z, Zeng W, Tao K, Wang ZEB, Yang Q (2015) Chaperone mediated autophagy: roles in neuroprotection. Neurosci Bull 31:452–458. https://doi.org/10.1007/s12264-015-1540-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kenney DL, Benarroch EE (2015) The autophagy-lysosomal pathway: general concepts and clinical implications. Neurology 85:634–645

    Article  PubMed  Google Scholar 

  30. Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581:2156–2161

    Article  CAS  PubMed  Google Scholar 

  31. Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    Article  CAS  PubMed  Google Scholar 

  32. Ogura K, Wicky C, Magnenat L, Tobler H, Mori I, Muller F et al (1994) Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes Dev 8:2389–2400

    Article  CAS  PubMed  Google Scholar 

  33. Wang JL, Xu CJ (2020) Astrocytes autophagy in aging and neurodegenerative disorders. Biomed Pharmacother 122:109691

    Article  CAS  PubMed  Google Scholar 

  34. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  35. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  36. Dice JF (1990) Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 15:305–309

    Article  CAS  PubMed  Google Scholar 

  37. Kaushik S, Cuervo AM (2012) Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22:407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M, Yamada M et al (2010) Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat Biotechnol 28:256–263

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow E-M et al (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18:4153–4170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295

    Article  CAS  PubMed  Google Scholar 

  42. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV et al (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118:777–788

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kabuta T, Furuta A, Aoki S, Furuta K, Wada K (2008) Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem 283:23731–23738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Orenstein SJ, Kuo S-H, Tasset I, Arias E, Koga H, Fernandez-Carasa I et al (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16:394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A et al (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20:131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharma M, Burre J, Bronk P, Zhang Y, Xu W, Sudhof TC (2012) CSPα knockout causes neurodegeneration by impairing SNAP-25 function. EMBO J 31:829–841

    Article  CAS  PubMed  Google Scholar 

  47. Uytterhoeven V, Lauwers E, Maes I, Miskiewicz K, Melo MN, Swerts J et al (2015) Hsc70–4 Deforms membranes to promote synaptic protein turnover by endosomal microautophagy. Neuron 88:735–748

    Article  CAS  PubMed  Google Scholar 

  48. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    Article  CAS  PubMed  Google Scholar 

  49. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y et al (2009) Nutrient dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mercer CA, Kaliappan A, Dennis PB (2009) A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5:649–662

    Article  CAS  PubMed  Google Scholar 

  51. Russell RC, Tian Y, Yuan H, Park HW, Chang Y-Y, Kim J et al (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15:741–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812

    Article  CAS  PubMed  Google Scholar 

  53. Romanov J, Walczak M, Ibiricu I, Schuchner S, Ogris E, Kraft C et al (2012) Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J 31:4304–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alemu EA, Lamark T, Torgersen KM, Birgisdottir AB, Larsen KB, Jain A et al (2012) ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J Biol Chem 287:39275–39290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rogov V, Dotsch V, Johansen T, Kirkin V (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53:167–178

    Article  CAS  PubMed  Google Scholar 

  56. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A (2009) A gene network regulating lysosomal biogenesis and function. Science 325:473–477

    Article  CAS  PubMed  Google Scholar 

  57. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433. https://doi.org/10.1126/science.1204592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kilpatrick K, Zeng Y, Hancock T, Segatori L (2015) Genetic and chemical activation of TFEB mediates clearance of aggregated α-synuclein. PLoS ONE 10:e0120819. https://doi.org/10.1371/journal.pone.0120819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martina JA, Diab HI, Lishu L, Jeong AL, Patange S, Raben N, Puertollano R (2014) The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal 7:ra9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, Spampanato C, Puri C, Pignata A, Martina JA, Sardiello M, Palmieri M, Polishchuk R, Puertollano R, Ballabio A (2011) Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell 21:421–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cheli Y, Ohanna M, Ballotti R, Bertolotto C (2011) Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res 23:27–40

    Article  CAS  Google Scholar 

  62. Ploper D, Taelman VF, Robert L, Perez BS, Titz B, Chen HW, Graeber TG, von Euw E, Ribas A, De Robertis EM (2015) MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc Natl Acad Sci U S A 112:E420–E429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M et al (2015) Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524:361–365. https://doi.org/10.1038/nature14587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, Ballabio A (2011) Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 20:3852–3866

    Article  CAS  PubMed  Google Scholar 

  65. Chen S, Guo D, Lei B, Bi J, Yang H (2020) Biglycan protects human neuroblastoma cells from nitric oxide-induced death by inhibiting AMPK-mTOR mediated autophagy and intracellular ROS level. Biotechnol Lett 42:657–668

    Article  CAS  PubMed  Google Scholar 

  66. Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X (2009) ULK1·ATG13·FIP200 Complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297–12305. https://doi.org/10.1074/jbc.M900573200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S-i Natsume T, Takehana K, Yamada N, Guan J-L, Oshiro N, Mizushima N (2009) Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991. https://doi.org/10.1091/mbc.E08-12-1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jung CH, Jun CB, Ro S-H, Kim Y-M, Otto NM, Cao J, Kundu M, Kim D-H (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003. https://doi.org/10.1091/mbc.E08-12-1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293. https://doi.org/10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Loffler AS, Alers S, Dieterle AM, Keppeler H, Franz-Wachtel M, Kundu M, Campbell DG, Wesselborg S, Alessi DR, Stork B (2011) Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 7:696–706. https://doi.org/10.4161/auto.7.7.15451

    Article  CAS  PubMed  Google Scholar 

  71. Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141. https://doi.org/10.1038/ncb2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889. https://doi.org/10.1038/nature04724

    Article  CAS  PubMed  Google Scholar 

  73. Dooley Hannah C, Razi M, Polson Hannah E, Girardin Stephen E, Wilson Michael I, Tooze Sharon A (2014) WIPI2 Links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12–5-16L1. Mol Cell 55:238–252. https://doi.org/10.1016/j.molcel.2014.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Furuya N, Yu J, Byfield M, Pattingre S, Levine B (2005) The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1:46–52. https://doi.org/10.4161/auto.1.1.1542

    Article  CAS  PubMed  Google Scholar 

  75. Russell RC, Tian Y, Yuan H, Park HW, Chang Y-Y, Kim J, Kim H, Neufeld TP, Dillin A, Guan K-L (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating Vps34 lipid kinase. Nat Cell Biol 15:741–750. https://doi.org/10.1038/ncb2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dolzhenko E, van Vugt J, Shaw RJ, Bekritsky MA, van Blitterswijk M, Narzisi G, Ajay SS, Rajan V et al (2017) Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res 27:1895–1903. https://doi.org/10.1101/gr.225672.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang S, Xia P, Rehm M, Fan Z (2015) Autophagy and cell reprogramming. Cell Mol Life Sci 72:1699–1713. https://doi.org/10.1007/s00018-014-1829-3

    Article  CAS  PubMed  Google Scholar 

  78. Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM, Rubinsztein DC (2016) Mammalian autophagy: how does it work? Annu Rev Biochem 85:685–713. https://doi.org/10.1146/annurev-biochem-060815-014556

    Article  CAS  PubMed  Google Scholar 

  79. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun J-A, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145. https://doi.org/10.1074/jbc.m702824200

