Skip to main content

Advertisement

Log in

Autophagy and cell reprogramming

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Autophagy is an evolutionarily conserved process that degrades cytoplasmic components, thus contributing to cell survival and tissue homeostasis. Recent studies have demonstrated that autophagy maintains stem cells in relatively undifferentiated states (stemness) and also contributes to differentiation processes. Autophagy likewise plays a crucial role in somatic cell reprogramming, a finely regulated process that resets differentiated cells to a pluripotent state and that requires comprehensive alterations in transcriptional activities and epigenetic signatures. Autophagy assists in manifesting the functional consequences that arise from these alterations by modifying cellular protein expression profiles. The role of autophagy appears to be particularly relevant for early phases of cell reprogramming during the generation of induced pluripotent stems cells (iPSCs). In this review, we provide an overview of the core molecular machinery that constitutes the autophagic degradation system, describe the roles of autophagy in maintenance, self-renewal, and differentiation of stem cells, and discuss the autophagic process and its regulation during cell reprogramming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ambra1:

Activating molecule in Beclin1-regulated autophagy 1

AMPK:

AMP-activated protein kinase

Atg:

Autophagy-related proteins

Beclin 1:

Coiled-coil, myosin-like BCL2-interacting protein

BafA1:

Bafilomycin A1

CSC:

Cancer stem cell

CHD:

Chromodomain, helicase, DNA binding

EMT:

Epithelial–mesenchymal transition

ESC:

Embryonic stem cell

FGF:

Fibroblast growth factor

GBM:

Glioblastoma

GAP:

GTPase-activating protein

HSC:

Hematopoietic stem cell

iPSC:

Induced pluripotent stem cell

LC3:

Microtubule-associated protein light chain 3

LIF:

Leukemia inhibitory factor

MBD3:

Methyl-CpG binding domain protein 3

mTOR:

Mammalian target of rapamycin

NuRD:

Nucleosome remodeling and deacetylase

NSC:

Neural stem cell

PE:

Phosphatidylethanolamine

Rheb:

Ras homologue enriched in brain

ROS:

Reactive oxygen species

Sox2:

SRY (sex determining region Y)-box 2

SVZ:

Subventricular zone

TSC1/2:

Tuberous sclerosis1/2

ULK:

Unc-51-like kinase

WASH:

Wiskott–Aldrich syndrome protein and SCAR homologue

References

  1. Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40

    Article  CAS  PubMed  Google Scholar 

  2. Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632

    Article  CAS  PubMed  Google Scholar 

  3. Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annu Rev Pathol 3:427–455

    Article  CAS  PubMed  Google Scholar 

  4. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  6. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Xia P, Wang S, Du Y, Zhao Z, Shi L et al (2013) WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO J 32:2685–2696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wang RC, Wei Y, An Z, Zou Z, Xiao G et al (2012) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338:956–959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737

    Article  CAS  PubMed  Google Scholar 

  11. Wang S, Xia P, Ye B, Huang G, Liu J et al (2013) Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell 13:617–625

    Article  CAS  PubMed  Google Scholar 

  12. Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A et al (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321:117–120

    Article  CAS  PubMed  Google Scholar 

  13. Yamanaka S, Blau HM (2010) Nuclear reprogramming to a pluripotent state by three approaches. Nature 465:704–712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hanna JH, Saha K, Jaenisch R (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143:508–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jopling C, Boue S, Izpisua Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12:79–89

    Article  CAS  PubMed  Google Scholar 

  16. Abollo-Jimenez F, Jimenez R, Cobaleda C (2010) Physiological cellular reprogramming and cancer. Semin Cancer Biol 20:98–106

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  18. Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–684

    Article  CAS  PubMed  Google Scholar 

  19. Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM et al (2012) A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151:1617–1632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Koche RP, Smith ZD, Adli M, Gu H, Ku M et al (2011) Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 8:96–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Golipour A, David L, Liu Y, Jayakumaran G, Hirsch CL et al (2012) A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 11:769–782

    Article  CAS  PubMed  Google Scholar 

  22. Buckley SM, Aranda-Orgilles B, Strikoudis A, Apostolou E, Loizou E et al (2012) Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell 11:783–798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hansson J, Rafiee MR, Reiland S, Polo JM, Gehring J et al (2012) Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep 2:1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Deter RL, Baudhuin P, De Duve C (1967) Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 35:C11–C16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  PubMed  Google Scholar 

  26. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    Article  CAS  PubMed  Google Scholar 

  27. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189

    Article  CAS  PubMed  Google Scholar 

  34. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    Article  CAS  PubMed  Google Scholar 

  35. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10:935–945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC et al (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657

    Article  CAS  PubMed  Google Scholar 

  41. Hardie DG (2007) AMP-activated/SNF1 protein Kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    Article  CAS  PubMed  Google Scholar 

