Skip to main content

Advertisement

Log in

Ammonia-Induced Glial-Inflammaging

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Astrocytes are functionally diverse glial cells that maintain blood-brain barrier (BBB) integrity, provide metabolic and trophic support, and react to pathogens or harmful stimuli through inflammatory response. Impairment of astrocyte functions has been implicated in hepatic encephalopathy (HE), a neurological complication associated with hyperammonemia. Although hyperammonemia is more common in adults, ammonia gliotoxicity has been mainly studied in cultured astrocytes derived from neonate animals. However, these cells can sense and respond to stimuli in different ways from astrocytes obtained from adult animals. Thus, the aim of this study was to investigate the direct effects of ammonia on astrocyte cultures obtained from adult rats compared with those obtained from neonate rats. Our main findings pointed that ammonia increased the gene expression of proteins associated with BBB permeability, in addition to cause an inflammatory response and decrease the release of trophic factors, which were dependent on p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor κB (NFκB) pathways and aquaporin 4, in both neonatal and mature astrocytes. Considering the age, mature astrocytes presented an overall increase of the expression of inflammatory signaling components and a decrease of the expression of cytoprotective pathways, compared with neonatal astrocytes. Importantly, ammonia exposure in mature astrocytes potentiated the expression of the senescence marker p21, inflammatory response, activation of p38 MAPK/NFκB pathways, and the decrease of cytoprotective pathways. In this regard, ammonia can trigger and/or accelerate the inflammaging of mature astrocytes, a phenomenon characterized by an age-related chronic and low-grade inflammation, which may be implicated in HE neurological symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dallérac G, Zapata J, Rouach N (2018) Versatile control of synaptic circuits by astrocytes: where, when and how? Nat Rev Neurosci 19:729–743. https://doi.org/10.1038/s41583-018-0080-6

    Article  CAS  PubMed  Google Scholar 

  2. Gonçalves C-A, Rodrigues L, Bobermin LD, Zanotto C, Vizuete A, Quincozes-Santos A, Souza DO, Leite MC (2018) Glycolysis-derived compounds from astrocytes that modulate synaptic communication. Front Neurosci 12:1035. https://doi.org/10.3389/fnins.2018.01035

    Article  PubMed  Google Scholar 

  3. Michinaga S, Koyama Y (2019) Dual roles of astrocyte-derived factors in regulation of blood-brain barrier function after brain damage Int J Mol Sci 20:. https://doi.org/10.3390/ijms20030571,

  4. Markiewicz I, Lukomska B (2006) The role of astrocytes in the physiology and pathology of the central nervous system. Acta Neurobiol Exp (Wars) 66:343–358

    Google Scholar 

  5. Colombo E, Farina C (2016) Astrocytes: key regulators of neuroinflammation. Trends Immunol 37:608–620. https://doi.org/10.1016/j.it.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  6. Cunningham C, Dunne A, Lopez-Rodriguez AB (2018) Astrocytes: heterogeneous and dynamic phenotypes in neurodegeneration and innate immunity. Neuroscientist 1073858418809941. https://doi.org/10.1177/1073858418809941

  7. Okun E, Griffioen KJ, Mattson MP (2011) Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34:269–281. https://doi.org/10.1016/j.tins.2011.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bobermin LD, Roppa RHA, Quincozes-Santos A (2019) Adenosine receptors as a new target for resveratrol-mediated glioprotection. Biochim Biophys Acta Mol basis Dis 1865:634–647. https://doi.org/10.1016/j.bbadis.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  9. Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59:242–255. https://doi.org/10.1002/glia.21094

    Article  PubMed  Google Scholar 

  10. Yi W, Schlüter D, Wang X (2019) Astrocytes in multiple sclerosis and experimental autoimmune encephalomyelitis: star-shaped cells illuminating the darkness of CNS autoimmunity. Brain Behav Immun 80:10–24. https://doi.org/10.1016/j.bbi.2019.05.029

