Skip to main content

Glutamine Synthetase: Role in Neurological Disorders

  • Chapter
  • First Online:
The Glutamate/GABA-Glutamine Cycle

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 13))

Abstract

Glutamine synthetase (GS) is an ATP-dependent enzyme found in most species that synthesizes glutamine from glutamate and ammonia. In brain, GS is exclusively located in astrocytes where it serves to maintain the glutamate–glutamine cycle, as well as nitrogen metabolism. Changes in the activity of GS, as well as its gene expression, along with excitotoxicity, have been identified in a number of neurological conditions. The literature describing alterations in the activation and gene expression of GS, as well as its involvement in different neurological disorders, however, is incomplete. This review summarizes changes in GS gene expression/activity and its potential contribution to the pathogenesis of several neurological disorders, including hepatic encephalopathy, ischemia, epilepsy, Alzheimer’s disease, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson’s disease, and astroglial neoplasms. This review also explores the possibility of targeting GS in the therapy of these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

Aβ:

Beta amyloid

COX-2:

Cyclooxygenase-2

EAAT:

Excitatory amino acid transporter

GABA:

γ-aminobutyric acid

GBM:

Glioblastoma multiforme

GFAP:

Glial fibrillary acidic protein

GLAST:

Glutamate-aspartate transporter

GLT-1:

Glutamate transporter-1

GS:

Glutamine synthetase

HD:

Huntington’s disease

HE:

Hepatic encephalopathy

iNOS:

Inducible nitric oxide synthase

MSO:

Methionine sulfoximine

NMDA:

N-methyl-d-aspartate

PCA:

Portacaval anastomosis

TBI:

Traumatic brain injury

References

  • Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16(25):2766–2778

    Article  CAS  PubMed  Google Scholar 

  • Akinmoladun AC, Akinrinola BL, Olaleye MT, Farombi EO (2015) Kolaviron, a Garcinia kola biflavonoid complex, protects against ischemia/reperfusion injury: pertinent mechanistic insights from biochemical and physical evaluations in rat brain. Neurochem Res 40(4):777–787. doi:10.1007/s11064-015-1527-z

    Article  CAS  PubMed  Google Scholar 

  • Aksenov MY, Aksenova MV, Butterfield DA, Hensley K, Vigo-Pelfrey C, Carney JM (1996) Glutamine synthetase-induced enhancement of beta-amyloid peptide A beta (1-40) neurotoxicity accompanied by abrogation of fibril formation and A beta fragmentation. J Neurochem 66(5):2050–2056

    Article  CAS  PubMed  Google Scholar 

  • Allen RS, Sayeed I, Cale HA, Morrison KC, Boatright JH, Pardue MT, Stein DG (2014) Severity of middle cerebral artery occlusion determines retinal deficits in rats. Exp Neurol 254:206–215. doi:10.1016/j.expneurol.2014.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Anlauf E, Derouiche A (2013) Glutamine synthetase as an astrocytic marker: its cell type and vesicle localization. Front Endocrinol (Lausanne) 4:144. doi:10.3389/fendo.2013.00144

    Google Scholar 

  • Babu CS, Ramanathan M (2009) Pre-ischemic treatment with memantine reversed the neurochemical and behavioural parameters but not energy metabolites in middle cerebral artery occluded rats. Pharmacol Biochem Behav 92(3):424–432. doi:10.1016/j.pbb.2009.01.010

    Article  CAS  PubMed  Google Scholar 

  • Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653

    Article  CAS  PubMed  Google Scholar 

  • Bame M, Pentiak PA, Needleman R, Brusilow WS (2012) Effect of sex on lifespan, disease progression, and the response to methionine sulfoximine in the SOD1 G93A mouse model for ALS. Gend Med 9(6):524–535. doi:10.1016/j.genm.2012.10.014

    Article  PubMed  Google Scholar 

  • Battaglia F, Wang HY, Ghilardi MF, Gashi E, Quartarone A, Friedman E, Nixon RA (2007) Cortical plasticity in Alzheimer’s disease in humans and rodents. Biol Psychiatry 62(12):1405–1412

    Article  CAS  PubMed  Google Scholar 

  • Baudry M, Lynch G, Gall C (1986) Induction of ornithine decarboxylase as a possible mediator of seizure-elicited changes in genomic expression in rat hippocampus. J Neurosci 6(12):3430–3435

    CAS  PubMed  Google Scholar 

  • Behrens PF, Franz P, Woodman B, Lindenberg KS, Landwehrmeyer GB (2002) Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain 125(Pt 8):1908–1922

    Article  CAS  PubMed  Google Scholar 

  • Bender AS, Norenberg MD (1996) Effects of ammonia on L-glutamate uptake in cultured astrocytes. Neurochem Res 21:567–573

    Article  CAS  PubMed  Google Scholar 

  • Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43(5):1369–1374

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Tausch A, Wagner R, Steiner J, Seeleke P, Walter M, Dobrowolny H, Bogerts B (2013) Disruption of glutamate-glutamine GABA cycle significantly impacts on suicidalbehaviour: survey of the literature and own findings on glutamine synthetase. CNS Neurol Disord Drug Targets 12(7):900–913

    Article  CAS  PubMed  Google Scholar 

  • Blei AT, Olafsson S, Therrien G, Butterworth RF (1994) Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology 19:1437–1444

    Article  CAS  PubMed  Google Scholar 

  • Bondy SC, Ali SF, Guo-Ross S (1998) Aluminum but not iron treatment induces pro-oxidant events in the rat brain. Mol Chem Neuropathol 34(2-3):219–232

    Article  CAS  PubMed  Google Scholar 

  • Bristol LA, Rothstein JD (1996) Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Ann Neurol 39(5):676–679

