Skip to main content
Log in

Olfactory Dysfunction in CNS Neuroimmunological Disorders: a Review

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Olfactory dysfunction is deeply associated with quality of human life in the aging population. Olfactory dysfunction is an occasional presymptomatic sign of neuroimmunological multiple sclerosis, neuromyelitis optica, and systemic lupus erythematosus. Olfaction is initially processed by olfactory receptor cells that capture odor molecules, and the signals are transmitted to the glomeruli in the olfactory bulbs via olfactory nerves and processed in the primary olfactory cortex in the brain. Damage to either the olfactory receptor cells or the olfactory bulb and primary olfactory cortex may influence olfactory functioning. A close link between neuroimmunological disorders and olfactory dysfunction has been reported in patients and animal models. This review summarizes the literature data concerning olfactory dysfunction in autoimmune diseases including multiple sclerosis, neuromyelitis optica, and systemic lupus erythematosus; animal models thereof; and inflammation in the olfactory bulb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

EAE:

Experimental autoimmune encephalomyelitis

MOG:

Myelin oligodendrocyte glycoprotein

MRI:

Magnetic resonance imaging

MS:

Multiple sclerosis

NMO:

Neuromyelitis optica

OB:

Olfactory bulb

SAS:

Subarachnoid space

SLE:

Systemic lupus erythematosus

References

  1. Huttenbrink KB, Hummel T, Berg D, Gasser T, Hahner A (2013) Olfactory dysfunction: common in later life and early warning of neurodegenerative disease. Dtsch Arztebl Int 110(1–2):1–7. https://doi.org/10.3238/arztebl.2013.0001

    Article  PubMed  PubMed Central  Google Scholar 

  2. Strous RD, Shoenfeld Y (2006) To smell the immune system: olfaction, autoimmunity and brain involvement. Autoimmun Rev 6(1):54–60. https://doi.org/10.1016/j.autrev.2006.07.002

    Article  CAS  PubMed  Google Scholar 

  3. Durrant DM, Ghosh S, Klein RS (2016) The olfactory bulb: an immunosensory effector organ during neurotropic viral infections. ACS Chem Neurosci 7(4):464–469. https://doi.org/10.1021/acschemneuro.6b00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van Riel D, Verdijk R, Kuiken T (2015) The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol 235(2):277–287. https://doi.org/10.1002/path.4461

    Article  CAS  PubMed  Google Scholar 

  5. Imamura F, Hasegawa-Ishii S (2016) Environmental toxicants-induced immune responses in the olfactory mucosa. Front Immunol 7:475. https://doi.org/10.3389/fimmu.2016.00475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Becker S, Pflugbeil C, Groger M, Canis M, Ledderose GJ, Kramer MF (2012) Olfactory dysfunction in seasonal and perennial allergic rhinitis. Acta Otolaryngol 132(7):763–768. https://doi.org/10.3109/00016489.2012.656764

    Article  CAS  PubMed  Google Scholar 

  7. Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11(3):188–200. https://doi.org/10.1038/nrn2789

    Article  CAS  PubMed  Google Scholar 

  8. Dibattista M, Reisert J (2016) The odorant receptor-dependent role of olfactory marker protein in olfactory receptor neurons. J Neurosci 36(10):2995–3006. https://doi.org/10.1523/JNEUROSCI.4209-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mouret A, Murray K, Lledo PM (2009) Centrifugal drive onto local inhibitory interneurons of the olfactory bulb. Ann N Y Acad Sci 1170:239–254. https://doi.org/10.1111/j.1749-6632.2009.03913.x

    Article  CAS  PubMed  Google Scholar 

  10. Gottfried JA, Winston JS, Dolan RJ (2006) Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron 49(3):467–479. https://doi.org/10.1016/j.neuron.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  11. Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286(5440):711–715

    Article  CAS  Google Scholar 

  12. Murphy C, Schubert CR, Cruickshanks KJ, Klein BE, Klein R, Nondahl DM (2002) Prevalence of olfactory impairment in older adults. JAMA 288(18):2307–2312

    Article  Google Scholar 

  13. Doty RL, Kamath V (2014) The influences of age on olfaction: a review. Front Psychol 5:20. https://doi.org/10.3389/fpsyg.2014.00020