    Article  CAS  PubMed  Google Scholar 

  80. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603. https://doi.org/10.1083/jcb.200507002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dotsch V, Bumann D, Dikic I (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228–233. https://doi.org/10.1126/science.1205405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Thurston TLM, Ryzhakov G, Bloor S, von Muhlinen N, Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10:1215-U1103. https://doi.org/10.1038/ni.1800

    Article  PubMed  Google Scholar 

  83. Kirkin V, Lamark T, Sou Y-S, Bjorkoy G, Nunn JL, Bruun J-A, Shvets E et al (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33:505–516. https://doi.org/10.1016/j.molcel.2009.01.020

    Article  PubMed  Google Scholar 

  84. Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, Bartlett BJ et al (2010) The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell 38:265–279. https://doi.org/10.1016/j.molcel.2010.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mandell Michael A, Jain A, Arko-Mensah J, Chauhan S, Kimura T, Dinkins C, Silvestri G, Munch J, Kirchhoff F et al (2014) TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev Cell 30:394–409. https://doi.org/10.1016/j.devcel.2014.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jager S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen E-L (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117:4837. https://doi.org/10.1242/jcs.01370

    Article  CAS  PubMed  Google Scholar 

  87. Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406:902–906. https://doi.org/10.1038/35022595

    Article  CAS  PubMed  Google Scholar 

  88. Epple UD, Suriapranata I, Eskelinen E-L, Thumm M (2001) Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole. J Bacteriol 183:5942–5955. https://doi.org/10.1128/JB.183.20.5942-5955.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1:84–91. https://doi.org/10.4161/auto.1.2.1697

    Article  CAS  PubMed  Google Scholar 

  90. Nah J, Yuan J, Jung YK (2015) Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells 38:381–389. https://doi.org/10.14348/molcells.2015.0034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117. https://doi.org/10.1093/hmg/11.9.1107

    Article  CAS  PubMed  Google Scholar 

  92. Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16:345. https://doi.org/10.1038/nrn3961

    Article  CAS  PubMed  Google Scholar 

  93. Puyal J, Ginet V, Grishchuk Y, Truttmann AC, Clarke PG (2012) Neuronal autophagy as a mediator of life and death: contrasting roles in chronic neurodegenerative and acute neural disorders. Neuroscientist 18:224–236. https://doi.org/10.1177/1073858411404948

    Article  CAS  PubMed  Google Scholar 

  94. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42. https://doi.org/10.1016/j.cell.2007.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459. https://doi.org/10.1016/j.bbamcr.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  96. Son JH, Shim JH, Kim KH, Ha JY, Han JY (2012) Neuronal autophagy and neurodegenerative diseases. Exp Mol Med 44:89–98. https://doi.org/10.3858/emm.2012.44.2.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Martinet W, Agostinis P, Vanhoecke B, Dewaele M, De Meyer GR (2009) Autophagy in disease: a double-edged sword with therapeutic potential. Clin Sci 116:697–712. https://doi.org/10.1042/CS20080508

    Article  CAS  Google Scholar 

  98. Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC (2010) Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem 285:11061–11067. https://doi.org/10.1074/jbc.R109.072181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075. https://doi.org/10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. He C, Levine B (2010) The beclin 1 interactome. Curr Opin Cell Biol 22:140–149. https://doi.org/10.1016/j.ceb.2010.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Markossian KA, Kurganov BI (2004) Protein folding, misfolding, and aggregation. Formation of inclusion bodies and aggresomes. Biochemistry 69:971–984. https://doi.org/10.1023/b%3Abiry.0000043539.07961.4c

    Article  CAS  PubMed  Google Scholar 

  102. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:S10–S17. https://doi.org/10.1038/nm1066

    Article  CAS  PubMed  Google Scholar 

  103. Alzheimer’s A, (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509. https://doi.org/10.1016/j.jalz.2016.03.001

    Article  Google Scholar 

  104. Liu X, Hou D, Lin F, Luo J, Xie J, Wang Y et al (2019) The role of neurovascular unit damage in the occurrence and development of Alzheimer’s disease. Rev Neurosci 30:477–484

    Article  CAS  PubMed  Google Scholar 

  105. Yoon S-Y, Kim D-H (2016) Alzheimer’s disease genes and autophagy. Brain Res 1649:201–209. https://doi.org/10.1016/j.brainres.2016.03.018

    Article  CAS  PubMed  Google Scholar 

  106. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH et al (2005) Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171:87–98. https://doi.org/10.1083/jcb.200505082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hung SY, Huang WP, Liou HC, Fu WM (2009) Autophagy protects neuron from Abeta-induced cytotoxicity. Autophagy 5:502–510. https://doi.org/10.4161/auto.5.4.8096

    Article  CAS  PubMed  Google Scholar 

  108. Wang H, Ma J, Tan Y, Wang Z, Sheng C, Chen S, Ding J (2010) Amyloid-beta1-42 induces reactive oxygen species-mediated autophagic cell death in U87 and SH-SY5Y cells. JAD 21:597–610. https://doi.org/10.3233/jad-2010-091207

    Article  CAS  PubMed  Google Scholar 

  109. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–122. https://doi.org/10.1093/jnen/64.2.113

    Article  PubMed  Google Scholar 

  110. Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N, Saito T, Saido Takaomi C (2013) Aβ secretion and plaque formation depend on autophagy. Cell Rep 5:61–69. https://doi.org/10.1016/j.celrep.2013.08.042

    Article  CAS  PubMed  Google Scholar 

  111. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28:6926–6937. https://doi.org/10.1523/JNEUROSCI.0800-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS ONE 5:e9979. https://doi.org/10.1371/journal.pone.0009979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tian Y, Bustos V, Flajolet M, Greengard P (2011) A small-molecule enhancer of autophagy decreases levels of Aβ and APP-CTF via Atg5-dependent autophagy pathway. FASEB J 25:1934–1942. https://doi.org/10.1096/fj.10-175158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vingtdeux V, Chandakkar P, Zhao H, d’Abramo C, Davies P, Marambaud P (2011) Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-β peptide degradation. FASEB J 5:219–231. https://doi.org/10.1096/fj.10-167361

    Article  CAS  Google Scholar 

  115. Lee VMY, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159. https://doi.org/10.1146/annurev.neuro.24.1.1121

    Article  CAS  PubMed  Google Scholar 

  116. Majid T, Ali YO, Venkitaramani DV, Jang M-K, Lu H-C, Pautler RG (2014) In vivo axonal transport deficits in a mouse model of fronto-temporal dementia. Neuroimage Clin 4:711–717. https://doi.org/10.1016/j.nicl.2014.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  117. Butzlaff M, Hannan SB, Karsten P, Lenz S, Ng J, Voßfeldt H, Prußing K, Pflanz R, Schulz JB, Rasse T, Voigt A (2015) Impaired retrograde transport by the Dynein/Dynactin complex contributes to Tau-induced toxicity. Hum Mol Genet 24:3623–3637. https://doi.org/10.1093/hmg/ddv107

    Article  CAS  PubMed  Google Scholar 

  118. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and Tau. J Biol Chem 285:13107–13120. https://doi.org/10.1074/jbc.m110.100420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O’Kane CJ, Rubinsztein DC (2006) Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 15:433–442. https://doi.org/10.1093/hmg/ddi458