    Article  CAS  PubMed  Google Scholar 

  • Bristot Silvestrin R, Bambini-Junior V, Galland F, Daniele Bobermim L, Quincozes-Santos A, Torres Abib R, Zanotto C, Batassini C, Brolese G, Gonçalves CA, Riesgo R, Gottfried C (2013) Animal model of autism induced by prenatal exposure to valproate: altered glutamate metabolism in the hippocampus. Brain Res 1495:52–60. doi:10.1016/j.brainres.2012.11.048

    Article  CAS  PubMed  Google Scholar 

  • Bruneau EG, McCullumsmith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2005) Increased expression of glutaminase and glutamine synthetase mRNA in the thalamus in schizophrenia. Schizophr Res 75(1):27–34

    Article  PubMed  Google Scholar 

  • Burbaeva GS, Boksha IS, Tereshkina EB, Savushkina OK, Starodubtseva LI, Turishcheva MS (2005) Glutamate metabolizing enzymes in prefrontal cortex of Alzheimer’s disease patients. Neurochem Res 30(11):1443–1451

    Article  CAS  PubMed  Google Scholar 

  • Butterfield D, Hensley CP, Subramaniam R, Aksenov M, Aksenova M, Bummer PM, Haley BE, Carney JM (1997) Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: relevance to Alzheimer’s disease. J Neurochem 68(6):2451–2457

    Article  CAS  PubMed  Google Scholar 

  • Capocaccia L, Angelico M (1991) Fulminant hepatic failure: clinical features, etiology, epidemiology, and current management. Dig Dis Sci 36:775–779

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas-Rodríguez N, Coballase-Urrutia E, Pérez-Cruz C, Montesinos-Correa H, Rivera-Espinosa L, Sampieri A 3rd, Carmona-Aparicio L (2014) Relevance of the glutathione system in temporal lobe epilepsy: evidence in human and experimental models. Oxid Med Cell Longev 2014:759293. doi:10.1155/2014/759293

    PubMed  PubMed Central  Google Scholar 

  • Carter CJ (1981) Loss of glutamine synthetase activity in the brain in Huntington’s disease. Lancet 1(8223):782–789

    Article  CAS  PubMed  Google Scholar 

  • Carter CJ (1982) Glutamine synthetase activity in Huntington’s disease. Life Sci 31(11):1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Carter CJ (1983) Glutamine synthetase and fructose-1, 6-diphosphatase activity in the putamen of control and Huntington’s disease brain post mortem. Life Sci 32(17):1949–1955

    Article  CAS  PubMed  Google Scholar 

  • Castegna A, Palmieri L, Spera I, Porcelli V, Palmieri F, Fabis-Pedrini MJ, Kean RB, Barkhouse DA, Curtis MT, Hooper DC (2011) Oxidative stress and reduced glutamine synthetase activity in the absence of inflammation in the cortex of mice with experimental allergic encephalomyelitis. Neuroscience 185:97–105. doi:10.1016/j.neuroscience.2011.04.041

    Article  CAS  PubMed  Google Scholar 

  • Chao CC, Hu S, Tsang M, Weatherbee J, Molitor TW, Anderson WR, Peterson PK (1992) Effects of transforming growth factor-beta on murine astrocyte glutamine synthetase activity. Implications in neuronal injury. J Clin Invest 90(5):1786–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatauret N, Desjardins P, Zwingmann C, Rose C, Rao KV, Butterworth RF (2006) Direct molecular and spectroscopic evidence for increased ammonia removal capacity of skeletal muscle in acute liver failure. J Hepatol 44:1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Chiu IM, Chen A, Zheng Y, Kosaras B, Tsiftsoglou SA, Vartanian TK, Brown RH Jr, Carroll MC (2008) T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc Natl Acad Sci U S A 105(46):17913–17918. doi:10.1073/pnas.0804610105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu IM, Phatnani H, Kuligowski M, Tapia JC, Carrasco MA, Zhang M, Maniatis T, Carroll MC (2009) Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proc Natl Acad Sci U S A 106(49):20960–20965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, Myers RM, Bunney WE Jr, Akil H, Watson SJ, Jones EG (2005) Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Nat Acad Sci 102:15653–15658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung SH, Johnson MS (1984) Studies on sound-induced epilepsy in mice. Proc R Soc Lond B Biol Sci 221(1223):145–168

    Article  CAS  PubMed  Google Scholar 

  • Coronado VG, Xu L, Basavaraju SV, McGuire LC, Wald MM, Faul MD, Guzman BR, Hemphill JD (2011) Surveillance for traumatic brain injury-related deaths—United States, 1997–2007. MMWR Surveill Summ 60(5):1–32

    PubMed  Google Scholar 

  • Crunelli V, Carmignoto G, Steinhäuser C (2015) Novel astrocyte targets: new avenues for the therapeutic treatment of epilepsy. Neuroscientist 21(1):62–83. doi:10.1177/1073858414523320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351(1):56–67

    Article  CAS  PubMed  Google Scholar 

  • Dam G, Keiding S, Munk OL, Ott P, Buhl M, Vilstrup H, Bak LK, Waagepetersen HS, Schousboe A, Møller N, Sørensen M (2011) Branched-chain amino acids increase arterial blood ammonia in spite of enhanced intrinsic muscle ammonia metabolism in patients with cirrhosis and healthy subjects. Am J Physiol Gastrointest Liver Physiol 301:G269–G277. doi:10.1152/ajpgi.00062.2011

    Article  CAS  PubMed  Google Scholar 

  • Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90(3):537–548

    Article  CAS  PubMed  Google Scholar 

  • Desjardins P, Rao KV, Michalak A, Rose C, Butterworth RF (1999) Effect of portacaval anastomosis on glutamine synthetase protein and gene expression in brain, liver and skeletal muscle. Metab Brain Dis 14(4):273–280