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ruan Y, Zheng XY, Zhang HL, Zhu W, Zhu J (2012) Olfactory dysfunctions in neurodegenerative disorders. J Neurosci Res 90(9):1693–1700. https://doi.org/10.1002/jnr.23054

    Article  CAS  PubMed  Google Scholar 

  15. Doty RL (2017) Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol 16(6):478–488. https://doi.org/10.1016/S1474-4422(17)30123-0

    Article  PubMed  Google Scholar 

  16. Pimentel ML (2016) Olfactory dysfunction as a marker of multiple sclerosis progression. Arq Neuropsiquiatr 74(9):693–694. https://doi.org/10.1590/0004-282X20160133

    Article  PubMed  Google Scholar 

  17. Bombini MF, Peres FA, Lapa AT, Sinicato NA, Quental BR, Pincelli ASM, Amaral TN, Gomes CC et al (2018) Olfactory function in systemic lupus erythematosus and systemic sclerosis. A longitudinal study and review of the literature. Autoimmun Rev 17(4):405–412. https://doi.org/10.1016/j.autrev.2018.02.002

    Article  PubMed  Google Scholar 

  18. Lassmann H (2018) Multiple sclerosis pathology. Cold Spring Harbor Perspect Med 8(3). https://doi.org/10.1101/cshperspect.a028936

    Article  Google Scholar 

  19. Oukka M (2007) Interplay between pathogenic Th17 and regulatory T cells. Ann Rheum Dis 66(Suppl 3):iii87–iii90. https://doi.org/10.1136/ard.2007.078527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Legroux L, Arbour N (2015) Multiple sclerosis and T lymphocytes: an entangled story. J NeuroImmune Pharmacol 10(4):528–546. https://doi.org/10.1007/s11481-015-9614-0

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lassmann H (2014) Mechanisms of white matter damage in multiple sclerosis. Glia 62(11):1816–1830. https://doi.org/10.1002/glia.22597

    Article  PubMed  Google Scholar 

  22. Lindner M, Klotz L, Wiendl H (2018) Mechanisms underlying lesion development and lesion distribution in CNS autoimmunity. J Neurochem 146:122–132. https://doi.org/10.1111/jnc.14339

    Article  CAS  PubMed  Google Scholar 

  23. Mars LT, Saikali P, Liblau RS, Arbour N (2011) Contribution of CD8 T lymphocytes to the immuno-pathogenesis of multiple sclerosis and its animal models. Biochim Biophys Acta 1812(2):151–161. https://doi.org/10.1016/j.bbadis.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  24. Doty RL, Li C, Mannon LJ, Yousem DM (1998) Olfactory dysfunction in multiple sclerosis. Relation to plaque load in inferior frontal and temporal lobes. Ann N Y Acad Sci 855:781–786

    Article  CAS  Google Scholar 

  25. Doty RL, Li C, Mannon LJ, Yousem DM (1999) Olfactory dysfunction in multiple sclerosis: relation to longitudinal changes in plaque numbers in central olfactory structures. Neurology 53(4):880–882

    Article  CAS  Google Scholar 

  26. Good KP, Tourbier IA, Moberg P, Cuzzocreo JL, Geckle RJ, Yousem DM, Pham DL, Doty RL (2017) Unilateral olfactory sensitivity in multiple sclerosis. Physiol Behav 168:24–30. https://doi.org/10.1016/j.physbeh.2016.10.017

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt FA, Goktas O, Harms L, Bohner G, Erb K, Dahlslett B, Fleiner F (2011) Structural correlates of taste and smell loss in encephalitis disseminata. PLoS One 6(5):e19702. https://doi.org/10.1371/journal.pone.0019702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rhiannon JJ (2008) Systemic lupus erythematosus involving the nervous system: presentation, pathogenesis, and management. Clin Rev Allergy Immunol 34(3):356–360. https://doi.org/10.1007/s12016-007-8052-z

    Article  PubMed  Google Scholar 

  29. Jafri K, Patterson SL, Lanata C (2017) Central nervous system manifestations of systemic lupus erythematosus. Rheum Dis Clin N Am 43(4):531–545. https://doi.org/10.1016/j.rdc.2017.06.003