    Article  CAS  PubMed  Google Scholar 

  120. Majumder S, Richardson A, Strong R, Oddo S (2011) Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS ONE 6:e25416. https://doi.org/10.1371/journal.pone.0025416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rodríguez-Navarro JA, Rodríguez L, Casarejos MJ, Solano RM, Gómez A, Perucho J, Cuervo AM, García de Yébenes J, Mena MA (2010) Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis 39:423–438. https://doi.org/10.1016/j.nbd.2010.05.014

    Article  CAS  PubMed  Google Scholar 

  122. Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M (2012) Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 135:2169–2177. https://doi.org/10.1093/brain/aws143

    Article  PubMed  PubMed Central  Google Scholar 

  123. Perez SE, He B, Nadeem M, Wuu J, Ginsberg SD, Ikonomovic MD, Mufson EJ (2015) Hippocampal endosomal, lysosomal and autophagic dysregulation in mild cognitive impairment: correlation with Aβ and Tau pathology. J Neuropathol Exp Neurol 74:345–358. https://doi.org/10.1097/NEN.0000000000000179

    Article  CAS  PubMed  Google Scholar 

  124. Collin L, Bohrmann B, Göpfert U, Oroszlan-Szovik K, Ozmen L, Grüninger F (2014) Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer‘s disease. Brain 137:2834–2846. https://doi.org/10.1093/brain/awu213

    Article  PubMed  Google Scholar 

  125. Lee J-H, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Uchiyama Y, Westaway D, Sisodia SS, Cuervo AM, Nixon RA (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141:1146–1158. https://doi.org/10.1016/j.cell.2010.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bustos V, Pulina MV, Bispo A, Lam A, Flajolet M, Gorelick FS, Greengard P (2017) Phosphorylated Presenilin 1 decreases β-amyloid by facilitating autophagosome–lysosome fusion. Proc Natl Acad Sci USA 114:7148–7153. https://doi.org/10.1073/pnas.1705240114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yang D-S, Stavrides P, Saito M, Kumar A, Rodriguez-Navarro JA, Pawlik M, Huo C, Walkley SU, Saito M, Cuervo AM, Nixon RA (2014) Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits. Brain 137:3300–3318. https://doi.org/10.1093/brain/awu278

    Article  PubMed  PubMed Central  Google Scholar 

  128. Tammineni P, Ye X, Feng T, Aikal D, Cai Q (2017) Impaired retrograde transport of axonal autophagosomes contributes to autophagic stress in Alzheimer’s disease neurons. Elife 6:e21776. https://doi.org/10.7554/eLife.21776

    Article  PubMed  PubMed Central  Google Scholar 

  129. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J Clin Invest 118:2190–2199. https://doi.org/10.1172/JCI33585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Small Scott A, Kent K, Pierce A, Leung C, Kang Min S, Okada H, Honig L, Vonsattel JP, Kim TW (2005) Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol 58:909–919. https://doi.org/10.1002/ana.20667

    Article  CAS  PubMed  Google Scholar 

  131. Rohn TT, Wirawan E, Brown RJ, Harris JR, Masliah E, Vandenabeele P (2011) Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol Dis 43:68–78. https://doi.org/10.1016/j.nbd.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  132. Pajares M, Jiménez-Moreno N, García-Yagüe ÁJ, Escoll M, de Ceballos ML, Van Leuven F, Rábano A, Yamamoto M, Rojo AI, Cuadrado A (2016) Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy 12:1902–1916. https://doi.org/10.1080/15548627.2016.1208889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GVW (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5:3496–3496. https://doi.org/10.1038/ncomms4496

    Article  CAS  PubMed  Google Scholar 

  134. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere M, Singh Pahwa J, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease, and shows evidence for additional susceptibility genes. Nat Genet 41:1088–1093. https://doi.org/10.1038/ng.440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jun G, Naj AC, Beecham GW, Wang L-S, Buros J, Gallins PJ, Buxbaum JD, Ertekin-Taner N, Fallin MD, Friedland R et al (2010) Meta-analysis confirms CR1, CLU, and PICALM as Alzheimer’s disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 67:1473–1484. https://doi.org/10.1001/archneurol.2010.201

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ando K, Brion J-P, Stygelbout V, Suain V, Authelet M, Dedecker R, Chanut A et al (2013) Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer’s brains. Acta Neuropathol 125:861–878. https://doi.org/10.1007/s00401-013-1111-z

    Article  CAS  PubMed  Google Scholar 

  137. Ando K, Tomimura K, Sazdovitch V, Suain V, Yilmaz Z, Authelet M, Ndjim M, Vergara C, Belkouch M, Potier M-C, Duyckaerts C, Brion J-P (2016) Level of PICALM, a key component of clathrin-mediated endocytosis, is correlated with levels of phosphotau and autophagy-related proteins and is associated with tau inclusions in AD, PSP and Pick disease. Neurobiol Dis 94:32–43. https://doi.org/10.1016/j.nbd.2016.05.017

    Article  CAS  PubMed  Google Scholar 

  138. Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL, Jimenez-Sanchez M, Bento CF, Puri C, Zavodszky E, Siddiqi F, Lavau CP et al (2014) PICALM modulates autophagy activity and tau accumulation. Nat Commun 5:4998. https://doi.org/10.1038/ncomms5998

    Article  CAS  PubMed  Google Scholar 

  139. Tian Y, Chang JC, Fan EY, Flajolet M, Greengard P (2013) Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer’s APP-CTF for terminal degradation via autophagy. Proc Natl Acad Sci USA 110:17071–17076. https://doi.org/10.1073/pnas.1315110110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen P, Wang Y, Chen L, Song N, Xie J (2020) Apelin-13 protects dopaminergic neurons against rotenone—induced neurotoxicity through the AMPK/mTOR/ULK-1 mediated autophagy activation. Int J Mol Sci 21:8376

    Article  CAS  PubMed Central  Google Scholar 

  141. Rocha EM, De Miranda B, Sanders LH (2018) Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis 109:249–257

    Article  CAS  PubMed  Google Scholar 

  142. Hewitt VL, Whitworth AJ (2017) Mechanisms of Parkinson’s disease: lessons from Drosophila. Curr Top Dev Biol 121:173–200

    Article  CAS  PubMed  Google Scholar 

  143. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909. https://doi.org/10.1016/s0896-6273(03)00568-3

    Article  CAS  PubMed  Google Scholar 

  144. Moloudizargari M, Asghari MH, Ghobadi E, Fallah M, Rasouli S, Abdollahi M (2017) Autophagy, its mechanisms and regulation: Implications in neurodegenerative diseases. Ageing Res Rev 40:64–74. https://doi.org/10.1016/j.arr.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  145. Dehay B, Bové J, Rodríguez-Muela N, Perier C, Recasens A, Boya P, Vila M (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 30:12535. https://doi.org/10.1523/jneurosci.1920-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bellomo G, Paciotti S, Gatticchi L, Parnetti L (2020) The vicious cycle between α- synuclein aggregation and autophagic-lysosomal dysfunction. Mov Disord Off J Mov Disord Soc 35:34–44

    Article  CAS  Google Scholar 

  147. Lin KJ, Lin KL, Chen SD, Liou CW, Chuang YC, Lin HY, Lin TK (2019) The overcrowded crossroads: mitochondria, alpha-synuclein, and the endo-lysosomal system interaction in Parkinson’s disease. Int J Mol Sci 20:5312