    Article  CAS  PubMed  Google Scholar 

  • Di Giacomo C, Sorrenti V, Acquaviva R, Campisi A, Vanella G, Perez-Polo JR, Vanella A (1997) Ornithine decarboxylase activity in cerebral post-ischemic reperfusion damage: effect of methionine sulfoximine. Neurochem Res 22(9):1145–1150

    Article  PubMed  Google Scholar 

  • Dorfman D, Fernandez DC, Chianelli M, Miranda M, Aranda ML, Rosenstein RE (2013) Post-ischemic environmental enrichment protects the retina from ischemic damage in adult rats. Exp Neurol 240:146–156. doi:10.1016/j.expneurol.2012.11.017

    Article  CAS  PubMed  Google Scholar 

  • Drejer J, Benveniste H, Diemer NH, Schousboe A (1985) Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J Neurochem 45(1):145–151

    Article  CAS  PubMed  Google Scholar 

  • Dugan LL, Choi DW (1999) Excitotoxic injury in Hypoxia-Ischemia In Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Molecular, cellular and medical aspects. Basic neurochemistry, 6th ed. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Dutuit M, Didier-Bazès M, Vergnes M, Mutin M, Conjard A, Akaoka H, Belin MF, Touret M (2000) Specific alteration in the expression of glial fibrillary acidic protein, glutamate dehydrogenase, and glutamine synthetase in rats with genetic absence epilepsy. Glia 32(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Ede RJ, Williams RW (1986) Hepatic encephalopathy and cerebral edema. Semin Liver Dis 6(2):107–118

    Article  CAS  PubMed  Google Scholar 

  • Eid T, Ghosh A, Wang Y, Beckström H, Zaveri HP, Lee TS, Lai JC, Malthankar-Phatak GH, de Lanerolle NC (2008) Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats. Brain 131(Pt 8):2061–2070. doi:10.1093/brain/awn133

    Article  PubMed  PubMed Central  Google Scholar 

  • Eid T, Tu N, Lee TS, Lai JC (2013) Regulation of astrocyte glutamine synthetase in epilepsy. Neurochem Int 63(7):670–681. doi:10.1016/j.neuint.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  • Fernandez DC, Chianelli MS, Rosenstein RE (2009) Involvement of glutamate in retinal protection against ischemia/reperfusion damage induced by post-conditioning. J Neurochem 111(2):488–498. doi:10.1111/j.1471-4159.2009.06334.x

    Article  CAS  PubMed  Google Scholar 

  • Floyd RA (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J 4(9):2587–2597

    CAS  PubMed  Google Scholar 

  • Folbergrová J, Kiyota Y, Pahlmark K, Memezawa H, Smith ML, Siesjö BK (1993) Does ischemia with reperfusion lead to oxidative damage to proteins in the brain? J Cereb Blood Flow Metab 13(1):145–152

    Article  PubMed  Google Scholar 

  • Fujioka M, Taoka T, Matsuo Y, Mishima K, Ogoshi K, Kondo Y, Tsuda M, Fujiwara M, Asano T, Sakaki T, Miyasaki A, Park D, Siesjö BK (2003) Magnetic resonance imaging shows delayed ischemic striatal neurodegeneration. Ann Neurol 54(6):732–747

    Article  PubMed  Google Scholar 

  • Garrett RH, Grisham CM (2007) Biochemistry, 3rd edn. Thomas, Belmont

    Google Scholar 

  • Ghoddoussi F, Galloway MP, Jambekar A, Bame M, Needleman R, Brusilow WS (2010) Methionine sulfoximine, an inhibitor of glutamine synthetase, lowers brain glutamine and glutamate in a mouse model of ALS. J Neurol Sci 290(1-2):41–47. doi:10.1016/j.jns.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  • Girard G, Giguère JF, Butterworth RF (1993) Region-selective reductions in activities of glutamine synthetase in rat brain following portacaval anastomosis. Metab Brain Dis 8(4):207–215

    Article  CAS  PubMed  Google Scholar 

  • Gorovits R, Yakir A, Fox LE, Vardimon L (1996) Hormonal and non-hormonal regulation of glutamine synthetase in the developing neural retina. Brain Res Mol Brain Res 43(1-2):321–329

    Article  CAS  PubMed  Google Scholar 

  • Gorovits R, Avidan N, Avisar N, Shaked I, Vardimon L (1997) Glutamine synthetase protects against neuronal degeneration in injured retinal tissue. Proc Natl Acad Sci U S A 94(13):7024–7029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith OW, Meister A (1978) Differential inhibition of glutamine and γ-glutamylcysteine synthetases by α-alkyl analogs of methionine sulfoximine that induce convulsions. J Biol Chem 253:2333–2338

    CAS  PubMed  Google Scholar 

  • Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560

    CAS  PubMed  Google Scholar 

  • Harrison-Felix C, Whiteneck G, Devivo MJ, Hammond FM, Jha A (2006) Causes of death following 1 year postinjury among individuals with traumatic brain injury. J Head Trauma Rehabil 21(1):22–33

    Article  PubMed  Google Scholar 

  • Häussinger D, Görg B, Reinehr R, Schliess F (2005) Protein tyrosine nitration in hyperammonemia and hepatic encephalopathy. Metab Brain Dis 20(4):285–294

    Article  PubMed  CAS  Google Scholar 

  • Hawkins RA, Jessy J, Mans AM, De Joseph MR (1993) Effect of reducing brain glutamine synthesis on metabolic symptoms of hepatic encephalopathy. J Neurochem 60:1000–1006

    Article  CAS  PubMed  Google Scholar 

  • Hensley K, Mhatre M, Mou S, Pye QN, Stewart C, West M, Williamson KS (2006) On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid Redox Signal 8:2075–2087