    Article  CAS  PubMed  Google Scholar 

  11. Dasarathy S, Mookerjee RP, Rackayova V, Rangroo Thrane V, Vairappan B, Ott P, Rose CF (2017) Ammonia toxicity: from head to toe? Metab Brain Dis 32:529–538. https://doi.org/10.1007/s11011-016-9938-3

    Article  CAS  PubMed  Google Scholar 

  12. Walker V (2014) Ammonia metabolism and hyperammonemic disorders. In: Advances in Clinical Chemistry. Elsevier, pp 73–150

  13. Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14:851–858. https://doi.org/10.1038/nrn3587

    Article  CAS  PubMed  Google Scholar 

  14. Jayakumar AR, Norenberg MD (2016) Glutamine synthetase: role in neurological disorders. Adv Neurobiol 13:327–350. https://doi.org/10.1007/978-3-319-45096-4_13

    Article  PubMed  Google Scholar 

  15. Bobermin LD, Souza DO, Gonçalves C-A, Quincozes-Santos A (2018) Resveratrol prevents ammonia-induced mitochondrial dysfunction and cellular redox imbalance in C6 astroglial cells. Nutr Neurosci 21:276–285. https://doi.org/10.1080/1028415X.2017.1284375

    Article  CAS  PubMed  Google Scholar 

  16. Bobermin LD, Quincozes-Santos A, Guerra MC, Leite MC, Souza DO, Gonçalves CA, Gottfried C (2012) Resveratrol prevents ammonia toxicity in astroglial cells. PLoS One 7:e52164. https://doi.org/10.1371/journal.pone.0052164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hernández-Rabaza V, Cabrera-Pastor A, Taoro-González L, Malaguarnera M, Agustí A, Llansola M, Felipo V (2016) Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: reversal by sulforaphane. J Neuroinflammation 13:41. https://doi.org/10.1186/s12974-016-0505-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oja SS, Saransaari P, Korpi ER (2017) Neurotoxicity of ammonia. Neurochem Res 42:713–720. https://doi.org/10.1007/s11064-016-2014-x

    Article  CAS  PubMed  Google Scholar 

  19. Rama Rao KV, Jayakumar AR, Tong X, Curtis KM, Norenberg MD (2010) Brain aquaporin-4 in experimental acute liver failure. J Neuropathol Exp Neurol 69:869–879. https://doi.org/10.1097/NEN.0b013e3181ebe581

    Article  CAS  PubMed  Google Scholar 

  20. Wright G, Soper R, Brooks HF, Stadlbauer V, Vairappan B, Davies NA, Andreola F, Hodges S et al (2010) Role of aquaporin-4 in the development of brain oedema in liver failure. J Hepatol 53:91–97. https://doi.org/10.1016/j.jhep.2010.02.020

    Article  CAS  PubMed  Google Scholar 

  21. Görg B, Karababa A, Shafigullina A, Bidmon HJ, Häussinger D (2015) Ammonia-induced senescence in cultured rat astrocytes and in human cerebral cortex in hepatic encephalopathy. Glia 63:37–50. https://doi.org/10.1002/glia.22731

    Article  PubMed  Google Scholar 

  22. Lange SC, Bak LK, Waagepetersen HS, Schousboe A, Norenberg MD (2012) Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res 37:2569–2588. https://doi.org/10.1007/s11064-012-0868-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2017) Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol Neurobiol 54:2969–2985. https://doi.org/10.1007/s12035-016-9880-8

    Article  CAS  PubMed  Google Scholar 

  24. Longoni A, Bellaver B, Bobermin LD, Santos CL, Nonose Y, Kolling J, dos Santos TM, de Assis AM et al (2018) Homocysteine induces glial reactivity in adult rat astrocyte cultures. Mol Neurobiol 55:1966–1976. https://doi.org/10.1007/s12035-017-0463-0

    Article  CAS  PubMed  Google Scholar 

  25. Santos CL, Bobermin LD, Souza DO, Quincozes-Santos A (2018) Leptin stimulates the release of pro-inflammatory cytokines in hypothalamic astrocyte cultures from adult and aged rats. Metab Brain Dis 33:2059–2063. https://doi.org/10.1007/s11011-018-0311-6