    Article  CAS  PubMed Central  Google Scholar 

  148. Kalia LV, Kalia SK, McLean PJ, Lozano AM, Lang AE (2013) α-Synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol 73:155–169. https://doi.org/10.1002/ana.23746

    Article  CAS  PubMed  Google Scholar 

  149. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013. https://doi.org/10.1074/jbc.M300227200

    Article  CAS  PubMed  Google Scholar 

  150. Mak SK, McCormack AL, Manning-Boğ AB, Cuervo AM, Di Monte DA (2010) Lysosomal degradation of α-synuclein in vivo. J Biol Chem 285:13621–13629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L (2008) Wild type α-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 283:23542–23556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xilouri M, Brekk OR, Landeck N, Pitychoutis PM, Papasilekas T, Papadopoulou-Daifoti Z et al (2013) Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration. Brain 136:2130–2146

    Article  PubMed  Google Scholar 

  153. Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA, Schapira AH (2010) Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol 67:1464–1472

    Article  PubMed  Google Scholar 

  154. Sala G, Marinig D, Arosio A, Ferrarese C (2016) Role of chaperone-mediated autophagy dysfunctions in the pathogenesis of Parkinson’s disease. Front Mol Neurosci 9:157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Tang FL, Erion JR, Tian Y, Liu W, Yin DM, Ye J et al (2015) VPS35 in dopamine neurons is required for endosome-to-Golgi retrieval of Lamp2a, a receptor of chaperone-mediated autophagy that is critical for α-synuclein degradation and prevention of pathogenesis of Parkinson’s disease. J Neurosci 35:10613–10628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Murphy KE, Gysbers AM, Abbott SK, Tayebi N, Kim WS, Sidransky E et al (2014) Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson’s disease. Brain 137:834–848

    Article  PubMed  PubMed Central  Google Scholar 

  157. Zhao L, Wang Z (2019) MicroRNAs: game changers in the regulation of α-Synuclein in Parkinson’s disease. Parkinson’s Disease 2019:1–10

  158. Luan Y, Ren X, Zheng W, Zeng Z, Guo Y, Hou Z et al (2018) Chronic caffeine treatment protects against α-synucleinopathy by reestablishing autophagy activity in the mouse striatum. Frontiers in neuroscience 12:301

    Article  PubMed  PubMed Central  Google Scholar 

  159. Parekh P, Sharma N, Gadepalli A, Shahane A, Sharma M, Khairnar A (2019) A cleaning crew: the pursuit of autophagy in Parkinson’s disease. ACS chemical neuroscience 10:3914–3926

    Article  CAS  PubMed  Google Scholar 

  160. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R et al (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29:13578–13588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yan JQ, Yuan YH, Chu SF, Li GH, Chen NH (2018) E46K mutant α-synuclein is degraded by both proteasome and macroautophagy pathway. Molecules 23:2839

    Article  PubMed Central  CAS  Google Scholar 

  162. Salvador N, Aguado C, Horst M, Knecht E (2000) Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 275:27447–27456

    Article  CAS  PubMed  Google Scholar 

  163. Tanik SA, Schultheiss CE, Volpicelli-Daley LA, Brunden KR, Lee VM (2013) Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J Biol Chem 288:15194–15210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ahmed I, Liang Y, Schools S, Dawson VL, Dawson TM, Savitt JM (2012) Development and characterization of a new Parkinson’s disease model resulting from impaired autophagy. J Neurosci 32:16503–16509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Friedman LG, Lachenmayer ML, Wang J, He L, Poulose SM, Komatsu M et al (2012) Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain. J Neurosci 32:7585–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Oueslati A, Schneider BL, Aebischer P, Lashuel HA (2013) Polo-like kinase 2 regulates selective autophagic α-synuclein clearance and suppresses its toxicity in vivo. Proc Natl Acad Sci 110:E3945–E3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tenreiro S, Reimao-Pinto MM, Antas P, Rino J, Wawrzycka D, Macedo D et al (2014) Phosphorylation modulates clearance of alpha-synuclein inclusions in a yeast model of Parkinson’s disease. PLoS Genet 10:e1004302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Shahpasandzadeh H, Popova B, Kleinknecht A, Fraser PE, Outeiro TF, Braus GH (2014) Interplay between sumoylation and phosphorylation for protection against α-synuclein inclusions. J Biol Chem 289:31224–31240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sevlever D, Jiang P, Yen S-HC (2008) Cathepsin D is the main lysosomal enzyme involved in the degradation of α- synuclein and generation of its carboxy-terminally truncated species. Biochemistry 47:9678–9687

    Article  CAS  PubMed  Google Scholar 

  170. Cullen V, Lindfors M, Ng J, Paetau A, Swinton E, Kolodziej P et al (2009) Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo. Molecular brain 2:1–17

    Article  CAS  Google Scholar 

  171. Miura E, Hasegawa T, Konno M, Suzuki M, Sugeno N, Fujikake N et al (2014) VPS35 dysfunction impairs lysosomal degradation of α-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson’s disease. Neurobiol Dis 71:1–13

    Article  CAS  PubMed  Google Scholar 

  172. Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH, Offman MN et al (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89:168–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zavodszky E, Seaman MN, Moreau K, Jimenez-Sanchez M, Breusegem SY, Harbour ME, Rubinsztein DC (2014) Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy. Nature Comm 5:1–16

    Article  CAS  Google Scholar 

  174. Winslow AR, Chen C-W, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM et al (2010) α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190:1023–1037. https://doi.org/10.1083/jcb.201003122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L (2011) Pathological roles of α-synuclein in neurological disorders. Lancet Neurol 10:1015–1025

    Article  CAS  PubMed  Google Scholar 

  176. Hou X, Watzlawik JO, Fiesel FC, Springer W (2020) Autophagy in Parkinson’s disease. J Mol Biol 432:2651–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Plowey ED, Cherra SJ III, Liu YJ, Chu CT (2008) Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 105:1048–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Li JQ, Tan L, Yu JT (2014) The role of the LRRK2 gene in Parkinsonism. Mol Neurodegener 9:1–17

    Article  CAS  Google Scholar 

  179. Xilouri M, Vogiatzi T, Vekrellis K, Park D, Stefanis L (2009) Abberant α-Synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS ONE 4:e5515. https://doi.org/10.1371/journal.pone.0005515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Björklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc Natl Acad Sci U S A 110:E1817–E1826. https://doi.org/10.1073/pnas.1305623110

    Article  PubMed  PubMed Central  Google Scholar 

  181. Karabiyik C, Lee MJ, Rubinsztein DC (2017) Autophagy impairment in Parkinson’s disease. Essays Biochem 61:711–720. https://doi.org/10.1042/EBC20170023

    Article  PubMed  Google Scholar 

  182. Duda JE, Giasson BI, Mabon ME, Lee VM, Trojanowski JQ (2002) Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases. Ann Neurol 52:205–210. https://doi.org/10.1002/ana.10279\

    Article  CAS  PubMed  Google Scholar 

  183. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803. https://doi.org/10.1083/jcb.200809125

    Article  PubMed  PubMed Central  Google Scholar 

  184. Limanaqi F, Biagioni F, Busceti CL, Ryskalin L, Polzella M, Frati A, Fornai F (2019) Phytochemicals bridging autophagy induction and Alpha-Synuclein degradation in Parkinsonism. Int J Mol Sci 20:3274