    Article  CAS  PubMed  Google Scholar 

  • Herberg LJ, Rose IC, de Belleroche JS, Mintz M (1992) Ornithine decarboxylase induction and polyamine synthesis in the kindling of seizures: the effect of alpha-difluoromethylornithine. Epilepsy Res 11(1):3–7

    Article  CAS  PubMed  Google Scholar 

  • Hertz L (2013) The Glutamate Glutamine (GABA) Cycle: Importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Front Endocrinol (Lausanne) 4:59. doi:10.3389/fendo.2013.00059

    CAS  Google Scholar 

  • Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27(12):735–743

    Article  CAS  PubMed  Google Scholar 

  • Hewett SJ, Csernansky CA, Choi DW (1994) Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron 13:487–494

    Article  CAS  PubMed  Google Scholar 

  • Hilgier W (1981) Ammonia content and glutamine synthetase and glutaminase activity in the brain in experimental hepatic coma. Neuropatol Pol 19(3):351–358

    CAS  PubMed  Google Scholar 

  • Hirata T, Koehler RC, Kawaguchi T, Brusilow SW, Traystman RJ (1996) Impaired pial arteriolar reactivity to hypercapnia during hyperammonemia depends on glutamine synthesis. Stroke 27(4):729–736

    Article  CAS  PubMed  Google Scholar 

  • Hirata T, Kawaguchi T, Brusilow SW, Traystman RJ, Koehler RC (1999) Preserved hypocapnic pial arteriolar constriction during hyperammonemia by glutamine synthetase inhibition. Am J Physiol 276:H456–H463

    CAS  PubMed  Google Scholar 

  • Hołownia A, Chwiecko M, Farbiszewski R (1994) Accumulation of ammonia and changes in the activity of some ammonia metabolizing enzymes during brain ischemia/reperfusion injury in rats. Mater Med Pol 26(1):25–27

    PubMed  Google Scholar 

  • Hoofnagle JH, Carithers RL Jr, Shapiro C, Ascher N (1995) Fulminant hepatic failure: summary of a workshop. Hepatology 21:240–252

    CAS  PubMed  Google Scholar 

  • Itzen A, Blankenfeldt W, Goody RS (2011) Adenylylation: renaissance of a forgotten post-translational modification. Trends Biochem Sci 36(4):221–228. doi:10.1016/j.tibs.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  • Jalan R, Wright G, Davies NA, Hodges SJ (2007) L-Ornithine phenylacetate (OP): a novel treatment for hyperammonemia and hepatic encephalopathy. Med Hypotheses 69:1064–1069

    Article  CAS  PubMed  Google Scholar 

  • Jarrett SG, Milder JB, Liang LP, Patel M (2008) The ketogenic diet increases mitochondrial glutathione levels. J Neurochem 106(3):1044–1051. doi:10.1111/j.1471-4159.2008.05460.x

    Article  CAS  PubMed  Google Scholar 

  • Johnson WL, Goldring S, O’leary JL (1965) Behavioral, unit and slow potential changes in methionine sulfoximine seizures. Electroencephalogr Clin Neurophysiol 18:229–238

    Article  CAS  PubMed  Google Scholar 

  • Jones EA, Weissenborn K (1997) Neurology and the liver. J Neurol Neurosurg Psychiatry 63:279–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justin A, Sathishkumar M, Sudheer A, Shanthakumari S, Ramanathan M (2014) Non-hypotensive dose of telmisartan and nimodipine produced synergistic neuroprotective effect in cerebral ischemic model by attenuating brain cytokine levels. Pharmacol Biochem Behav 122:61–73. doi:10.1016/j.pbb.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  • Kalkman HO (2011) Circumstantial evidence for a role of glutamine-synthetase in suicide. Med Hypotheses 76(6):905–907. doi:10.1016/j.mehy.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  • Kanamori K, Parivar F, Ross BD (1993) A 15N NMR study of in vivo cerebral glutamine synthesis in hyperammonemic rats. NMR Biomed 6(1):21–26

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Choi KH, Baykiz AF, Gershenfeld HK (2007) Suicide candidate genes associated with bipolar disorder and schizophrenia: an exploratory gene expression profiling analysis of post mortem prefrontal cortex. BMC Genomics 8:413

    Article  PubMed  PubMed Central  Google Scholar 

  • Klempan TA, Sequeira A, Canetti L, Lalovic A, Ernst C, French-Mullen J, Turecki G (2009) Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression Mol Psychiatry 14:175–189

    Google Scholar 

  • Kosenko E, Llansola M, Montoliu C, Monfort P, Rodrigo R, Hernandez-Viadel M, Erceg S, Sanchez-Perez A, Felipo V (2003) Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem Int 43:493–499

    Article  CAS  PubMed  Google Scholar 

  • Kruchkova Y, Ben-Dror I, Herschkovitz A, David M, Yayon A, Vardimon L (2001) Basic fibroblast growth factor: a potential inhibitor of glutamine synthetase expression in injured neural tissue. J Neurochem 77(6):1641–1649

    Article  CAS  PubMed  Google Scholar 

  • Lavoie J, Giguère JF, Layrargues GP, Butterworth RF (1987) Activities of neuronal and astrocytic marker enzymes in autopsied brain tissue from patients with hepatic encephalopathy. Metab Brain Dis 2(4):283–290

    Article  CAS  PubMed  Google Scholar 

  • Le Prince G, Delaere P, Fages C, Lefrançois T, Touret M, Salanon M, Tardy M (1995) Glutamine synthetase (GS) expression is reduced in senile dementia of the Alzheimer type. Neurochem Res 20(7):859–862