    Article  CAS  PubMed  Google Scholar 

  26. Santos CL, Roppa PHA, Truccolo P, Fontella FU, Souza DO, Bobermin LD, Quincozes-Santos A (2018) Age-dependent neurochemical remodeling of hypothalamic astrocytes. Mol Neurobiol 55:5565–5579. https://doi.org/10.1007/s12035-017-0786-x

    Article  CAS  PubMed  Google Scholar 

  27. Souza DG, Bellaver B, Souza DO, Quincozes-Santos A (2013) Characterization of adult rat astrocyte cultures. PLoS One 8:e60282. https://doi.org/10.1371/journal.pone.0060282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bellaver B, Dos Santos JP, Leffa DT et al (2018) Systemic inflammation as a driver of brain injury: the astrocyte as an emerging player. Mol Neurobiol 55:2685–2695. https://doi.org/10.1007/s12035-017-0526-2

    Article  CAS  PubMed  Google Scholar 

  29. Christensen LB, Woods TA, Carmody AB, Caughey B, Peterson KE (2014) Age-related differences in neuroinflammatory responses associated with a distinct profile of regulatory markers on neonatal microglia. J Neuroinflammation 11:70. https://doi.org/10.1186/1742-2094-11-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gárate I, Garcia-Bueno B, Madrigal JLM, Caso JR, Alou L, Gomez-Lus ML, Micó JA, Leza JC (2013) Stress-induced neuroinflammation: role of the toll-like receptor-4 pathway. Biol Psychiatry 73:32–43. https://doi.org/10.1016/j.biopsych.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  31. Klein RS, Hunter CA (2017) Protective and pathological immunity during CNS infections. Immunity 46:891–909. https://doi.org/10.1016/j.immuni.2017.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9. https://doi.org/10.1093/gerona/glu057

    Article  PubMed  Google Scholar 

  33. Griñan-Ferré C, Palomera-Ávalos V, Puigoriol-Illamola D, Camins A, Porquet D, Plá V, Aguado F, Pallàs M (2016) Behaviour and cognitive changes correlated with hippocampal neuroinflammaging and neuronal markers in female SAMP8, a model of accelerated senescence. Exp Gerontol 80:57–69. https://doi.org/10.1016/j.exger.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  34. Pizza V, Agresta A, D’Acunto CW et al (2011) Neuroinflamm-aging and neurodegenerative diseases: an overview. CNS Neurol Disord Drug Targets 10:621–634

    Article  CAS  PubMed  Google Scholar 

  35. Bobermin LD, Arús BA, Leite MC, Souza DO, Gonçalves CA, Quincozes-Santos A (2016) Gap junction intercellular communication mediates ammonia-induced neurotoxicity. Neurotox Res 29:314–324. https://doi.org/10.1007/s12640-015-9581-5

    Article  CAS  PubMed  Google Scholar 

  36. Bobermin LD, Hansel G, Scherer EBS, Wyse ATS, Souza DO, Quincozes-Santos A, Gonçalves CA (2015) Ammonia impairs glutamatergic communication in astroglial cells: protective role of resveratrol. Toxicol in Vitro 29:2022–2029. https://doi.org/10.1016/j.tiv.2015.08.008

    Article  CAS  PubMed  Google Scholar 

  37. Wartchow KM, Tramontina AC, de Souza DF, Biasibetti R, Bobermin LD, Gonçalves CA (2016) Insulin stimulates S100B secretion and these proteins antagonistically modulate brain glucose metabolism. Neurochem Res 41:1420–1429. https://doi.org/10.1007/s11064-016-1851-y

    Article  CAS  PubMed  Google Scholar 

  38. Zanotto C, Abib RT, Batassini C, Tortorelli LS, Biasibetti R, Rodrigues L, Nardin P, Hansen F et al (2013) Non-specific inhibitors of aquaporin-4 stimulate S100B secretion in acute hippocampal slices of rats. Brain Res 1491:14–22. https://doi.org/10.1016/j.brainres.2012.10.065