    Article  CAS  PubMed Central  Google Scholar 

  185. Li G, Luo W, Wang B, Qian C, Ye Y, Li Y, Zhang S (2021) HMGA1 Induction of miR-103/107 forms a negative feedback loop to regulate autophagy in MPTP model of Parkinson’s disease. Front Cell Neurosci 14:464

    Article  Google Scholar 

  186. Gil JM, Rego AC (2008) Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 27:2803–2820. https://doi.org/10.1111/j.1460-9568.2008.06310.x

    Article  PubMed  Google Scholar 

  187. Martin JB, Gusella JF (1986) Huntington’s disease. Pathogenesis and management. N Engl J Med 315:1267–1276. https://doi.org/10.1056/NEJM198611133152006

    Article  CAS  PubMed  Google Scholar 

  188. Imarisio S, Carmichael J, Korolchuk V, Chen C-W, Saiki S, Rose C, Krishna G, Davies Janet E, Ttofi E, Underwood Benjamin R, Rubinsztein David C (2008) Huntington’s disease: from pathology and genetics to potential therapies. Biochem J 412:191. https://doi.org/10.1042/BJ20071619

    Article  CAS  PubMed  Google Scholar 

  189. Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC (2017) Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med 7:a024240. https://doi.org/10.1101/cshperspect.a024240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Dayalu P, Albin RL (2015) Huntington disease: pathogenesis and treatment. Neurol Clin 33:101–114. https://doi.org/10.1016/j.ncl.2014.09.003

    Article  PubMed  Google Scholar 

  191. Tellez-Nagel I, Johnson AB, Terry RD (1974) Studies on brain biopsies of patients with Huntington’s chorea. J Neuropathol Exp Neurol 33:308–332. https://doi.org/10.1097/00005072-197404000-00008

    Article  CAS  PubMed  Google Scholar 

  192. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595. https://doi.org/10.1038/ng1362

    Article  CAS  PubMed  Google Scholar 

  193. Martinez-Vicente M, Talloczy Z, Wong E, Tang GM, Koga H, Kaushik S, de Vries R, Arias E, Harris S, Sulzer D, Cuervo AM (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 13:567-U574. https://doi.org/10.1038/nn.2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zheng S, Clabough EBD, Sarkar S, Futter M, Rubinsztein DC, Zeitlin SO (2010) Deletion of the Huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice. PLoS Genet 6:e1000838. https://doi.org/10.1371/journal.pgen.1000838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Atwal RS, Truant R (2008) A stress sensitive ER membrane-association domain in Huntingtin protein defines a potential role for Huntingtin in the regulation of autophagy. Autophagy 4:91–93. https://doi.org/10.4161/auto.5201

    Article  PubMed  Google Scholar 

  196. Rui Y-N, Xu Z, Patel B, Chen Z, Chen D, Tito A, David G, Sun Y, Stimming EF, Bellen HJ, Cuervo AM, Zhang S (2015) Huntingtin functions as a scaffold for selective macroautophagy. Nat Cell Biol 17:262–275. https://doi.org/10.1038/ncb3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Walter C, Clemens LE, Muller AJ, Fallier-Becker P, Proikas-Cezanne T, Riess O, Metzger S, Nguyen HP (2016) Activation of AMPK-induced autophagy ameliorates Huntington disease pathology in vitro. Neuropharmacology 108:24–38. https://doi.org/10.1016/j.neuropharm.2016.04.041

    Article  CAS  PubMed  Google Scholar 

  198. Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G, Rubinsztein DC, Almqvist EW, Turner D et al (2003) Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain 126:946–955. https://doi.org/10.1093/brain/awg077

    Article  PubMed  Google Scholar 

  199. Ashkenazi A, Bento CF, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, Squitieri F, Hardenberg MC, Imarisio S, Menzies FM, Rubinsztein DC (2017) Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545:108–111. https://doi.org/10.1038/nature22078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Sarkar S, Rubinsztein DC (2008) Huntington’s disease: degradation of mutant Huntingtin by autophagy. FEBS J 275:4263–4270. https://doi.org/10.1111/j.1742-4658.2008.06562.x

    Article  CAS  PubMed  Google Scholar 

  201. Wong YC, Holzbaur EL (2014) The regulation of autophagosome dynamics by Huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci 34:1293–1305. https://doi.org/10.1523/jneurosci.1870-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Martin DD, Ladha S, Ehrnhoefer DE, Hayden MR (2015) Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci 38:26–35. https://doi.org/10.1016/j.tins.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  203. Lee H, Noh JY, Oh Y, Kim Y, Chang JW, Chung CW, Lee ST, Kim M, Ryu H, Jung YK (2012) IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Hum Mol Genet 21:101–114. https://doi.org/10.1093/hmg/ddr445

    Article  CAS  PubMed  Google Scholar 

  204. Ashkenazi A, Bento CF, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, Squitieri F, Hardenberg MC, Imarisio S, Menzies FM, Rubinsztein DC (2017) Polyglutamine tracts regulate autophagy. Autophagy 13:1613–1614. https://doi.org/10.1080/15548627.2017.1336278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N (2011) Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell 44:279–289. https://doi.org/10.1016/j.molcel.2011.07.039

    Article  CAS  PubMed  Google Scholar 

  206. Al-Ramahi I, Giridharan S, Chen YC, Patnaik S, Safren N, Hasegawa J, de Haro M et al (2017) Inhibition of PIP4Kgamma ameliorates the pathological effects of mutant huntingtin protein. Elife 6:e29123. https://doi.org/10.7554/eLife.29123

    Article  PubMed  PubMed Central  Google Scholar 

  207. Croce KR, Yamamoto A (2018) A role for autophagy in Huntington’s disease. Neurobiol Dis 122:16–22. https://doi.org/10.1016/j.nbd.2018.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant Huntingtin and α-Synuclein. J Biol Chem 282:5641–5652. https://doi.org/10.1074/jbc.M609532200

    Article  CAS  PubMed  Google Scholar 

  209. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111. https://doi.org/10.1083/jcb.200504035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Jeong H, Then F, Melia TJ, Mazzulli JR, Cui L, Savas JN, Voisine C, Paganetti P, Tanese N, Hart AC, Yamamoto A, Krainc D (2009) Acetylation targets mutant Huntingtin to autophagosomes for degradation. Cell 137:60–72. https://doi.org/10.1016/j.cell.2009.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Qi L, Zhang XD, Wu JC, Lin F, Wang J, DiFiglia M, Qin ZH (2012) The role of chaperone-mediated autophagy in huntingtin degradation. PLoS One 7:e46834. https://doi.org/10.1371/journal.pone.0046834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hardiman O, van den Berg LH, Kiernan MC (2011) Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 7:639–649. https://doi.org/10.1038/nrneurol.2011.153

    Article  CAS  PubMed  Google Scholar 

  213. Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7:603. https://doi.org/10.1038/nrneurol.2011.150

    Article  CAS  PubMed  Google Scholar 

  214. Blokhuis AM, Groen EJN, Koppers M, van den Berg LH, Pasterkamp RJ (2013) Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 125:777–794. https://doi.org/10.1007/s00401-013-1125-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Boillee S, Vande Velde C, Cleveland DW (2006) ALS: A disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59. https://doi.org/10.1016/j.neuron.2006.09.018

    Article  CAS  PubMed  Google Scholar 

  216. Sasaki S (2011) Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 70:349–359. https://doi.org/10.1097/NEN.0b013e3182160690

