Skip to main content

Advertisement

Log in

Dehydroeffusol Pprevents Amyloid β1-42-mediated Hippocampal Neurodegeneration via Reducing Intracellular Zn2+ Toxicity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dehydroeffusol, a phenanthrene isolated from Juncus effusus, is a Chinese medicine. To explore an efficacy of dehydroeffusol administration for prevention and cure of Alzheimer’s disease, here we examined the effect of dehydroeffusol on amyloid β1-42 (Aβ1-42)-mediated hippocampal neurodegeneration. Dehydroeffusol (15 mg/kg body weight) was orally administered to mice once a day for 6 days and then human Aβ1-42 was injected intracerebroventricularly followed by oral administration for 12 days. Neurodegeneration in the dentate granule cell layer, which was determined 2 weeks after Aβ1-42 injection, was rescued by dehydroeffusol administration. Aβ staining (uptake) was not reduced in the dentate granule cell layer by pre-administration of dehydroeffusol for 6 days, while increase in intracellular Zn2+ induced with Aβ1-42 was reduced, suggesting that pre-administration of dehydroeffusol prior to Aβ1-42 injection is effective for Aβ1-42-mediated neurodegeneration that was linked with intracellular Zn2+ toxicity. As a matter of fact, pre-administration of dehydroeffusol rescued Aβ1-42-mediated neurodegeneration. Interestingly, pre-administration of dehydroeffusol increased synthesis of metallothioneins, intracellular Zn2+-binding proteins, in the dentate granule cell layer, which can capture Zn2+ from Zn-Aβ1-42 complexes. The present study indicates that pre-administration of dehydroeffusol protects Aβ1-42-mediated neurodegeneration in the hippocampus by reducing intracellular Zn2+ toxicity, which is linked with induced synthesis of metallothioneins. Dehydroeffusol, a novel inducer of metallothioneins, may protect Aβ1-42-induced pathogenesis in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 12:585–601

    Article  CAS  Google Scholar 

  2. Knierim JJ (2015) The hippocampus. Curr Biol 25:R1116–R1121

    Article  CAS  Google Scholar 

  3. Sasaki T, Leutgeb S, Leutgeb JK (2015) Spatial and memory circuits in the medial entorhinal cortex. Curr Opin Neurobiol 32:16–23

    Article  CAS  Google Scholar 

  4. Moryś J, Sadowski M, Barcikowska M, Maciejewska B, Narkiewicz O (1994) The second layer neurones of the entorhinal cortex and the perforant path in physiological ageing and Alzheimer’s disease. Acta Neurobiol Exp (Wars) 54:47–53

    Google Scholar 

  5. Gómez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500

    Article  Google Scholar 

  6. Harris JA, Devidze N, Verret L, Ho K, Halabisky B, Thwin MT, Kim D, Hamto P et al (2010) Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 68:428–441

    Article  CAS  Google Scholar 

  7. Qin Y, Tian Y, Han H, Liu L, Ge X, Xue H, Wang T, Zhou L et al (2019) Risk classification for conversion from mild cognitive impairment to Alzheimer’s disease in primary care. Psychiatry Res 278:19–26

    Article  Google Scholar 

  8. Nestor PJ, Scheltens P, Hodges JR (2004) Advances in the early detection of Alzheimer’s disease. Nat Med 10:S34–S41

    Article  Google Scholar 

  9. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344

    Article  CAS  Google Scholar 

  10. Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul SM et al (2005) Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48:913–922

    Article  CAS  Google Scholar 

  11. Morys J, Bobinski M, Wegiel J, Wisniewski HM, Narkiewicz O (1996) Alzheimer’s disease severely affects areas of the claustrum connected with the entorhinal cortex. J Hirnforsch 37:173–180

    CAS  PubMed  Google Scholar 

  12. Funato H, Yoshimura M, Kusui K, Tamaoka A, Ishikawa K, Ohkoshi N, Namekata K, Okeda R et al (1998) Quantitation of amyloid beta-protein (A beta) in the cortex during aging and in Alzheimer’s disease. Am J Pathol 152:1633–1640