    Article  CAS  PubMed  Google Scholar 

  39. Rose C, Kresse W, Kettenmann H (2005) Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH. J Biol Chem 280:20937–20944. https://doi.org/10.1074/jbc.M412448200

    Article  CAS  PubMed  Google Scholar 

  40. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  41. Bodega G, Suárez I, López-Fernández LA, García MI, Köber M, Penedo M, Luna M, Juárez S et al (2012) Ammonia induces aquaporin-4 rearrangement in the plasma membrane of cultured astrocytes. Neurochem Int 61:1314–1324. https://doi.org/10.1016/j.neuint.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  42. Bender AS, Norenberg MD (1996) Effects of ammonia on L-glutamate uptake in cultured astrocytes. Neurochem Res 21:567–573. https://doi.org/10.1007/bf02527755

    Article  CAS  PubMed  Google Scholar 

  43. Gregorios JB, Mozes LW, Norenberg MD (1985) Morphologic effects of ammonia on primary astrocyte cultures II Electron microscopic studies. J Neuropathol Exp Neurol 44:404–414. https://doi.org/10.1097/00005072-198507000-00004

    Article  CAS  PubMed  Google Scholar 

  44. Murthy CR, Rama Rao KV, Bai G, Norenberg MD (2001) Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J Neurosci Res 66:282–288. https://doi.org/10.1002/jnr.1222

    Article  CAS  PubMed  Google Scholar 

  45. Neary JT, Woodson C, Blicharska J, Norenberg LOB, Norenberg MD (1990) Effect of ammonia on calcium homeostasis in primary astrocyte cultures. Brain Res 524:231–235. https://doi.org/10.1016/0006-8993(90)90696-9

    Article  CAS  PubMed  Google Scholar 

  46. Neary JT, Norenberg LO, Gutierrez MP, Norenberg MD (1987) Hyperammonemia causes altered protein phosphorylation in astrocytes. Brain Res 437:161–164. https://doi.org/10.1016/0006-8993(87)91538-1

    Article  CAS  PubMed  Google Scholar 

  47. Suárez I, Bodega G, Fernández B (2002) Glutamine synthetase in brain: effect of ammonia. Neurochem Int 41:123–142. https://doi.org/10.1016/S0197-0186(02)00033-5

    Article  PubMed  Google Scholar 

  48. Li Y, Wang S, Ran K et al (2015) Differential hippocampal protein expression between normal aged rats and aged rats with postoperative cognitive dysfunction: a proteomic analysis. Mol Med Rep 12:2953–2960. https://doi.org/10.3892/mmr.2015.3697

    Article  CAS  PubMed  Google Scholar 

  49. Shen Y, Gao H, Shi X, Wang N, Ai D, Li J, Ouyang L, Yang J et al (2014) Glutamine synthetase plays a role in d-galactose-induced astrocyte aging in vitro and in vivo. Exp Gerontol 58:166–173. https://doi.org/10.1016/j.exger.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  50. Souza DG, Bellaver B, Raupp GS, Souza DO, Quincozes-Santos A (2015) Astrocytes from adult Wistar rats aged in vitro show changes in glial functions. Neurochem Int 90:93–97. https://doi.org/10.1016/j.neuint.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  51. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53. https://doi.org/10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  52. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99:21–78. https://doi.org/10.1152/physrev.00050.2017

    Article  CAS  PubMed  Google Scholar 

  53. Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14:265–277. https://doi.org/10.1038/nrn3468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Potokar M, Jorgačevski J, Zorec R (2016) Astrocyte aquaporin dynamics in health and disease. Int J Mol Sci 17. https://doi.org/10.3390/ijms17071121

  55. Pan C-F, Zhu S-M, Zheng Y-Y (2010) Ammonia induces upregulation of aquaporin-4 in neocortical astrocytes of rats through the p38 mitogen-activated protein kinase pathway. Chin Med J 123:1888–1892

    CAS  PubMed  Google Scholar 

  56. Rama Rao KV, Chen M, Simard JM, Norenberg MD (2003) Increased aquaporin-4 expression in ammonia-treated cultured astrocytes. Neuroreport 14:2379–2382. https://doi.org/10.1097/00001756-200312190-00018