    Article  PubMed  Google Scholar 

  • Lee DR, Helps SC, Gibbins IL, Nilsson M, Sims NR (2003) Losses of NG2 and NeuN immunoreactivity but not astrocytic markers during early reperfusion following severe focal cerebral ischemia. Brain Res 989(2):221–230

    Article  CAS  PubMed  Google Scholar 

  • Lee A, Lingwood BE, Bjorkman ST, Miller SM, Poronnik P, Barnett NL, Colditz P, Pow DV (2010) Rapid loss of glutamine synthetase from astrocytes in response to hypoxia: implications for excitotoxicity. J Chem Neuroanat 39(3):211–220. doi:10.1016/j.jchemneu.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Son H, Kim G, Kim S, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Kim HJ (2013) Glutamine deficiency in the prefrontal cortex increases depressive-like behaviours in male mice. J Psychiatry Neurosci 38(3):183–191. doi:10.1503/jpn.120024

    Article  PubMed  PubMed Central  Google Scholar 

  • Leite MC, Brolese G, de Almeida LM, Piñero CC, Gottfried C, Gonçalves CA (2006) Ammonia-induced alteration in S100B secretion in astrocytes is not reverted by creatine addition. Brain Res Bull 70(2):179–185

    Article  CAS  PubMed  Google Scholar 

  • Levental M, Rakić L, Rusić M (1972) Enzymes involved in the metabolism of glutamine in certain regions of the brain of paradoxical sleep-deprived rats. Arch Int Physiol Biochim 80(5):861–870

    CAS  PubMed  Google Scholar 

  • Liaw SH, Eisenberg D (1994) Structural model for the reaction mechanism of glutamine synthetase, based on five crystal structures of enzyme-substrate complexes. Biochemistry 33(3):675–681

    Article  CAS  PubMed  Google Scholar 

  • Lockwood AH, Yap EW, Wong WH (1991) Cerebral ammonia metabolism in patients with severe liver disease and minimal hepatic encephalopathy. J Cereb Blood Flow Metab 11:337–341

    Article  CAS  PubMed  Google Scholar 

  • Loeppen S, Schneider D, Gaunitz F, Gebhardt R, Kurek R, Buchmann A, Schwarz M (2002) Overexpression of glutamine synthetase is associated with beta-catenin-mutations in mouse liver tumors during promotion of hepatocarcinogenesis by phenobarbital. Cancer Res 62(20):5685–5688

    CAS  PubMed  Google Scholar 

  • Master S, Gottstein J, Blei AT (1999) Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 30:876–880

    Article  CAS  PubMed  Google Scholar 

  • Matos M, Augusto E, Oliveira CR, Agostinho P (2008) Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience 156(4):898–910. doi:10.1016/j.neuroscience.2008.08.022

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Ichikawa T, Young W, Kodama N (2008) Glutamine synthetase protects the spinal cord against hypoxia-induced and GABA(A) receptor-activated axonal depressions. Surg Neurol 70(2):122–158. doi:10.1016/j.surneu.2007.07.011

    Google Scholar 

  • McCormick D, McQuaid S, McCusker C, Allen IV (1990) A study of glutamine synthetase in normal human brain and intracranial tumours. Neuropathol Appl Neurobiol 16(3):205–211

    Article  CAS  PubMed  Google Scholar 

  • Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R, Quack G (2002) Neuroprotection by memantine against neurodegeneration induced by beta-amyloid(1-40). Brain Res 958(1):210–221

    Article  CAS  PubMed  Google Scholar 

  • Miguel-Hidalgo JJ, Waltzer R, Whittom AA, Austin MC, Rajkowska G, Stockmeier CA (2010) Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord 127(1-3):230–240. doi:10.1016/j.jad.2010.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC, Wegiel J (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25(5):663–674

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Kanamatsu T, Takezawa Y, Kohsaka S (2015) Up-regulation of glutamine synthesis in microglia activated with endotoxin. Neurosci Lett 591:99–104. doi:10.1016/j.neulet.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Stadtman ER (1984) Oxidative inactivation of glutamine synthetase subunits. Proc Natl Acad Sci USA 81:2011–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR (2010) Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia 51(5):883–890. doi:10.1111/j.1528-1167.2009.02481.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen HM, Veerhuis R, Holmqvist B, Janciauskiene S (2009) Binding and uptake of A beta1-42 by primary human astrocytes in vitro. Glia 57:978–988. doi:10.1002/glia.20822

    Article  PubMed  Google Scholar 

  • Norenberg MD (1977) A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy. Progression and reversal of the disorder. Lab Invest 36:618–627

    CAS  PubMed  Google Scholar 

  • Norenberg MD (1979) The distribution of glutamine synthetase in the rat central nervous system. J Histochem Cytochem 27:756–762

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD (1983) Immunohistochemistry of glutamine synthetase. In: Hertz L, Kvamme E, McGeer EG, Schousboe A, (eds) Glutamine, glutamate, and GABA in the central nervous system. Alan R. Liss, New York. pp 95–100

    Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD, Jayakumar AR, Rama Rao KV, Panickar KS (2007) New concepts in the mechanism of ammonia-induced astrocyte swelling. Metab Brain Dis 22(3-4):219–234

    Article  CAS  PubMed  Google Scholar 

  • Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ (2011) Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission? Mol Neurodegener 30:6–55. doi:10.1186/1750-1326-6-55

    Google Scholar 

  • Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci U S A 87(13):5144–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahlmark K, Folbergrová J, Smith ML, Siesjö BK (1993) Effects of dimethylthiourea on selective neuronal vulnerability in forebrain ischemia in rats. Stroke 24(5):731–736