    Article  Google Scholar 

  30. Engelhardt B, Carare RO, Bechmann I, Flugel A, Laman JD, Weller RO (2016) Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol 132(3):317–338. https://doi.org/10.1007/s00401-016-1606-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deng GM (2018) Pathogenesis of skin injury of systemic lupus erythematosus. Curr Rheumatol Rep 20(2):5. https://doi.org/10.1007/s11926-018-0713-9

    Article  CAS  PubMed  Google Scholar 

  32. Khan SQ, Khan I, Gupta V (2018) CD11b activity modulates pathogenesis of lupus nephritis. Front Med 5:52. https://doi.org/10.3389/fmed.2018.00052

    Article  Google Scholar 

  33. Tselios K, Urowitz MB (2017) Cardiovascular and pulmonary manifestations of systemic lupus erythematosus. Curr Rheumatol Rev 13(3):206–218. https://doi.org/10.2174/1573397113666170704102444

    Article  PubMed  Google Scholar 

  34. Dammacco R (2017) Systemic lupus erythematosus and ocular involvement: an overview. Clin Exp Med:135–149. https://doi.org/10.1007/s10238-017-0479-9

    Article  Google Scholar 

  35. Bugala K, Mazurek A, Gryga K, Komar M, Kopec G, Musial J, Podolec P, Perricone C et al (2018) Influence of autoimmunity and inflammation on endothelial function and thrombosis in systemic lupus erythematosus patients. Clin Rheumatol 37:2087–2093. https://doi.org/10.1007/s10067-018-4104-4

    Article  PubMed  Google Scholar 

  36. Plazak W, Pasowicz M, Kostkiewicz M, Podolec J, Tomkiewicz-Pajak L, Musial J, Podolec P (2011) Influence of chronic inflammation and autoimmunity on coronary calcifications and myocardial perfusion defects in systemic lupus erythematosus patients. Inflamm Res 60(10):973–980. https://doi.org/10.1007/s00011-011-0358-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sabbadini MG, Manfredi AA, Bozzolo E, Ferrario L, Rugarli C, Scorza R, Origgi L, Vanoli M et al (1999) Central nervous system involvement in systemic lupus erythematosus patients without overt neuropsychiatric manifestations. Lupus 8(1):11–19. https://doi.org/10.1191/096120399678847344

    Article  CAS  PubMed  Google Scholar 

  38. Sanna G, Piga M, Terryberry JW, Peltz MT, Giagheddu S, Satta L, Ahmed A, Cauli A et al (2000) Central nervous system involvement in systemic lupus erythematosus: cerebral imaging and serological profile in patients with and without overt neuropsychiatric manifestations. Lupus 9(8):573–583. https://doi.org/10.1191/096120300678828695

    Article  CAS  PubMed  Google Scholar 

  39. Appenzeller S, Pike GB, Clarke AE (2008) Magnetic resonance imaging in the evaluation of central nervous system manifestations in systemic lupus erythematosus. Clin Rev Allergy Immunol 34(3):361–366. https://doi.org/10.1007/s12016-007-8060-z

    Article  PubMed  Google Scholar 

  40. Shin T, Kojima T, Tanuma N, Ishihara Y, Matsumoto Y (1995) The subarachnoid space as a site for precursor T cell proliferation and effector T cell selection in experimental autoimmune encephalomyelitis. J Neuroimmunol 56(2):171–178

    Article  CAS  Google Scholar 

  41. Shrestha B, Jiang X, Ge S, Paul D, Chianchiano P, Pachter JS (2017) Spatiotemporal resolution of spinal meningeal and parenchymal inflammation during experimental autoimmune encephalomyelitis. Neurobiol Dis 108:159–172. https://doi.org/10.1016/j.nbd.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  42. Shin T, Ahn M, Matsumoto Y (2012) Mechanism of experimental autoimmune encephalomyelitis in Lewis rats: recent insights from macrophages. Anat Cell Biol 45(3):141–148. https://doi.org/10.5115/acb.2012.45.3.141