    Article  PubMed  Google Scholar 

  217. Li L, Zhang X, Le W (2008) Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy 4:290–293. https://doi.org/10.4161/auto.5524

    Article  CAS  PubMed  Google Scholar 

  218. Morimoto N, Nagai M, Ohta Y, Miyazaki K, Kurata T, Morimoto M, Murakami T, Takehisa Y, Ikeda Y, Kamiya T, Abe K (2007) Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res 1167:112–117. https://doi.org/10.1016/j.brainres.2007.06.045

    Article  CAS  PubMed  Google Scholar 

  219. Sheng YW, Chattopadhyay M, Whitelegge J, Valentine JS (2012) SOD1 Aggregation and ALS: role of metallation states and disulfide status. Curr Top Med Chem 12:2560–2572. https://doi.org/10.2174/15680266112129990079

    Article  CAS  PubMed  Google Scholar 

  220. An T, Shi P, Duan W, Zhang S, Yuan P, Li Z, Wu D, Xu Z, Li C, Guo Y (2014) Oxidative stress and autophagic alteration in brainstem of SOD1-G93A mouse model of ALS. Mol Neurobiol 49:1435–1448. https://doi.org/10.1007/s12035-013-8623-3

    Article  CAS  PubMed  Google Scholar 

  221. Rudnick ND, Griffey CJ, Guarnieri P, Gerbino V, Wang X, Piersaint JA, Tapia JC, Rich MM, Maniatis T (2017) Distinct roles for motor neuron autophagy early and late in the SOD1G93A mouse model of ALS. Proc Natl Acad Sci U S A 114:E8294–E8303. https://doi.org/10.1073/pnas.1704294114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Hetz C, Thielen P, Matus S, Nassif M, Court F, Kiffin R, Martinez G, Cuervo AM, Brown RH, Glimcher LH (2009) XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev 23:2294–2306. https://doi.org/10.1101/gad.1830709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Crippa V, Sau D, Rusmini P, Boncoraglio A, Onesto E, Bolzoni E, Galbiati M, Fontana E, Marino M, Carra S, Bendotti C, De Biasi S, Poletti A (2010) The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 19:3440–3456. https://doi.org/10.1093/hmg/ddq257

    Article  CAS  PubMed  Google Scholar 

  224. Gal J, Ström A-L, Kwinter DM, Kilty R, Zhang J, Shi P, Fu W, Wooten MW, Zhu H (2009) Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J Neurochem 111:1062–1073. https://doi.org/10.1111/j.1471-4159.2009.06388.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Goode A, Butler K, Long J, Cavey J, Scott D, Shaw B, Sollenberger J, Gell C, Johansen T, Oldham NJ, Searle MS, Layfield R (2016) Defective recognition of LC3B by mutant SQSTM1/p62 implicates impairment of autophagy as a pathogenic mechanism in ALS-FTLD. Autophagy 12:1094–1104. https://doi.org/10.1080/15548627.2016.1170257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Brady OA, Meng P, Zheng Y, Mao Y, Hu F (2011) Regulation of TDP-43 aggregation by phosphorylation andp62/SQSTM1. J Neurochem 116:248–259. https://doi.org/10.1111/j.1471-4159.2010.07098.x

    Article  CAS  PubMed  Google Scholar 

  227. Li F, Xie X, Wang Y, Liu J, Cheng X, Guo Y, Gong Y, Hu S, Pan L (2016) Structural insights into the interaction and disease mechanism of neurodegenerative disease-associated optineurin and TBK1 proteins. Nat Commun 7:12708. https://doi.org/10.1038/ncomms12708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N et al (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37:223–234. https://doi.org/10.1016/j.immuni.2012.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Moore AS, Erika LFH (2016) Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc Natl Acad Sci U S A 113:E3349. https://doi.org/10.1073/pnas.1523810113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Sundaramoorthy V, Walker AK, Tan V, Fifita JA, Mccann EP, Williams KL, Blair IP, Guillemin GJ, Farg MA, Atkin JD (2015) Defects in optineurin- and myosin VI-mediated cellular trafficking in amyotrophic lateral sclerosis. Hum Mol Genet 24:3830–3846. https://doi.org/10.1093/hmg/ddv126

    Article  CAS  PubMed  Google Scholar 

  231. Tumbarello DA, Waxse BJ, Arden SD, Bright NA, Kendrick-Jones J, Buss F (2012) Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol 14:1024–1035. https://doi.org/10.1038/ncb2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Wong YC, Erika LFH (2014) Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci U S A 111:E4439. https://doi.org/10.1073/pnas.1405752111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Wong YC, Holzbaur ELF (2015) Temporal dynamics of PARK2/parkin and OPTN/optineurin recruitment during the mitophagy of damaged mitochondria. Autophagy 11:422–424. https://doi.org/10.1080/15548627.2015.1009792

    Article  PubMed  PubMed Central  Google Scholar 

  234. Jantrapirom S, Lo PL, Yoshida H, Yamaguchi M (2018) Depletion of ubiquilin induces an augmentation in soluble ubiquitinated Drosophila TDP-43 to drive neurotoxicity in the fly. Biochim Biophys Acta Mol Basis Dis 1864:3038–3049. https://doi.org/10.1016/j.bbadis.2018.06.017

    Article  CAS  PubMed  Google Scholar 

  235. Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215. https://doi.org/10.1038/nature10353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Le NT, Chang L, Kovlyagina I, Georgiou P, Safren N, Braunstein KE, Kvarta MD, Van Dyke AM, LeGates TA et al (2016) Motor neuron disease, TDP-43 pathology, and memory deficits in mice expressing ALS-FTD-linked UBQLN2 mutations. Proc Natl Acad Sci U S A 113:E7580–E7589. https://doi.org/10.1073/pnas.1608432113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Chang L, Monteiro MJ (2015) Defective proteasome delivery of polyubiquitinated proteins by ubiquilin-2 proteins containing ALS mutations. PLoS One 10:e0130162. https://doi.org/10.1371/journal.pone.0130162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Osaka M, Ito D, Suzuki N (2016) Disturbance of proteasomal and autophagic protein degradation pathways by amyotrophic lateral sclerosis-linked mutations in ubiquilin 2. Biochem Biophys Res Commun 472:324–331. https://doi.org/10.1016/j.bbrc.2016.02.107

    Article  CAS  PubMed  Google Scholar 

  239. Todd TW, Petrucelli L (2016) Insights into the pathogenic mechanisms of chromosome 9 open reading frame 72 (C9orf72) repeat expansions. J Neurochem 138:145–162. https://doi.org/10.1111/jnc.13623

    Article  CAS  PubMed  Google Scholar 

  240. Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L, Myszczynska MA, Higginbottom A et al (2016) The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J 35:1656–1676. https://doi.org/10.15252/embj.201694401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Sellier C, Campanari ML, Julie Corbier C, Gaucherot A, Kolb Cheynel I, Oulad Abdelghani M, Ruffenach F, Page A et al (2016) Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J 35:1276–1297. https://doi.org/10.15252/embj.201593350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Ji YJ, Ugolino J, Brady NR, Hamacher-Brady A, Wang J (2017) Systemic deregulation of autophagy upon loss of ALS- and FTD-linked C9orf72. Autophagy 13:1254–1255. https://doi.org/10.1080/15548627.2017.1299312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Chang MC, Srinivasan K, Friedman BA, Suto E, Modrusan Z, Lee WP, Kaminker JS, Hansen DV, Sheng M (2017) Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. J Exp Med 214:2611–2628. https://doi.org/10.1084/jem.20160999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Ser A, Vollrath JT, Sechi A, Johann S, Roos A, Yamoah A, Katona I, Bohlega S, Wiemuth D, Tian Y et al (2017) The ALS-linked E102Q mutation in Sigma receptor-1 leads to ER stress-mediated defects in protein homeostasis and dysregulation of RNA-binding proteins. Cell Death Differ 24:1655–1671. https://doi.org/10.1038/cdd.2017.88