    Article  CAS  PubMed  Google Scholar 

  • Pascual JM, Carceller F, Roda JM, Cerdán S (1998) Glutamate, glutamine, and GABA as substrates for the neuronal and glial compartments after focal cerebral ischemia in rats. Stroke 29(5):1048–1056

    Article  CAS  PubMed  Google Scholar 

  • Perry TL (1981) Post-mortem findings do not suggest a brain glutamine deficiency in Huntington’s disease. Lancet 1(8232):1261–1262

    Article  CAS  PubMed  Google Scholar 

  • Petito CK, Chung MC, Verkhovsky LM, Cooper AJ (1992) Brain glutamine synthetase increases following cerebral ischemia in the rat. Brain Res 569(2):275–280

    Article  CAS  PubMed  Google Scholar 

  • Phillis JW (1994) A “radical” view of cerebral ischemic injury. Prog Neurobiol 42(4):441–448

    Article  CAS  PubMed  Google Scholar 

  • Pike CJ, Ramezan-Arab N, Miller S, Cotman CW (1996) β-Amyloid increases enzyme activity and protein levels of glutamine synthetase in cultured astrocytes. Exp Neurol 139(1):167–171

    Article  CAS  PubMed  Google Scholar 

  • Pilkington GJ, Lantos PL (1982) The role of glutamine synthetase in the diagnosis of cerebral tumours. Neuropathol Appl Neurobiol 8:227–236

    Article  CAS  PubMed  Google Scholar 

  • Proler ML, Kellaway P (1962) The methionine sulfoximine syndrome in the cat. Epilepsia 3:117–130

    Article  CAS  PubMed  Google Scholar 

  • Proler ML, Kellaway P (1965) Behavioral and convulsive phenomena induced in the cat by methionine sulfoximine. Neurology 15:931–940

    Article  CAS  PubMed  Google Scholar 

  • Radford RA, Morsch M, Rayner SL, Cole NJ, Pountney DL, Chung RS (2015) The established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia. Front Cell Neurosci 9:414

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14(11):1225–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rama Rao KV, Jayakumar AR, Norenberg MD (2012) Glutamine in the pathogenesis of acute hepatic encephalopathy. Neurochem Int 61(4):575–580. doi:10.1016/j.neuint.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  • Reiner L, Misant F, Weiss P (1950) Studies on nitrogen trichioride treated prolamines. VI Suppression of the development of convulsions with methionine Arch Biochem 25:447–454

    CAS  Google Scholar 

  • Revett TJ, Baker GB, Jhamandas J, Kar S (2013) Glutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 38(1):6–23. doi:10.1503/jpn.110190

    Article  PubMed  PubMed Central  Google Scholar 

  • Richman PG, Orlowski M, Meister A (1973) Inhibition of gamma-glutamylcysteine synthetase by L-methionine-S-sulfoximine. J Biol Chem 248(19):6684–6690

    CAS  PubMed  Google Scholar 

  • Robinson SR (2000) Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochem Int 36(4-5):471–482

    Article  CAS  PubMed  Google Scholar 

  • Rosati A, Marconi S, Pollo B, Tomassini A, Lovato L, Maderna E, Maier K, Schwartz A, Rizzuto N, Padovani A, Bonetti B (2009) Epilepsy in glioblastoma multiforme: correlation with glutamine synthetase levels. J Neurooncol 93(3):319–324. doi:10.1007/s11060-008-9794-z

    Article  CAS  PubMed  Google Scholar 

  • Rosati A, Poliani PL, Todeschini A, Cominelli M, Medicina D, Cenzato M, Simoncini EL, Magrini SM, Buglione M, Grisanti S, Padovani A (2013) Glutamine synthetase expression as a valuable marker of epilepsy and longer survival in newly diagnosed glioblastoma multiforme. Neuro Oncol 15(5):618–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose C, Michalak A, Pannunzio P, Therrien G, Quack G, Kircheis G, Butterworth RF (1998) L-ornithine-L-aspartate in experimental portal-systemic encephalopathy: therapeutic efficacy and mechanism of action. Metab. Brain Dis 13:147–157

    Article  CAS  Google Scholar 

  • Rose C, Michalak A, Rao KV, Quack G, Kircheis G, Butterworth RF (1999) L-ornithine-L-aspartate lowers plasma and cerebrospinal fluid ammonia and prevents brain edema in rats with acute liver failure. Hepatology 30:636–640

    Article  CAS  PubMed  Google Scholar 

  • Rowe WB, Meister A (1970) Identification of L-methionine-S-sulfoximine as the convulsant isomer of methionine sulfoximine. Proc Natl Acad Sci U S A 66(2):500–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safwen K, Selima S, Mohamed E, Ferid L, Pascal C, Mohamed A, Ezzedine A, Meherzia M (2015) Protective effect of grape seed and skin extract on cerebral ischemia in rat: implication of transition metals. Int J Stroke 10(3):415–424. doi:10.1111/ijs.12391

    Article  PubMed  Google Scholar 

  • Sallanon M, Touret M, Didier-Bazes M, Belin MF, Tardy M, Jouvet M (1992) Paradoxical sleep deprivation increases glutamine synthetase in rat brain. C R Acad Sci III 315(3):109–114

    CAS  PubMed  Google Scholar 

  • Schatz RA, Sellinger OZ (1975) Effect of methionine and methionine sulphoximine on rat brain S-adenosyl methionine levels. J Neurochem 24(1):63–66

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    CAS  PubMed  Google Scholar 

  • Sequeira A, Mamdani F, Ernst C, Vawter MP, Bunney WE, Lebel V, Rehal S, Klempan T, Gratton A, Benkelfat C, Rouleau GA, Mechawar N, Turecki G (2009) Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS One 4, e6585. doi:10.1371/journal.pone.0006585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller C, A, Strickland DK, Ghiso J, Zlokovic BV (2000) Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106:1489–1499