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Takeda A, Tamano H, Tempaku M, Sasaki M, Uematsu C, Sato S, Kanazawa H, Datki ZL et al (2017) Extracellular Zn2+ is essential for amyloid β1-42-induced cognitive decline in the normal brain and its rescue. J Neurosci 37:7253–7262

    Article  CAS  Google Scholar 

  14. Tamano H, Oneta N, Shioya A, Adlard PA, Bush AI, Takeda A (2019) In vivo synaptic activity-independent co-uptakes of amyloid β1-42 and Zn2+ into dentate granule cells in the normal brain. Sci Rep 9:6498

    Article  Google Scholar 

  15. Crichton GE, Bryan J, Murphy KJ (2013) Dietary antioxidants, cognitive function and dementia--a systematic review. Plant Foods Hum Nutr 68:279–292

    Article  CAS  Google Scholar 

  16. Liao YJ, Zhai HF, Zhang B, Duan TX, Huang JM (2011) Anxiolytic and sedative effects of dehydroeffusol from Juncus effusus in mice. Planta Med 77:416–420

    Article  CAS  Google Scholar 

  17. Wang Y, Wang Y, Zhai H, Liao Y, Zhang B, Huang J (2012) Phenanthrenes from Juncus effusus with anxiolytic and sedative activities. Nat Prod Res 26:1234–1239

    Article  CAS  Google Scholar 

  18. Greca MD, Fiorentino A, Monaco P, Pinto G, Pollio A, Previtera L (1996) Action of antialgal compounds from Juncus effusus L. on Selenastrum capricornutum. J Chem Ecol 22:587–603

    Article  CAS  Google Scholar 

  19. Singhuber J, Baburin I, Khom S, Zehl M, Urban E, Hering S, Kopp B (2012) GABA(A) receptor modulators from the Chinese herbal drug Junci Medulla--the pith of Juncus effusus. Planta Med 78:455–458

    Article  CAS  Google Scholar 

  20. Fukuda T, Sato Y, Takiguchi M, Yamamoto T, Murasawa H, Pawlak A, Kobayashi H, Tamano H et al (2020) Dehydroeffusol rescues amyloid β25-35-induced spatial working memory deficit. Plant Foods Hum Nutr 75:279–282

    Article  CAS  Google Scholar 

  21. Tamano H, Takiguchi M, Tanaka Y, Murakami T, Adlard PA, Bush AI, Takeda A (2020) Preferential neurodegeneration in the dentate gyrus by amyloid β1-42-induced intracellular Zn2+ dysregulation and its defense strategy. Mol Neurobiol 57:1875–1888

    Article  CAS  Google Scholar 

  22. Takeda A, Tamano H, Hashimoto W, Kobuchi S, Suzuki H, Murakami T, Tempaku M, Koike Y et al (2018) Novel defense by metallothionein induction against cognitive decline: from amyloid β1-42-induced excess Zn2+ to functional Zn2+ deficiency. Mol Neurobiol 55:7775–7788

    Article  CAS  Google Scholar 

  23. Sato Y, Takiguchi M, Tamano H, Takeda A (2021) Extracellular Zn2+-dependent amyloid-β1-42 neurotoxicity in Alzheimer’s disease pathogenesis. Biol Trace Elem Res 199:53–61

    Article  CAS  Google Scholar 

  24. Abramovitch-Dahan C, Asraf H, Bogdanovic M, Sekler I, Bush AI, Hershfinkel M (2016) Amyloid β attenuates metabotropic zinc sensing receptor, mZnR/GPR39, dependent Ca2+, ERK1/2 and Clusterin signaling in neurons. J Neurochem 139:221–233

    Article  CAS  Google Scholar 

  25. Haq F, Mahoney M, Koropatnick J (2003) Signaling events for metallothionein induction. Mutat Res 533:211–216

    Article  CAS  Google Scholar 

  26. Ebadi M, Iversen PL, Hao R, Cerutis DR, Rojas P, Happe HK, Murrin LC, Pfeiffer RF (1995) Expression and regulation of brain metallothionein. Neurochem Int 27:1–22

    Article  CAS  Google Scholar 

  27. Krężel A, Maret W (2006) Zinc buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem 11:1049–1062

    Article  Google Scholar 

  28. Krężel A, Hao Q, Maret W (2007) The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. Arch Biochem Biophys 463:188–200