  42. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y et al (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–968

    Article  CAS  PubMed  Google Scholar 

  43. Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. van der Vos KE, Coffer PJ (2012) Glutamine metabolism links growth factor signaling to the regulation of autophagy. Autophagy 8:1862–1864

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Menendez JA, Vellon L, Oliveras-Ferraros C, Cufi S, Vazquez-Martin A (2011) mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle 10:3658–3677

    Article  CAS  PubMed  Google Scholar 

  46. Egan D, Kim J, Shaw RJ, Guan KL (2011) The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7:643–644

    Article  PubMed  CAS  Google Scholar 

  47. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM et al (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Wang C, Liang CC, Bian ZC, Zhu Y, Guan JL (2013) FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci 16:532–542

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209–218

    Article  CAS  PubMed  Google Scholar 

  50. Funderburk S F, Wang Q J, Yue Z (2010) The Beclin 1-VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol 20:355–362

    Article  PubMed  CAS  Google Scholar 

  51. Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT et al (2010) Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327:1638–1642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Vergne I, Deretic V (2010) The role of PI3P phosphatases in the regulation of autophagy. FEBS Lett 584:1313–1318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9:1142–1151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125

    CAS  PubMed  Google Scholar 

  55. He S, Ni D, Ma B, Lee JH, Zhang T et al (2013) PtdIns(3)P-bound UVRAG coordinates Golgi-ER retrograde and Atg9 transport by differential interactions with the ER tether and the beclin 1 complex. Nat Cell Biol 15:1206–1219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T et al (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11:385–396

    Article  CAS  PubMed  Google Scholar 

  57. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM et al (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11:468–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  CAS  PubMed  Google Scholar 

  59. Furuya T, Kim M, Lipinski M, Li J, Kim D et al (2010) Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell 38:500–511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Xia P, Wang S, Huang G, Du Y, Zhu P et al (2014) RNF2 is recruited by WASH to ubiquitinate AMBRA1 leading to downregulation of autophagy. Cell Res 24:943–958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P et al (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931–946

    Article  CAS  PubMed  Google Scholar 

  62. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100:15077–15082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Sakoh-Nakatogawa M, Matoba K, Asai E, Kirisako H, Ishii J et al (2013) Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat Struct Mol Biol 20:433–439

    Article  CAS  PubMed  Google Scholar 

  64. Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC (2011) Autophagosome precursor maturation requires homotypic fusion. Cell 146:303–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Warr MR, Binnewies M, Flach J, Reynaud D, Garg T et al (2013) FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494:323–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Cho YH, Han KM, Kim D, Lee J, Lee SH et al (2014) Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. Stem Cells 32:424–435

    Article  CAS  PubMed  Google Scholar 

  68. Gong C, Bauvy C, Tonelli G, Yue W, Delomenie C et al (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32:2261–2272 (2272e 2261–2211)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR et al (2009) Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 119:1109–1123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Zhang J, Liu J, Liu L, McKeehan WL, Wang F (2012) The fibroblast growth factor signaling axis controls cardiac stem cell differentiation through regulating autophagy. Autophagy 8:690–691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Pantovic A, Krstic A, Janjetovic K, Kocic J, Harhaji-Trajkovic L et al (2013) Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone 52:524–531

    Article  CAS  PubMed  Google Scholar 

  72. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  73. Haines DD, Juhasz B, Tosaki A (2013) Management of multicellular senescence and oxidative stress. J Cell Mol Med 17:936–957

    Article  PubMed Central  PubMed  Google Scholar 

  74. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Pan H, Cai N, Li M, Liu GH, Izpisua Belmonte JC (2013) Autophagic control of cell ‘stemness’. EMBO Mol Med 5:327–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  CAS  PubMed  Google Scholar 

  77. Green DR, Galluzzi L, Kroemer G (2014) Cell biology. Metabolic control of cell death. Science 345:1250256

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Vessoni AT, Muotri AR, Okamoto OK (2012) Autophagy in stem cell maintenance and differentiation. Stem Cells Dev 21:513–520

    Article  CAS  PubMed  Google Scholar 

  79. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y et al (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Tra T, Gong L, Kao LP, Li XL, Grandela C et al (2011) Autophagy in human embryonic stem cells. PLoS One 6:e27485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  CAS  PubMed  Google Scholar 

  82. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T et al (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19:4762–4775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268

    Article  CAS  PubMed  Google Scholar 

  85. Salemi S, Yousefi S, Constantinescu MA, Fey MF, Simon HU (2012) Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res 22:432–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M et al (2011) The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 208:455–467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Mortensen M, Ferguson DJ, Edelmann M, Kessler B, Morten KJ et al (2010) Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci USA 107:832–837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Oliver L, Hue E, Priault M, Vallette FM (2012) Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells. Stem Cells Dev 21:2779–2788