    Article  PubMed  PubMed Central  Google Scholar 

  43. Louveau A, Da Mesquita S, Kipnis J (2016) Lymphatics in neurological disorders: a neuro-lympho-vascular component of multiple sclerosis and Alzheimer’s disease? Neuron 91(5):957–973. https://doi.org/10.1016/j.neuron.2016.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shin T, Matsumoto Y (2001) A quantitative analysis of CD45Rlow CD4+ T cells in the subarachnoid space of Lewis rats with autoimmune encephalomyelitis. Immunol Investig 30(1):57–64

    Article  CAS  Google Scholar 

  45. Matsumoto Y, Abe S, Tsuchida M, Hirahara H, Abo T, Shin T, Tanuma N, Kojima T et al (1996) Characterization of CD4-CD8- T cell receptor alpha beta + T cells appearing in the subarachnoid space of rats with autoimmune encephalomyelitis. Eur J Immunol 26(6):1328–1334. https://doi.org/10.1002/eji.1830260623

    Article  CAS  PubMed  Google Scholar 

  46. Shin T, Kang B, Tanuma N, Matsumoto Y, Wie M, Ahn M, Kang J (2001) Intrathecal administration of endothelin-1 receptor antagonist ameliorates autoimmune encephalomyelitis in Lewis rats. Neuroreport 12(7):1465–1468

    Article  CAS  Google Scholar 

  47. Zivadinov R, Zorzon M, Monti Bragadin L, Pagliaro G, Cazzato G (1999) Olfactory loss in multiple sclerosis. J Neurol Sci 168(2):127–130

    Article  CAS  Google Scholar 

  48. Atalar AC, Erdal Y, Tekin B, Yildiz M, Akdogan O, Emre U (2018) Olfactory dysfunction in multiple sclerosis. Mult Scler Relat Disord 21:92–96. https://doi.org/10.1016/j.msard.2018.02.032

    Article  PubMed  Google Scholar 

  49. Batur Caglayan HZ, Irkec C, Nazliel B, Akyol Gurses A, Capraz I (2016) Olfactory functioning in early multiple sclerosis: Sniffin’ sticks test study. Neuropsychiatr Dis Treat 12:2143–2147. https://doi.org/10.2147/NDT.S116195

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schmidt FA, Fleiner F, Harms L, Bohner G, Erb K, Ludemann L, Dahlslett B, Goktas O (2011) Pathological changes of the chemosensory function in multiple sclerosis - an MRI study. Rofo 183(6):531–535. https://doi.org/10.1055/s-0031-1273290

    Article  CAS  PubMed  Google Scholar 

  51. Lucassen EB, Turel A, Knehans A, Huang X, Eslinger P (2016) Olfactory dysfunction in multiple sclerosis: a scoping review of the literature. Mult Scler Relat Disord 6:1–9. https://doi.org/10.1016/j.msard.2015.12.002

    Article  PubMed  Google Scholar 

  52. Uecker FC, Olze H, Kunte H, Gerz C, Goktas O, Harms L, Schmidt FA (2017) Longitudinal testing of olfactory and gustatory function in patients with multiple sclerosis. PLoS One 12(1):e0170492. https://doi.org/10.1371/journal.pone.0170492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ciurleo R, Bonanno L, De Salvo S, Romeo L, Rifici C, Sessa E, D’Aleo G, Russo M et al (2018) Olfactory dysfunction as a prognostic marker for disability progression in multiple sclerosis: an olfactory event related potential study. PLoS One 13(4):e0196006. https://doi.org/10.1371/journal.pone.0196006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hawkes CH, Shephard BC, Kobal G (1997) Assessment of olfaction in multiple sclerosis: evidence of dysfunction by olfactory evoked response and identification tests. J Neurol Neurosurg Psychiatry 63(2):145–151

    Article  CAS  Google Scholar 

  55. Erb K, Bohner G, Harms L, Goektas O, Fleiner F, Dommes E, Schmidt FA, Dahlslett B et al (2012) Olfactory function in patients with multiple sclerosis: a diffusion tensor imaging study. J Neurol Sci 316(1–2):56–60. https://doi.org/10.1016/j.jns.2012.01.031

    Article  PubMed  Google Scholar 

  56. Tanik N, Serin HI, Celikbilek A, Inan LE, Gundogdu F (2015) Olfactory bulb and olfactory sulcus depths are associated with disease duration and attack frequency in multiple sclerosis patients. J Neurol Sci 358(1–2):304–307. https://doi.org/10.1016/j.jns.2015.09.016