    Article  CAS  Google Scholar 

  245. Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, Gibbs JR et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857–864. https://doi.org/10.1016/j.neuron.2010.11.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Watts GDJ, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP, Kimonis VE (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381. https://doi.org/10.1038/ng1332

    Article  CAS  PubMed  Google Scholar 

  247. Johnson AE, Shu H, Hauswirth AG, Tong A, Davis GW (2015) VCP-dependent muscle degeneration is linked to defects in a dynamic tubular lysosomal network in vivo. Elife 4:e07366. https://doi.org/10.7554/eLife.07366

    Article  PubMed Central  Google Scholar 

  248. Kustermann M, Manta L, Paone C, Kustermann J, Lausser L, Wiesner C, Eichinger L et al (2018) Loss of the novel Vcp (valosin containing protein) interactor Washc4 interferes with autophagy-mediated proteostasis in striated muscle and leads to myopathy in vivo. Autophagy 14:1911–1927. https://doi.org/10.1080/15548627.2018.1491491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Ritson GP, Custer SK, Freibaum BD, Guinto JB, Geffel D, Moore J et al (2010) TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J Neurosci 30:7729–7739. https://doi.org/10.1523/jneurosci.5894-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Caccamo A, Maldonado MA, Majumder S, Medina DX, Holbein W, Magrí A, Oddo S (2011) Naturally secreted amyloid-beta increases mammalian target of rapamycin (mTOR) activity via a PRAS40-mediated mechanism. J Biol Chem 286:8924–8932. https://doi.org/10.1074/jbc.M110.180638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Tanji K, Miki Y, Ozaki T, Maruyama A, Yoshida H, Mimura J, Wakabayashi K (2014) Phosphorylation of serine 349 of p62 in Alzheimer’s disease brain. Acta Neuropathol Commun 2:50. https://doi.org/10.1186/2051-5960-2-50

    Article  PubMed  PubMed Central  Google Scholar 

  252. Isakson P, Holland P, Simonsen A (2013) The role of ALFY in selective autophagy. Cell Death Differ 20:12–20. https://doi.org/10.1038/cdd.2012.66

    Article  CAS  PubMed  Google Scholar 

  253. Lim J, Lachenmayer ML, Wu S, Liu W, Kundu M, Wang R, Yue Z (2015) Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genetics 11:e1004987. https://doi.org/10.1371/journal.pgen.1004987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Xilour M, Vogiatzi T, Stefanis L (2008) Alpha-synuclein degradation by autophagic pathways: a potential key to Parkinson’s disease pathogenesis. Autophagy 4:917–919. https://doi.org/10.4161/auto.6685

    Article  Google Scholar 

  255. Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, Kubisch C (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet 38:1184–1191. https://doi.org/10.1038/ng1884

    Article  CAS  PubMed  Google Scholar 

  256. Di Fonzo A, Chien HF, Socal M, Giraudo S, Tassorelli C, Iliceto G, Bonifati V (2007) ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 68:1557–1562. https://doi.org/10.1212/01.wnl.0000260963.08711.08

    Article  CAS  PubMed  Google Scholar 

  257. Nixon RA, Yang DS (2012) Autophagy and neuronal cell death in neurological disorders. Cold Spring Harb Perspect Biol 4(10):a008839. https://doi.org/10.1101/cshperspect.a008839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Gasser T (2009) Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev Mol Med 11:e22. https://doi.org/10.1017/S1462399409001148

    Article  PubMed  Google Scholar 

  259. Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25–32

    Article  PubMed  PubMed Central  Google Scholar 

  260. Du J, Liang Y, Xu F, Sun B, Wang Z (2013) Trehalose rescues Alzheimer’s disease phenotypes in APP/PS1 transgenic mice. J Pharm Pharmacol 65:1753–1756

    Article  CAS  PubMed  Google Scholar 

  261. Son SM, Shin H-J, Byun J, Kook SY, Moon M, Chang YJ et al (2016) Metformin facilitates amyloid-β generation by β- and γ-secretases via autophagy activation. J Alzheimers Dis JAD 51:1197–1208

    Article  CAS  PubMed  Google Scholar 

  262. Castillo K, Nassif M, Valenzuela V, Rojas F, Matus S, Mercado G et al (2013) Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy 9:1308–1320

    Article  CAS  PubMed  Google Scholar 

  263. Li Y, Guo Y, Wang X, Yu X, Duan W, Hong K et al (2015) Trehalose decreases mutant SOD1 expression and alleviates motor deficiency in early but not end-stage amyotrophic lateral sclerosis in a SOD1-G93A mouse model. Neuroscience 298:12–25

    Article  CAS  PubMed  Google Scholar 

  264. Zhang X, Chen S, Song L, Tang Y, Shen Y, Jia L et al (2014) MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy 10:588–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Ma TC, Buescher JL, Oatis B, Funk JA, Nash AJ, Carrier RL et al (2007) Metformin therapy in a transgenic mouse model of Huntington’s disease. Neurosci Lett 411:98–103

    Article  CAS  PubMed  Google Scholar 

  266. Suresh SN, Chavalmane AK, Pillai M, Ammanathan V, Vidyadhara DJ, Yarreiphang H et al (2018) Modulation of autophagy by a small molecule inverse agonist of ERRα is neuroprotective. Front Mol Neurosci 11:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Rose C, Menzies FM, Renna M, Acevedo-Arozena A, Corrochano S, Sadiq O et al (2010) Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington’s disease. Hum Mol Genet 19:2144–2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH et al (2008) Novel targets for Huntington’s disease in an mTOR-independent Autophagy pathway. Nat Chem Biol 4:295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Hirano K, Fujimaki M, Sasazawa Y, Yamaguchi A, Ishikawa K-I, Miyamoto K et al (2019) Neuroprotective effects of memantine via enhancement of autophagy. Biochem Biophys Res Commun 518:161–170

    Article  CAS  PubMed  Google Scholar 

  270. Chu C, Zhang X, Ma W, Li L, Wang W, Shang L, Fu P (2013) Induction of autophagy by a novel small molecule improves abeta pathology and ameliorates cognitive deficits. PLoS One 8:e65367. https://doi.org/10.1371/journal.pone.0065367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Guo X, Lv J, Lu J, Fan L, Huang X, Hu L, Wang J, Shen X (2018) Protopanaxadiol derivative DDPU improves behavior and cognitive deficit in AD mice involving regulation of both ER stress and autophagy. Neuropharmacology 130:77–91. https://doi.org/10.1016/j.neuropharm.2017.11.033