    Article  CAS  PubMed  Google Scholar 

  57. Rama Rao KV, Norenberg MD (2007) Aquaporin-4 in hepatic encephalopathy. Metab Brain Dis 22:265–275. https://doi.org/10.1007/s11011-007-9063-4

    Article  CAS  PubMed  Google Scholar 

  58. He L, Zhang X, Wei X, Li Y (2014) Progesterone attenuates aquaporin-4 expression in an astrocyte model of ischemia/reperfusion. Neurochem Res 39:2251–2261. https://doi.org/10.1007/s11064-014-1427-7

    Article  CAS  PubMed  Google Scholar 

  59. Katoozi S, Skauli N, Zahl S, Deshpande T, Ezan P, Palazzo C, Steinhäuser C, Frigeri A et al (2020) Uncoupling of the astrocyte syncytium differentially affects AQP4 isoforms. Cells 9:382. https://doi.org/10.3390/cells9020382

    Article  CAS  PubMed Central  Google Scholar 

  60. Skowrońska K, Obara-Michlewska M, Czarnecka A, Dąbrowska K, Zielińska M, Albrecht J (2019) Persistent overexposure to N-methyl-d-aspartate (NMDA) calcium-dependently downregulates glutamine synthetase, aquaporin 4, and Kir4.1 channel in mouse cortical astrocytes. Neurotox Res 35:271–280. https://doi.org/10.1007/s12640-018-9958-3

    Article  PubMed  Google Scholar 

  61. Vandebroek A, Yasui M (2020) Regulation of AQP4 in the central nervous system. IJMS 21:1603. https://doi.org/10.3390/ijms21051603

    Article  PubMed Central  Google Scholar 

  62. Fukuda AM, Badaut J (2012) Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation 9:279. https://doi.org/10.1186/1742-2094-9-279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ikeshima-Kataoka H (2016) Neuroimmunological implications of AQP4 in astrocytes. Int J Mol Sci 17:1306. https://doi.org/10.3390/ijms17081306

    Article  CAS  PubMed Central  Google Scholar 

  64. Akdemir G, Ratelade J, Asavapanumas N, Verkman AS (2014) Neuroprotective effect of aquaporin-4 deficiency in a mouse model of severe global cerebral ischemia produced by transient 4-vessel occlusion. Neurosci Lett 574:70–75. https://doi.org/10.1016/j.neulet.2014.03.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li L, Zhang H, Varrin-Doyer M, Zamvil SS, Verkman AS (2011) Proinflammatory role of aquaporin-4 in autoimmune neuroinflammation. FASEB J 25:1556–1566. https://doi.org/10.1096/fj.10-177279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liang F, Luo C, Xu G, Su F, He X, Long S, Ren H, Liu Y et al (2015) Deletion of aquaporin-4 is neuroprotective during the acute stage of micro traumatic brain injury in mice. Neurosci Lett 598:29–35. https://doi.org/10.1016/j.neulet.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  67. Rama Rao KV, Verkman AS, Curtis KM, Norenberg MD (2014) Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure. Neurobiol Dis 63:222–228. https://doi.org/10.1016/j.nbd.2013.11.018

    Article  CAS  PubMed  Google Scholar 

  68. Verkman AS, Smith AJ, Phuan P-W, Tradtrantip L, Anderson MO (2017) The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opin Ther Targets 21:1161–1170. https://doi.org/10.1080/14728222.2017.1398236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jayakumar AR, Rama Rao KV, Norenberg MD (2015) Neuroinflammation in hepatic encephalopathy: mechanistic aspects. J Clin Exp Hepatol 5:S21–S28. https://doi.org/10.1016/j.jceh.2014.07.006

    Article  PubMed  Google Scholar 

  70. Rodrigo R, Cauli O, Gomez-Pinedo U et al (2010) Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology 139:675–684. https://doi.org/10.1053/j.gastro.2010.03.040