    Article  PubMed  Google Scholar 

  57. Yaldizli O, Penner IK, Yonekawa T, Naegelin Y, Kuhle J, Pardini M, Chard DT, Stippich C et al (2016) The association between olfactory bulb volume, cognitive dysfunction, physical disability and depression in multiple sclerosis. Eur J Neurol 23(3):510–519. https://doi.org/10.1111/ene.12891

    Article  CAS  PubMed  Google Scholar 

  58. Goektas O, Schmidt F, Bohner G, Erb K, Ludemann L, Dahlslett B, Harms L, Fleiner F (2011) Olfactory bulb volume and olfactory function in patients with multiple sclerosis. Rhinology 49(2):221–226. https://doi.org/10.4193/Rhino10.136

    Article  CAS  PubMed  Google Scholar 

  59. Zorzon M, Ukmar M, Bragadin LM, Zanier F, Antonello RM, Cazzato G, Zivadinov R (2000) Olfactory dysfunction and extent of white matter abnormalities in multiple sclerosis: a clinical and MR study. Mult Scler 6(6):386–390. https://doi.org/10.1177/135245850000600605

    Article  CAS  PubMed  Google Scholar 

  60. Schmidt FA, Maas MB, Geran R, Schmidt C, Kunte H, Ruprecht K, Paul F, Goktas O et al (2017) Olfactory dysfunction in patients with primary progressive MS. Neurol Neuroimmunol Neuroinflamm 4(4):e369. https://doi.org/10.1212/NXI.0000000000000369

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tepavcevic V, Lazarini F, Alfaro-Cervello C, Kerninon C, Yoshikawa K, Garcia-Verdugo JM, Lledo PM, Nait-Oumesmar B et al (2011) Inflammation-induced subventricular zone dysfunction leads to olfactory deficits in a targeted mouse model of multiple sclerosis. J Clin Invest 121(12):4722–4734. https://doi.org/10.1172/JCI59145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim J, Choi Y, Ahn M, Jung K, Shin T (2018) Olfactory dysfunction in autoimmune central nervous system neuroinflammation. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1001-4

    Article  CAS  Google Scholar 

  63. Schmidt F, Goktas O, Jarius S, Wildemann B, Ruprecht K, Paul F, Harms L (2013) Olfactory dysfunction in patients with neuromyelitis optica. Mult Scler Int 2013:654501. https://doi.org/10.1155/2013/654501

    Article  PubMed  PubMed Central  Google Scholar 

  64. DeLuca GC, Joseph A, George J, Yates RL, Hamard M, Hofer M, Esiri MM (2015) Olfactory pathology in central nervous system demyelinating diseases. Brain Pathol 25(5):543–551. https://doi.org/10.1111/bpa.12209

    Article  CAS  PubMed  Google Scholar 

  65. Zhang LJ, Zhao N, Fu Y, Zhang DQ, Wang J, Qin W, Zhang N, Wood K et al (2015) Olfactory dysfunction in neuromyelitis optica spectrum disorders. J Neurol 262(8):1890–1898. https://doi.org/10.1007/s00415-015-7787-3

    Article  CAS  PubMed  Google Scholar 

  66. Li LM, Guo HY, Zhao N, Zhang LJ, Zhang N, Liu J, Yang L (2018) Comparison of olfactory function between neuromyelitis optica and multiple sclerosis. Int J Neurosci 128(8):772–777. https://doi.org/10.1080/00207454.2018.1424152

    Article  PubMed  Google Scholar 

  67. Shoenfeld N, Agmon-Levin N, Flitman-Katzevman I, Paran D, Katz BS, Kivity S, Langevitz P, Zandman-Goddard G et al (2009) The sense of smell in systemic lupus erythematosus. Arthritis Rheum 60(5):1484–1487. https://doi.org/10.1002/art.24491

    Article  PubMed  Google Scholar 

  68. Dos Passos GR, Oliveira LM, da Costa BK, Apostolos-Pereira SL, Callegaro D, Fujihara K, Sato DK (2018) MOG-IgG-associated optic neuritis, encephalitis, and myelitis: lessons learned from neuromyelitis optica spectrum disorder. Front Neurol 9:217. https://doi.org/10.3389/fneur.2018.00217