    Article  CAS  PubMed  Google Scholar 

  272. Huang M, Jiang X, Liang Y, Liu Q, Chen S, Guo Y (2017) Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of beta-amyloid in APP/tau/PS1 mouse model of Alzheimer’s disease. Exp Gerontol 91:25–33. https://doi.org/10.1016/j.exger.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  273. Li LS, Lu YL, Nie J, Xu YY, Zhang W, Yang WJ, Gong QH, Lu YF, Lu Y, Shi JS (2017) Dendrobium nobile Lindl alkaloid, a novel autophagy inducer, protects against axonal degeneration induced by Abeta25-35 in hippocampus neurons in vitro. CNS Neurosci Ther 23:329–340. https://doi.org/10.1111/cns.12678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Jiang T-F, Zhang Y-J, Zhou H-Y, Wang H-M, Tian L-P, Liu J, Ding J-Q, Chen S-D (2013) Curcumin ameliorates the neurodegenerative pathology in A53T α-synuclein cell model of Parkinson’s disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J Neuroimmune Pharmacol 8:356–369. https://doi.org/10.1007/s11481-012-9431-7

    Article  PubMed  Google Scholar 

  275. Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 19:163–174. https://doi.org/10.1159/000328516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Lan D-M, Liu F-T, Zhao J, Chen Y, Wu J-J, Ding Z-T, Yue Z-Y, Ren H-M, Jiang Y-P, Wang J (2012) Effect of trehalose on PC12 cells overexpressing wild-type or A53T mutant α-synuclein. Neurochem Res 37:2025–2032. https://doi.org/10.1007/s11064-012-0823-0

    Article  CAS  PubMed  Google Scholar 

  277. Hebron ML, Lonskaya I, Moussa CEH (2013) Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of α-synuclein in Parkinson’s disease models. Hum Mol Genet 22:3315–3328. https://doi.org/10.1093/hmg/ddt192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Liu J, Chen M, Wang X, Wang Y, Duan C, Gao G, Lu L, Wu X, Wang X, Yang H (2016) Piperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson’s disease model. Oncotarget 7:60823–60843. https://doi.org/10.18632/oncotarget.11661

    Article  PubMed  PubMed Central  Google Scholar 

  279. Hou YS, Guan JJ, Xu HD, Wu F, Sheng R, Qin ZH (2015) Sestrin2 protects dopaminergic cells against rotenone toxicity through AMPK-dependent autophagy activation. Mol Cell Biol 35:2740–2751. https://doi.org/10.1128/MCB.00285-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Yang G, Li J, Cai Y, Yang Z, Li R, Fu W (2018) Glycyrrhizic acid alleviates 6-hydroxydopamine and corticosterone-induced neurotoxicity in SH-SY5Y cells through modulating autophagy. Neurochem Res 43:1914–1926. https://doi.org/10.1007/s11064-018-2609-5

    Article  CAS  PubMed  Google Scholar 

  281. Jang W, Ju Kim H, Li H, Jo K, Kyu Lee M, Hong Song S, Ok Yang H (2014) 1,25-Dyhydroxyvitamin D-3 attenuates rotenone-induced neurotoxicity in SH-SY5Y cells through induction of autophagy. Biochem Biophys Res Commun 451:142–147. https://doi.org/10.1016/j.bbrc.2014.07.081

    Article  CAS  PubMed  Google Scholar 

  282. Jia H, Kast RJ, Steffan JS, Thomas EA (2012) Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington’s disease mice: implications for the ubiquitin–proteasomal and autophagy systems. Hum Mol Genet 21:5280–5293. https://doi.org/10.1093/hmg/dds379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Abd-Elrahman KS, Hamilton A, Hutchinson SR, Liu F, Russell RC, Ferguson SSG (2017) mGluR5 antagonism increases autophagy and prevents disease progression in the zQ175 mouse model of Huntington’s disease. Sci Signal 10:eaan6387. https://doi.org/10.1126/scisignal.aan6387

    Article  CAS  PubMed  Google Scholar 

  284. Chang C-C, Lin T-C, Ho H-L, Kuo C-Y, Li H-H, Korolenko TA, Chen W-J, Lai T-J, Ho Y-J, Lin C-L (2018) GLP-1 analogue liraglutide attenuates mutant Huntingtin-induced neurotoxicity by restoration of neuronal insulin signaling. Int J Mol Sci 19:2505. https://doi.org/10.3390/ijms19092505

    Article  CAS  PubMed Central  Google Scholar 

  285. Wong VKW, Wu AG, Wang JR, Liu L, Law BY-K (2015) Neferine attenuates the protein level and toxicity of mutant huntingtin in PC-12 cells via induction of autophagy. Molecules 20:3496–3514. https://doi.org/10.3390/molecules20033496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Wang IF, Guo BS, Liu YC, Wu CC, Yang CH, Tsai KJ, Shen CKJ (2012) Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci U S A 109:15024–15029. https://doi.org/10.1073/pnas.1206362109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Wang Y, Chen S, Wang Z, Zhang X, Yang D, Zhang X, Li L, Le W (2011) Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis. Autophagy 7:412–425

    Article  PubMed  CAS  Google Scholar 

  288. Feng HL, Leng Y, Ma CH, Zhang J, Ren M, Chuang DM (2008) Combined lithium and valproate treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic lateral sclerosis mouse model. Neuroscience 155:567–572. https://doi.org/10.1016/j.neuroscience.2008.06.040

    Article  CAS  PubMed  Google Scholar 

  289. Fornai F, Longone P, Cafaro L, Kastsiuchenka O, Ferrucci M, Manca ML, Lazzeri G et al (2008) Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 105:2052–2057. https://doi.org/10.1073/pnas.0708022105

    Article  PubMed  PubMed Central  Google Scholar 

  290. Chang C-F, Lee Y-C, Lee K-H, Lin H-C, Chen C-L, Shen C-KJ, Huang C-C (2016) Therapeutic effect of berberine on TDP-43-related pathogenesis in FTLD and ALS. J Biomed Sci 23:72–72. https://doi.org/10.1186/s12929-016-0290-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Sun J, Mu Y, Jiang Y, Song R, Yi J, Zhou J, Sun J, Jiao X, Prinz RA, Li Y, Xu X (2018) Inhibition of p70 S6 kinase activity by A77 1726 induces autophagy and enhances the degradation of superoxide dismutase 1 (SOD1) protein aggregates. Cell Death Dis 9:407–407. https://doi.org/10.1038/s41419-018-0441-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Zhou Q-M, Zhang J-J, Li S, Chen S, Le W-D (2017) n-butylidenephthalide treatment prolongs life span and attenuates motor neuron loss in SOD1G93A mouse model of amyotrophic lateral sclerosis. CNS Neurosci Ther 23:375–385. https://doi.org/10.1111/cns.12681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chitkara University, Punjab, India for providing the basic facilities for the completion of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Behl.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors have given consent for final publication of the current manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Autophagy is an evolutionary conserved cellular process and is crucial for maintaining cellular homeostasis.

• Autophagy performs an essential role in the pathophysiology of several neurodegenerative disorders.

• Autophagy is regulated by important nutrient-sensing pathways including the mTORC1 and AMPK.

• Autophagy is a potential therapeutic target to ameliorate neurodegenerative disorders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, T., Behl, T., Sehgal, A. et al. Exploring the Role of Autophagy Dysfunction in Neurodegenerative Disorders. Mol Neurobiol 58, 4886–4905 (2021). https://doi.org/10.1007/s12035-021-02472-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02472-0

Keywords

Navigation