    Article  CAS  PubMed  Google Scholar 

  71. Santos CL, Bobermin LD, Souza DG, Bellaver B, Bellaver G, Arús BA, Souza DO, Gonçalves CA et al (2015) Lipoic acid and N-acetylcysteine prevent ammonia-induced inflammatory response in C6 astroglial cells: The putative role of ERK and HO1 signaling pathways. Toxicol in Vitro 29:1350–1357. https://doi.org/10.1016/j.tiv.2015.05.023

    Article  CAS  PubMed  Google Scholar 

  72. Dresselhaus EC, Meffert MK (2019) Cellular specificity of NF-κB function in the nervous system. Front Immunol 10:1043. https://doi.org/10.3389/fimmu.2019.01043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang X, Yang L, Yang L, Xing F, Yang H, Qin L, Lan Y, Wu H et al (2017) Gypenoside IX suppresses p38 MAPK/Akt/NFκB signaling pathway activation and inflammatory responses in astrocytes stimulated by proinflammatory mediators. Inflammation 40:2137–2150. https://doi.org/10.1007/s10753-017-0654-x

    Article  CAS  PubMed  Google Scholar 

  74. Nito C, Kamada H, Endo H, Narasimhan P, Lee YS, Chan PH (2012) Involvement of mitogen-activated protein kinase pathways in expression of the water channel protein aquaporin-4 after ischemia in rat cortical astrocytes. J Neurotrauma 29:2404–2412. https://doi.org/10.1089/neu.2012.2430

    Article  PubMed  PubMed Central  Google Scholar 

  75. Miller AH, Haroon E, Raison CL, Felger JC (2013) Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 30:297–306. https://doi.org/10.1002/da.22084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. De Luca C, Colangelo AM, Alberghina L, Papa M (2018) Neuro-immune hemostasis: homeostasis and diseases in the central nervous system. Front Cell Neurosci 12:459. https://doi.org/10.3389/fncel.2018.00459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ et al (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 122:2454–2468. https://doi.org/10.1172/JCI60842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Butterworth RF (2013) The liver-brain axis in liver failure: neuroinflammation and encephalopathy. Nat Rev Gastroenterol Hepatol 10:522–528. https://doi.org/10.1038/nrgastro.2013.99

    Article  CAS  PubMed  Google Scholar 

  79. Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2014) Resveratrol increases antioxidant defenses and decreases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats. Toxicol in Vitro 28:479–484. https://doi.org/10.1016/j.tiv.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  80. Souza DG, Bellaver B, Bobermin LD, Souza DO, Quincozes-Santos A (2016) Anti-aging effects of guanosine in glial cells. Purinergic Signal 12:697–706. https://doi.org/10.1007/s11302-016-9533-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Patterson SL (2015) Immune dysregulation and cognitive vulnerability in the aging brain: interactions of microglia, IL-1β, BDNF and synaptic plasticity. Neuropharmacology 96:11–18. https://doi.org/10.1016/j.neuropharm.2014.12.020

    Article  CAS  PubMed  Google Scholar 

  82. Spulber S, Schultzberg M (2010) Connection between inflammatory processes and transmittor function-modulatory effects of interleukin-1. Prog Neurobiol 90:256–262. https://doi.org/10.1016/j.pneurobio.2009.10.015

    Article  CAS  PubMed  Google Scholar 

  83. Takao T, Nagano I, Tojo C, Takemura T, Makino S, Hashimoto K, de Souza EB (1996) Age-related reciprocal modulation of interleukin-1βand interleukin-1 receptors in the mouse brain-endocrine-immune axis. Neuroimmunomodulation 3:205–212. https://doi.org/10.1159/000097272

    Article  CAS  PubMed  Google Scholar 

  84. Agusti A, Cauli O, Rodrigo R, Llansola M, Hernandez-Rabaza V, Felipo V (2011) p38 MAP kinase is a therapeutic target for hepatic encephalopathy in rats with portacaval shunts. Gut 60:1572–1579. https://doi.org/10.1136/gut.2010.236083

    Article  CAS  PubMed  Google Scholar 

  85. Bachstetter AD, Van Eldik LJ (2010) The p38 MAP kinase family as regulators of proinflammatory cytokine production in degenerative diseases of the CNS. Aging Dis 1:199–211