    Google Scholar 

  • Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 171(6):1001–1012. Erratum in: J Cell Biol 172(6):953

    Google Scholar 

  • Smith CD, Carney JM, Starkereed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer-disease. Proc Natl Acad Sci USA 88:10540–10543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stryer L, Berg JM, Tymoczko JL (2007). Biochemistry(6th ed.). W.H. Freeman, San Francisco. pp. 679–706

    Google Scholar 

  • Suárez I, Bodega G, Arilla E, Fernández B (1996) Long-term changes in glial fibrillary acidic protein and glutamine synthetase immunoreactivities in the supraoptic nucleus of portacaval shunted rats. Metab Brain Dis 11:369–379

    Article  PubMed  Google Scholar 

  • Suárez I, Bodega G, Arilla E, Fernández B (1997) Region-selective glutamine synthetase expression in the rat central nervous system following portocaval anastomosis. Neuropathol App Neurobiol 23:254–261

    Article  Google Scholar 

  • Suarez I, Bodega G, Fernandez B (2002) Glutamine synthetase in brain: effect of ammonia. Neurochem Int 41:123–142

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto H, Koehler RC, Wilson DA, Brusilow SW, Traystman RJ (1997) Methionine sulfoximine, a glutamine synthetase inhibitor, attenuates ncreased extracellularpotassium activity during acute hyperammonemia. J Cereb Blood Flow Metab 17(1):44–49

    Article  CAS  PubMed  Google Scholar 

  • Sun HL, Zhang SH, Zhong K, Xu ZH, Feng B, Yu J, Fang Q, Wang S, Wu DC, Zhang JM, Chen Z (2013) A transient upregulation of glutamine synthetase in the dentate gyrus is involved in epileptogenesis induced by amygdala kindling in the rat. PLoS One 8(6), e66885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunil AG, Kesavanarayanan KS, Kalaivani P, Sathiya S, Ranju V, Priya RJ, Pramila B, Paul FD, Venkhatesh J, Babu CS (2011) Total oligomeric flavonoids of Cyperus rotundus ameliorates neurological deficits, excitotoxicity and behavioral alterations induced by cerebral ischemic-reperfusion injury in rats. Brain Res Bull 84(6):394–405. doi:10.1016/j.brainresbull.2011.01.008

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Koehler RC, Brusilow SW, Traystman RJ (1991) Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 261(3 Pt 2):H825–H829

    Google Scholar 

  • Takahashi H, Koehler RC, Brusilow SW, Traystman RJ (1992) Restoration of cerebrovascular CO2 responsivity by glutamine synthesis inhibition in hyperammonemic rats. Circ Res 71:1220–1230

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Kameda K, Kataoka M, Sanjou K, Harata N, Akaike N (1993) Ammonia potentiates GABAA response in dissociated rat cortical neurons. Neurosci Lett 151:51–54

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Araki M, Masuzawa T (1992) Reaction of astrocytes in the gerbil hippocampus following transient ischemia – immunohistochemical observations with antibodies against glial fibrillary acidic protein, glutamine synthetase, and S-100 protein. Exp Neurol 116:264–274

    Article  CAS  PubMed  Google Scholar 

  • Tanigami H, Rebel A, Martin LJ, Chen TY, Brusilow SW, Traystman RJ, Koehler RC (2005) Effect of glutamine synthetase inhibition on astrocyte swelling and altered astroglial protein expression during hyperammonemia in rats. Neuroscience 131(2):437–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas JW, Banner C, Whitman J, Mullen KD, Freese E (1988) Changes in glutamate-cycle enzyme mRNA levels in a rat model of hepatic encephalopathy. Metab Brain Dis 3(2):81–90

    Article  CAS  PubMed  Google Scholar 

  • Thompson MD, Dar MJ, Monga SP (2011) Pegylated interferon alpha targets Wnt signaling by inducing nuclear export of β-catenin. J Hepatol 54(3):506–512. doi:10.1016/j.jhep.2010.07.020

    Article  CAS  PubMed  Google Scholar 

  • Thorn W, Heimann J (1958) The effects of anoxia, ischemia, asphyxia and hypothermia on the ammonia level in the brain, heart, liver, kidneys and muscles. J Neurochem 2(2-3):166–177

    Article  CAS  PubMed  Google Scholar 

  • Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D, Hesdorffer DC, Hauser WA, Kazis L, Kobau R, Kroner B, Labiner D, Liow K, Logroscino G, Medina MT, Newton CR, Parko K, Paschal A, Preux PM, Sander JW, Selassie A, Theodore W, Tomson T, Wiebe S (2011) Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52(Suppl. 7):2–26. doi:10.1111/j.1528-1167.2011.03121.x

    Google Scholar 

  • Tiffany-Castiglioni EC, Peterson SL, Castiglioni AJ (1990) Alterations in glutamine synthetase activity by FeCl2-induced focal and kindled amygdaloid seizures. J Neurosci Res 25(2):223–228

    Article  CAS  PubMed  Google Scholar 

  • Toro C, Hallak J, Dunham J, Deakin J (2006) Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder. Neurosci Let 404:276–281

    Article  CAS  Google Scholar 

  • Torres-Vega MA, Vargas-Jerónimo RY, Montiel-Martínez AG, Muñoz-Fuentes RM, Zamorano-Carrillo A, Pastor AR, Palomares LA (2015) Delivery of glutamine synthetase gene by baculovirus vectors: a proof of concept for the treatment of acutehyperammonemia. Gene Ther 22(1):58–64. doi:10.1038/gt.2014.89

    Article  CAS  PubMed  Google Scholar 

  • Tumani H, Shen G, Peter JB, Brück W (1999) Glutamine synthetase in cerebrospinal fluid, serum, and brain: a diagnostic marker for Alzheimer disease? Arch Neurol 56(10):1241–1246