    Article  CAS  PubMed  Google Scholar 

  89. Zhang Q, Yang YJ, Wang H, Dong QT, Wang TJ et al (2012) Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev 21:1321–1332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Vazquez P, Arroba AI, Cecconi F, de la Rosa EJ, Boya P et al (2012) Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy 8:187–199

    Article  CAS  PubMed  Google Scholar 

  91. Zhang J, Liu J, Huang Y, Chang JY, Liu L et al (2012) FRS2alpha-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity. Circ Res 110:e29–e39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Song YJ, Zhang SS, Guo XL, Sun K, Han ZP et al (2013) Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett 339:70–81

    Article  CAS  PubMed  Google Scholar 

  93. Yue W, Hamai A, Tonelli G, Bauvy C, Nicolas V et al (2013) Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy 9:714–729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Espina V, Mariani BD, Gallagher RI, Tran K, Banks S et al (2010) Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS One 5:e10240

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Wei MF, Chen MW, Chen KC, Lou PJ, Lin SY et al (2014) Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy 10:1179–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu S, Wang X, Chen J, Chen Y (2013) Autophagy of cancer stem cells is involved with chemoresistance of colon cancer cells. Biochem Biophys Res Commun 434:898–903

    Article  CAS  PubMed  Google Scholar 

  97. Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F et al (2009) The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 125:717–722

    Article  CAS  PubMed  Google Scholar 

  98. Kiyono K, Suzuki HI, Matsuyama H, Morishita Y, Komuro A et al (2009) Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res 69:8844–8852

    Article  CAS  PubMed  Google Scholar 

  99. Lamouille S, Derynck R (2007) Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 178:437–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Kumar D, Shankar S, Srivastava RK (2013) Rottlerin-induced autophagy leads to the apoptosis in breast cancer stem cells: molecular mechanisms. Mol Cancer 12:171

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Kumar D, Shankar S, Srivastava RK (2014) Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3 K/Akt/mTOR signaling pathway. Cancer Lett 343:179–189

    Article  CAS  PubMed  Google Scholar 

  102. Liu H, He Z, von Rutte T, Yousefi S, Hunger RE et al (2013) Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med 5:202ra123

    Article  PubMed  CAS  Google Scholar 

  103. Armstrong L, Tilgner K, Saretzki G, Atkinson SP, Stojkovic M et al (2010) Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells 28:661–673

    Article  CAS  PubMed  Google Scholar 

  104. Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28:721–733

    Article  CAS  PubMed  Google Scholar 

  105. Jewell JL, Russell RC, Guan KL (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14:133–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  CAS  PubMed  Google Scholar 

  107. Chen T, Shen L, Yu J, Wan H, Guo A et al (2011) Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10:908–911

    Article  CAS  PubMed  Google Scholar 

  108. He J, Kang L, Wu T, Zhang J, Wang H et al (2012) An elaborate regulation of Mammalian target of rapamycin activity is required for somatic cell reprogramming induced by defined transcription factors. Stem Cells Dev 21:2630–2641

    Article  CAS  PubMed  Google Scholar 

  109. Cantone I, Fisher AG (2013) Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 20:282–289

    Article  CAS  PubMed  Google Scholar 

  110. Orkin SH, Hochedlinger K (2011) Chromatin connections to pluripotency and cellular reprogramming. Cell 145:835–850

    Article  CAS  PubMed  Google Scholar 

  111. Fong YW, Cattoglio C, Yamaguchi T, Tjian R (2012) Transcriptional regulation by coactivators in embryonic stem cells. Trends Cell Biol 22:292–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Hu G, Wade PA (2012) NuRD and pluripotency: a complex balancing act. Cell Stem Cell 10:497–503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Reynolds N, Latos P, Hynes-Allen A, Loos R, Leaford D et al (2012) NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment. Cell Stem Cell 10:583–594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Lai AY, Wade PA (2011) Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer 11:588–596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Pegoraro G, Kubben N, Wickert U, Gohler H, Hoffmann K et al (2009) Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol 11:1261–1267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Dos Santos RL, Tosti L, Radzisheuskaya A, Caballero IM, Kaji K et al (2014) MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner. Cell Stem Cell 15:102–110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Rais Y, Zviran A, Geula S, Gafni O, Chomsky E et al (2013) Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502:65–70

    Article  CAS  PubMed  Google Scholar 

  118. Stitzel ML, Seydoux G (2007) Regulation of the oocyte-to-zygote transition. Science 316:407–408

    Article  CAS  PubMed  Google Scholar 

  119. DeRenzo C, Seydoux G (2004) A clean start: degradation of maternal proteins at the oocyte-to-embryo transition. Trends Cell Biol 14:420–426