    PubMed  PubMed Central  Google Scholar 

  86. Rosciszewski G, Cadena V, Murta V, Lukin J, Villarreal A, Roger T, Ramos AJ (2018) Toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells-2 (TREM-2) activation balance astrocyte polarization into a proinflammatory phenotype. Mol Neurobiol 55:3875–3888. https://doi.org/10.1007/s12035-017-0618-z

    Article  CAS  PubMed  Google Scholar 

  87. Wilhelm I, Nyúl-Tóth Á, Kozma M, Farkas AE, Krizbai IA (2017) Role of pattern recognition receptors of the neurovascular unit in inflamm-aging. Am J Physiol Heart Circ Physiol 313:H1000–H1012. https://doi.org/10.1152/ajpheart.00106.2017

    Article  CAS  PubMed  Google Scholar 

  88. Hanke ML, Kielian T (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci 121:367–387. https://doi.org/10.1042/CS20110164

    Article  CAS  Google Scholar 

  89. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801. https://doi.org/10.1016/j.cell.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  90. Gárate I, García-Bueno B, Madrigal JLM, Bravo L, Berrocoso E, Caso JR, Micó JA, Leza JC (2011) Origin and consequences of brain toll-like receptor 4 pathway stimulation in an experimental model of depression. J Neuroinflammation 8:151. https://doi.org/10.1186/1742-2094-8-151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Letiembre M, Hao W, Liu Y, Walter S, Mihaljevic I, Rivest S, Hartmann T, Fassbender K (2007) Innate immune receptor expression in normal brain aging. Neuroscience 146:248–254. https://doi.org/10.1016/j.neuroscience.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  92. Kong H, Zeng X-N, Fan Y, Yuan ST, Ge S, Xie WP, Wang H, Hu G (2014) Aquaporin-4 knockout exacerbates corticosterone-induced depression by inhibiting astrocyte function and hippocampal neurogenesis. CNS Neurosci Ther 20:391–402. https://doi.org/10.1111/cns.12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Skucas VA, Mathews IB, Yang J, Cheng Q, Treister A, Duffy AM, Verkman AS, Hempstead BL et al (2011) Impairment of select forms of spatial memory and neurotrophin-dependent synaptic plasticity by deletion of glial aquaporin-4. J Neurosci 31:6392–6397. https://doi.org/10.1523/JNEUROSCI.6249-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Galland F, Negri E, Da Ré C et al (2017) Hyperammonemia compromises glutamate metabolism and reduces BDNF in the rat hippocampus. Neurotoxicology 62:46–55. https://doi.org/10.1016/j.neuro.2017.05.006

    Article  CAS  PubMed  Google Scholar 

  95. Dhanda S, Gupta S, Halder A, Sunkaria A, Sandhir R (2018) Systemic inflammation without gliosis mediates cognitive deficits through impaired BDNF expression in bile duct ligation model of hepatic encephalopathy. Brain Behav Immun 70:214–232. https://doi.org/10.1016/j.bbi.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  96. Ahmad AS, Zhuang H, Doré S (2006) Heme oxygenase-1 protects brain from acute excitotoxicity. Neuroscience 141:1703–1708. https://doi.org/10.1016/j.neuroscience.2006.05.035

    Article  CAS  PubMed  Google Scholar 

  97. Chen-Roetling J, Kamalapathy P, Cao Y, Song W, Schipper HM, Regan RF (2017) Astrocyte heme oxygenase-1 reduces mortality and improves outcome after collagenase-induced intracerebral hemorrhage. Neurobiol Dis 102:140–146. https://doi.org/10.1016/j.nbd.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yu X, Song N, Guo X, Jiang H, Zhang H, Xie J (2016) Differences in vulnerability of neurons and astrocytes to heme oxygenase-1 modulation: implications for mitochondrial ferritin. Sci Rep 6:24200. https://doi.org/10.1038/srep24200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim Y, Park J, Choi YK (2019) The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: a review. Antioxidants 8:121. https://doi.org/10.3390/antiox8050121