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg CJ (1970) Glutamate and glutamine. In: Lajtha A, (ed) Handbook in neurochemistry. Plenum, New York, pp 355–379

    Google Scholar 

  • van der Hel WS, Notenboom RG, Bos IW, van Rijen PC, van Veelen CW, de Graan PN (2005) Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy.Neurology 64(2):326–333

    Google Scholar 

  • van der Vos KE, Coffer PJ (2012) Glutamine metabolism links growth factor signaling to the regulation of autophagy. Autophagy 8(12):1862–1864. doi:10.4161/auto.22152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Vos KE, Eliasson P, Proikas-Cezanne T, Vervoort SJ, van Boxtel R, Putker M, van Zutphen IJ, Mauthe M, Zellmer S, Pals C, Verhagen LP, Groot Koerkamp MJ, Braat AK, Dansen TB, Holstege FC, Gebhardt R, Burgering BM, Coffer PJ (2012) Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy. Nat Cell Biol 14(8):829–837. doi:10.1038/ncb2536

    Article  PubMed  CAS  Google Scholar 

  • van Gassen KL, van der Hel WS, Hakvoort TB, Lamers WH, de Graan PN (2009) Haploin sufficiency of glutamine synthetase increases susceptibility to experimental febrile seizures. Genes Brain Behav 8(3):290–295. doi:10.1111/j.1601-183X.2008.00471.x

    Article  PubMed  CAS  Google Scholar 

  • Vardimon L, Fox LL, Degenstein L, Moscona AA (1988) Cell contacts are required for induction by cortisol of glutamine synthetase gene transcription in the retina. Proc Natl Acad Sci U S A 85(16):59815985

    Article  Google Scholar 

  • Veerhuis R (2011) Histological and direct evidence for the role of complement in the neuroinflammation of AD. Curr Alzheimer Res 8(1):34–58

    Article  CAS  PubMed  Google Scholar 

  • Verma R, Mishra V, Sasmal D, Raghubir R (2010) Pharmacological evaluation of glutamate transporter 1 (GLT-1) mediated neuroprotection following cerebral ischemia/reperfusion injury. Eur J Pharmacol 638(1-3):65–71. doi:10.1016/j.ejphar.2010.04.021

    Article  CAS  PubMed  Google Scholar 

  • Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228

    Article  CAS  PubMed  Google Scholar 

  • Walls AB, Waagepetersen HS, Bak LK, Schousboe A, Sonnewald U (2015) The glutamine-glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochem Res 40(2):402–429. doi:10.1007/s11064-014-1473-1

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zaveri HP, Lee TS, Eid T (2009) The development of recurrent seizures after continuous intrahippocampal infusion of methionine sulfoximine in rats: a video-intracranial electroencephalographic study. Exp Neurol 220(2):293–302. doi:10.1016/j.expneurol.2009.08.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XF, Hu WW, Yan HJ, Tan L, Gao JQ, Tian YY, Shi XJ, Hou WW, Li J, Shen Y, Chen Z (2013) Modulation of astrocytic glutamine synthetase expression and cell viability by histamine in cultured cortical astrocytes exposed to OGD insults. Neurosci Lett 549:69–73. doi:10.1016/j.neulet.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  • Waniewski RA (1992) Physiological levels of ammonia regulate glutamine synthesis from extracellular glutamate in astrocyte cultures. J Neurochem 58:167–174

    Article  CAS  PubMed  Google Scholar 

  • Warren KS, Schenker S (1964) Effect of an inhibition of glutamine synthesis (methionine sulfoximine) on ammonia toxicity and metabolism. J Lab Clin Med 64:442–449

    CAS  PubMed  Google Scholar 

  • Willard-Mack CL, Koehler RC, Hirata T, Cork LC, Takahashi H, Traystman RJ, Brusilow SW (1996) Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 71:589–599

    Article  CAS  PubMed  Google Scholar 

  • Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9:453–457

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Iwasaki Y, Sato Y, Yamamoto H, Konno H (1989) Astrocytic pathology of methionine sulfoximine-induced encephalopathy. Acta Neuropathol 77(4):357–368

    Article  CAS  PubMed  Google Scholar 

  • Zhang HY, Young AP (1991) A single upstream glucocorticoid response element juxtaposed to an AP1/ATF/CRE-like site renders the chicken glutamine synthetase gene hormonally inducible in transfected retina. J Biol Chem 266(36):24332–24338

    CAS  PubMed  Google Scholar 

  • Zhao X, Ahram A, Berman RF, Muizelaar JP, Lyeth BG (2003) Early loss of astrocytes after experimental traumatic brain injury. Glia 44(2):140–152

    Article  PubMed  Google Scholar 

  • Zieve L, Lyftogt C, Raphael D (1986) Ammonia toxicity: comparative protective effect of various arginine and ornithine derivatives, aspartate, benzoate, and carbamyl glutamate. Metab Brain Dis 1:25–35

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Wang YX, Mu HJ, Xiang J, Wu W, Zhang B, Xie P (2011) Down-regulation of glutamine synthetase enhances migration of rat astrocytes after in vitro injury. Neurochem Int 58(3):404–413. doi:10.1016/j.neuint.2010.12.018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Merit Review from the US Department of Veterans Affairs and by a National Institutes of Health grant DK063311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Norenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jayakumar, A.R., Norenberg, M.D. (2016). Glutamine Synthetase: Role in Neurological Disorders. In: Schousboe, A., Sonnewald, U. (eds) The Glutamate/GABA-Glutamine Cycle. Advances in Neurobiology, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-45096-4_13

Download citation

Publish with us

Policies and ethics