    Article  CAS  PubMed  Google Scholar 

  120. Tsukamoto S, Hara T, Yamamoto A, Kito S, Minami N et al (2014) Fluorescence-based visualization of autophagic activity predicts mouse embryo viability. Sci Rep 4:4533

    PubMed Central  PubMed  Google Scholar 

  121. Hutchison CA 3rd, Newbold JE, Potter SS, Edgell MH (1974) Maternal inheritance of mammalian mitochondrial DNA. Nature 251:536–538

    Article  CAS  PubMed  Google Scholar 

  122. Ankel-Simons F, Cummins JM (1996) Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci USA 93:13859–13863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Al Rawi S, Louvet-Vallee S, Djeddi A, Sachse M, Culetto E et al (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334:1144–1147

    Article  CAS  PubMed  Google Scholar 

  124. Sato M, Sato K (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334:1141–1144

    Article  CAS  PubMed  Google Scholar 

  125. Luo SM, Ge ZJ, Wang ZW, Jiang ZZ, Wang ZB et al (2013) Unique insights into maternal mitochondrial inheritance in mice. Proc Natl Acad Sci USA 110:13038–13043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Yamamoto A, Mizushima N, Tsukamoto S (2014) Fertilization-induced autophagy in mouse embryos is independent of mTORC1. Biol Reprod 91:7

    Article  PubMed  CAS  Google Scholar 

  127. Doulatov S, Vo LT, Chou SS, Kim PG, Arora N et al (2013) Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell 13:459–470

    Article  CAS  PubMed  Google Scholar 

  128. Riddell J, Gazit R, Garrison BS, Guo G, Saadatpour A et al (2014) Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors. Cell 157:549–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pereira CF, Chang B, Qiu J, Niu X, Papatsenko D et al (2013) Induction of a hemogenic program in mouse fibroblasts. Cell Stem Cell 13:205–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R et al (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468:521–526

    Article  CAS  PubMed  Google Scholar 

  131. Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110:3056–3063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Chen C, Liu Y, Liu R, Ikenoue T, Guan KL et al (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205:2397–2408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446–451

    Article  CAS  PubMed  Google Scholar 

  134. Chen C, Liu Y, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2:ra75

    PubMed Central  PubMed  Google Scholar 

  135. Ficara F, Murphy MJ, Lin M, Cleary ML (2008) Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence. Cell Stem Cell 2:484–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Unnisa Z, Clark JP, Roychoudhury J, Thomas E, Tessarollo L et al (2012) Meis1 preserves hematopoietic stem cells in mice by limiting oxidative stress. Blood 120:4973–4981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Brevini TA, Pennarossa G, Rahman MM, Paffoni A, Antonini S et al (2014) Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Rev 10:633–642

    Article  CAS  PubMed  Google Scholar 

  138. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI et al (2013) Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152:25–38

    Article  CAS  PubMed  Google Scholar 

  139. Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ et al (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129–1133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Meletis K, Wirta V, Hede SM, Nister M, Lundeberg J et al (2006) p53 suppresses the self-renewal of adult neural stem cells. Development 133:363–369

    Article  CAS  PubMed  Google Scholar 

  141. Zhao Z, Zuber J, Diaz-Flores E, Lintault L, Kogan SC et al (2010) p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev 24:1389–1402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T et al (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338:1080–1084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Suva ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H et al (2014) Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157:580–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N et al (2007) Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282:18573–18583

    Article  CAS  PubMed  Google Scholar 

  145. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C et al (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25:795–800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    Article  CAS  PubMed  Google Scholar 

  148. Blum R, Jacob-Hirsch J, Amariglio N, Rechavi G, Kloog Y (2005) Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res 65:999–1006

    CAS  PubMed  Google Scholar 

  149. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Lock R, Roy S, Kenific CM, Su JS, Salas E et al (2011) Autophagy facilitates glycolysis during ras-mediated oncogenic transformation. Mol Biol Cell 22:165–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Kim JH, Kim HY, Lee YK, Yoon YS, Xu WG et al (2011) Involvement of mitophagy in oncogenic K-Ras-induced transformation: overcoming a cellular energy deficit from glucose deficiency. Autophagy 7:1187–1198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31300645, 81330047), 973 Program of the MOST of China (2010CB911902), and the Strategic Priority Research Programs of the Chinese Academy of Sciences (XDA01010407). MR and ZF are supported by the Science Foundation Ireland International Strategic Collaboration Programme: China (ISCP China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zusen Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Xia, P., Rehm, M. et al. Autophagy and cell reprogramming. Cell. Mol. Life Sci. 72, 1699–1713 (2015). https://doi.org/10.1007/s00018-014-1829-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1829-3

Keywords

Navigation