    Article  CAS  PubMed Central  Google Scholar 

  100. Wegiel B, Nemeth Z, Correa-Costa M, Bulmer AC, Otterbein LE (2014) Heme oxygenase-1: a metabolic nike. Antioxid Redox Signal 20:1709–1722. https://doi.org/10.1089/ars.2013.5667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Görg B, Bidmon H-J, Häussinger D (2013) Gene expression profiling in the cerebral cortex of patients with cirrhosis with and without hepatic encephalopathy. Hepatology 57:2436–2447. https://doi.org/10.1002/hep.26265

    Article  CAS  PubMed  Google Scholar 

  102. Oenarto J, Karababa A, Castoldi M, Bidmon HJ, Görg B, Häussinger D (2016) Ammonia-induced miRNA expression changes in cultured rat astrocytes. Sci Rep 6:18493. https://doi.org/10.1038/srep18493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Warskulat U, Görg B, Bidmon H-J, Müller HW, Schliess F, Häussinger D (2002) Ammonia-induced heme oxygenase-1 expression in cultured rat astrocytes and rat brain in vivo. Glia 40:324–336. https://doi.org/10.1002/glia.10128

    Article  PubMed  Google Scholar 

  104. Görg B, Karababa A, Häussinger D (2018) Hepatic encephalopathy and astrocyte senescence. J Clin Exp Hepatol 8:294–300. https://doi.org/10.1016/j.jceh.2018.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479. https://doi.org/10.1101/gad.1971610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nagelhus EA, Amiry-Moghaddam M, Bergersen LH, Bjaalie JG, Eriksson J, Gundersen V, Leergaard TB, Morth JP et al (2013) The glia doctrine: addressing the role of glial cells in healthy brain ageing. Mech Ageing Dev 134:449–459. https://doi.org/10.1016/j.mad.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  107. Salminen A, Ojala J, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H (2011) Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J Neurosci 34:3–11. https://doi.org/10.1111/j.1460-9568.2011.07738.x

    Article  PubMed  Google Scholar 

  108. Chen QM (2000) Replicative senescence and oxidant-induced premature senescence. Beyond the control of cell cycle checkpoints. Ann N Y Acad Sci 908:111–125. https://doi.org/10.1111/j.1749-6632.2000.tb06640.x

    Article  CAS  PubMed  Google Scholar 

  109. Umapathy S, Dhiman RK, Grover S, Duseja A, Chawla YK (2014) Persistence of cognitive impairment after resolution of overt hepatic encephalopathy. Am J Gastroenterol 109:1011–1019. https://doi.org/10.1038/ajg.2014.107

    Article  PubMed  Google Scholar 

  110. Bajaj JS, Schubert CM, Heuman DM, Wade JB, Gibson DP, Topaz A, Saeian K, Hafeezullah M et al (2010) Persistence of cognitive impairment after resolution of overt hepatic encephalopathy. Gastroenterology 138:2332–2340. https://doi.org/10.1053/j.gastro.2010.02.015

    Article  PubMed  Google Scholar 

  111. Braissant O, McLin VA, Cudalbu C (2013) Ammonia toxicity to the brain. J Inherit Metab Dis 36:595–612. https://doi.org/10.1007/s10545-012-9546-2

    Article  CAS  PubMed  Google Scholar 

Download references

Code Availability

Not applicable.

Funding

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Universidade Federal do Rio Grande do Sul, and Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção (INCTEN/CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa Daniele Bobermin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All animal experiments were performed in accordance with the National Institute of Health (NIH) Guide for the Care and Use of Laboratory Animals and Brazilian Society for Neuroscience and Behavior recommendations for animal care. The experimental protocols were approved by the Federal University of Rio Grande do Sul Animal Care and Use Committee (process number 21215).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobermin, L.D., Roppa, R.H.A., Gonçalves, CA. et al. Ammonia-Induced Glial-Inflammaging. Mol Neurobiol 57, 3552–3567 (2020). https://doi.org/10.1007/s12035-020-01985-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01985-4

Keywords

Navigation