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zvaifler NJ, Bluestein HG (1982) The pathogenesis of central nervous system manifestations of systemic lupus erythematosus. Arthritis Rheum 25(7):862–866

    Article  CAS  Google Scholar 

  70. Kapadia M, Stanojcic M, Earls AM, Pulapaka S, Lee J, Sakic B (2012) Altered olfactory function in the MRL model of CNS lupus. Behav Brain Res 234(2):303–311. https://doi.org/10.1016/j.bbr.2012.07.005

    Article  PubMed  Google Scholar 

  71. Kapadia M, Zhao H, Ma D, Sakic B (2017) Sustained immunosuppression alters olfactory function in the MRL model of CNS lupus. J NeuroImmune Pharmacol 12(3):555–564. https://doi.org/10.1007/s11481-017-9745-6

    Article  PubMed  Google Scholar 

  72. Attems J, Walker L, Jellinger KA (2014) Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol 127(4):459–475. https://doi.org/10.1007/s00401-014-1261-7

    Article  CAS  PubMed  Google Scholar 

  73. Meyer A, Wree A, Gunther R, Holzmann C, Schmitt O, Rolfs A, Witt M (2017) Increased regenerative capacity of the olfactory epithelium in Niemann-Pick disease type C1. Int J Mol Sci 18(4). https://doi.org/10.3390/ijms18040777

    Article  Google Scholar 

  74. Seo Y, Kim HS, Kang I, Choi SW, Shin TH, Shin JH, Lee BC, Lee JY et al (2016) Cathepsin S contributes to microglia-mediated olfactory dysfunction through the regulation of Cx3cl1-Cx3cr1 axis in a Niemann-Pick disease type C1 model. Glia 64(12):2291–2305. https://doi.org/10.1002/glia.23077

    Article  PubMed  Google Scholar 

  75. Seo Y, Kim HS, Shin Y, Kang I, Choi SW, Yu KR, Seo KW, Kang KS (2014) Excessive microglial activation aggravates olfactory dysfunction by impeding the survival of newborn neurons in the olfactory bulb of Niemann-Pick disease type C1 mice. Biochim Biophys Acta 1842(11):2193–2203. https://doi.org/10.1016/j.bbadis.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  76. Hovakimyan M, Meyer A, Lukas J, Luo J, Gudziol V, Hummel T, Rolfs A, Wree A et al (2013) Olfactory deficits in Niemann-Pick type C1 (NPC1) disease. PLoS One 8(12):e82216. https://doi.org/10.1371/journal.pone.0082216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fleiner F, Dahlslett SB, Schmidt F, Harms L, Goektas O (2010) Olfactory and gustatory function in patients with multiple sclerosis. Am J Rhinol Allergy 24(5):e93–e97. https://doi.org/10.2500/ajra.2010.24.3506

    Article  PubMed  Google Scholar 

  78. Lutterotti A, Vedovello M, Reindl M, Ehling R, DiPauli F, Kuenz B, Gneiss C, Deisenhammer F et al (2011) Olfactory threshold is impaired in early, active multiple sclerosis. Mult Scler 17(8):964–969. https://doi.org/10.1177/1352458511399798

    Article  CAS  PubMed  Google Scholar 

  79. Sokpor G, Abbas E, Rosenbusch J, Staiger JF, Tuoc T (2018) Transcriptional and epigenetic control of mammalian olfactory epithelium development. Mol Neurobiol. https://doi.org/10.1007/s12035-018-0987-y

    Article  CAS  Google Scholar 

  80. Beites CL, Kawauchi S, Crocker CE, Calof AL (2005) Identification and molecular regulation of neural stem cells in the olfactory epithelium. Exp Cell Res 306(2):309–316. https://doi.org/10.1016/j.yexcr.2005.03.027

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (Grant Number, NRF-2017R1A2B4012487).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyun Shin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, T., Kim, J., Ahn, M. et al. Olfactory Dysfunction in CNS Neuroimmunological Disorders: a Review. Mol Neurobiol 56, 3714–3721 (2019). https://doi.org/10.1007/s12035-018-1341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1341-0

Keywords

Navigation