    Article  Google Scholar 

  29. Krężel A, Maret W (2007) Dual nanomolar and picomolar Zn(II) binding properties of metallothionein. J Am Chem Soc 129:10911–10921

    Article  Google Scholar 

  30. Krężel A, Maret W (2017) The functions of metamorphic metallothioneins in zinc and copper metabolism. Int J Mol Sci 18. https://doi.org/10.3390/ijms18061237

  31. Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Muelle RN, Zeng Y, Balaji RV, Masalha R et al (2006) Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol 198:285–293

    Article  CAS  Google Scholar 

  32. Vasák M, Kägi JH (1983) Spectroscopic properties of metallothionein. In: Sigel H (ed) Metal Ions in Biological Systems, vol 15. Marcel Dekker, New York, pp. 213–273

    Google Scholar 

  33. Tamano H, Takiguchi M, Shimaya R, Adlard PA, Bush AI, Takeda A (2019) Extracellular Zn2+-independently attenuated LTP by human amyloid β1-40 and rat amyloid β1-42. Biochem Biophys Res Commun 514:888–892

    Article  CAS  Google Scholar 

  34. de Ceballos ML, Brera B, Fernández-Tomé MP (2001) beta-Amyloid-induced cytotoxicity, peroxide generation and blockade of glutamate uptake in cultured astrocytes. Clin Chem Lab Med 39:317–318

    Article  Google Scholar 

  35. Gray CW, Patel AJ (1995) Neurodegeneration mediated by glutamate and beta-amyloid peptide: a comparison and possible interaction. Brain Res 691:169–179

    Article  CAS  Google Scholar 

  36. Gilad D, Shorer S, Ketzef M, Friedman A, Sekler I, Aizenman E, Hershfinkel M (2015) Homeostatic regulation of KCC2 activity by the zinc receptor mZnR/GPR39 during seizures. Neurobiol Dis 81:4–13

    Article  CAS  Google Scholar 

  37. Takeda A, Tamano H (2020) New insight into Parkinson’s disease pathogenesis from reactive oxygen species-mediated extracellular Zn2+ influx. J Trace Elem Med Biol 61:126545

    Article  Google Scholar 

  38. Tamano H, Sato Y, Takiguchi M, Murakami T, Fukuda T, Kawagishi H, Suzuki M, Takeda A (2019) CA1 LTP attenuated by corticosterone is canceled by effusol via rescuing intracellular Zn2+ dysregulation. Cell Mol Neurobiol 39:975–983

    Article  CAS  Google Scholar 

Download references

Funding

The authors received no funding in the present paper. The present paper contains non-financial interests.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Atsushi Takeda. Data curation, Haruna Tamano, Mako Takiguchi, Nana Saeki. Formal analysis, Haruna Tamano, Mako Takiguchi. Investigation, Mako Takiguchi, Nana Saeki, Misa Katahira, Aoi Shioya, Yukino Tanaka, Mako Egawa, Toshiyuki Fukuda. Methodology, Atsushi Takeda. Project administration, Atsushi Takeda. Resources, Atsushi Takeda. Software, Hiroki Ikeda. Supervision, Haruna Tamano. Validation, Haruna Tamano. Roles/writing—original draft, Haruna Tamano. Writing—review & editing, Atsushi Takeda.

Corresponding author

Correspondence to Atsushi Takeda.

Ethics declarations

Ethics Approval and Consent to Participate

The Ethics Committee for Experimental Animals has permitted the present study in the University of Shizuoka. There is no informed consent because the present study does not deal with human study. The present paper has been approved by all named authors.

Consent for Publication

The present paper, which is original, has not been published before and is not currently being considered for publication elsewhere.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamano, H., Takiguchi, M., Saeki, N. et al. Dehydroeffusol Pprevents Amyloid β1-42-mediated Hippocampal Neurodegeneration via Reducing Intracellular Zn2+ Toxicity. Mol Neurobiol 58, 3603–3613 (2021). https://doi.org/10.1007/s12035-021-02364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02364-3

Keywords

Navigation