Skip to main content
Log in

Dopaminergic Lesion in the Olfactory Bulb Restores Olfaction and Induces Depressive-Like Behaviors in a 6-OHDA Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Olfactory impairments and depressive behavior are commonly reported by individuals with Parkinson’s disease (PD) being observed before motor symptoms. The mechanisms underlying these clinical manifestations are not fully elucidated. However, the imbalance in dopaminergic neurotransmission seems to play an important role in this context. In patients and animal models of PD, an increase in the dopaminergic interneurons of the glomerular layer in olfactory bulb (OB-gl) is observed, which may contribute to the olfactory impairment. In addition, neuronal imbalance in OB is related to depressive symptoms, as demonstrated by chemical olfactory bulbectomy. In view of that, we hypothesized that a reduction in the number or density of dopaminergic neurons present in OB could promote an olfactory improvement and, in contrast, would accentuate the depressive-like behaviors in the 6-hydroxydopamine (6-OHDA) model of PD. Therefore, we performed single or double injections of 6-OHDA within the substantia nigra pars compacta (SNpc) and/or in the OB-gl. We observed that, after 7 days, the group with nigral lesion exhibited olfactory impairment, as well as the group with the lesion in the OB-gl. However, the combination of the lesions prevented the occurrence of hyposmia. In relation to depressive-like behaviors, we observed that the SNpc injury promoted depressive-like behavior, being accentuated after a double injury. Our results demonstrated the importance of the dopaminergic neurons of the OB-gl in different non-motor features of PD, since the selective reduction of these periglomerular neurons was able to induce olfactory impairment and depressive-like behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lang AE, Lozano AM (1998) Parkinson’s disease. First of two parts. N Engl J Med 339:1044–1053. https://doi.org/10.1056/NEJM199810083391506

    Article  CAS  PubMed  Google Scholar 

  2. Pringsheim T, Jette N, Frolkis A, Steeves TDL (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29:1583–1590

    Article  Google Scholar 

  3. WHO (2006) Neurological disorders public health challenges. Medicine (Baltimore) 229. https://doi.org/10.1037/e521482010-002

  4. Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T (2016) The incidence of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology 46:292–300

    Article  Google Scholar 

  5. Doty RL (2012) Olfactory dysfunction in Parkinson disease. Nat Rev Neurol 8:329–339

    Article  CAS  Google Scholar 

  6. Braak H, Rüb U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536. https://doi.org/10.1007/s00702-002-0808-2

    Article  CAS  PubMed  Google Scholar 

  7. Berendse HW, Roos DS, Raijmakers P, Doty RL (2011) Motor and non-motor correlates of olfactory dysfunction in Parkinson’s disease. J Neurol Sci 310:21–24. https://doi.org/10.1016/j.jns.2011.06.020

    Article  PubMed  Google Scholar 

  8. Lazarini F, Gabellec MM, Moigneu C, de Chaumont F, Olivo-Marin JC, Lledo PM (2014) Adult neurogenesis restores dopaminergic neuronal loss in the olfactory bulb. J Neurosci 34:14430–14442. https://doi.org/10.1523/JNEUROSCI.5366-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Knudsen K, Flensborg Damholdt M, Mouridsen K, Borghammer P (2015) Olfactory function in Parkinson’s disease—effects of training. Acta Neurol Scand 132:395–400. https://doi.org/10.1111/ane.12406

    Article  CAS  PubMed  Google Scholar 

  10. Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5:235–245. https://doi.org/10.1016/s1474-4422(06)70373-8

    Article  PubMed  Google Scholar 

  11. Modugno N, Lena F, Di Biasio F, Cerrone G, Ruggieri S, Fornai F (2013) A clinical overview of non-motor symptoms in Parkinson’s disease. Arch Ital Biol 151:148–168

    PubMed  Google Scholar 

  12. Duda JE (2010) Olfactory system pathology as a model of Lewy neurodegenerative disease. J Neurol Sci 289:49–54. https://doi.org/10.1016/j.jns.2009.08.042

    Article  CAS  PubMed  Google Scholar 

  13. Huisman E, Uylings HBM, Hoogland PV (2004) A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson’s disease. Mov Disord 19:687–692. https://doi.org/10.1002/mds.10713

    Article  PubMed  Google Scholar 

  14. Mundiñano I-C, Caballero M-C, Ordóñez C, Hernandez M, DiCaudo C, Marcilla I, Erro M-E, Tuñon M-T et al (2011) Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol 122:61–74. https://doi.org/10.1007/s00401-011-0830-2

    Article  CAS  PubMed  Google Scholar 

  15. Rodrigues LS, Targa ADS, Noseda ACD, Aurich MF, Da Cunha C, Lima MMS (2014) Olfactory impairment in the rotenone model of Parkinson’s disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation. Front Cell Neurosci 8. https://doi.org/10.3389/fncel.2014.00383

  16. Doty RL (2012) Olfaction in Parkinson’s disease and related disorders. Neurobiol Dis 46:527–552

    Article  Google Scholar 

  17. Dobkin RD, Menza M, Bienfait KL, Gara M, Marin H, Mark MH, Dicke A, Friedman J (2011) Depression in Parkinson’s disease: symptom improvement and residual symptoms after acute pharmacologic management. Am J Geriatr Psychiatry 19:222–229. https://doi.org/10.1097/JGP.0b013e3181e448f7

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aarsland D, Påhlhagen S, Ballard CG, Ehrt U, Svenningsson P (2011) Depression in Parkinson disease—epidemiology, mechanisms and management. Nat Rev Neurol 8:35–47. https://doi.org/10.1038/nrneurol.2011.189

    Article  CAS  PubMed  Google Scholar 

  19. Zahodne LB, Marsiske M, Okun MS, Bowers D (2012) Components of depression in Parkinson disease. J Geriatr Psychiatry Neurol 25:131–137. https://doi.org/10.1177/0891988712455236

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chagas MHN, Linares IMP, Garcia GJ, Hallak JEC, Tumas V, Crippa JAS (2013) Neuroimaging of depression in Parkinson’s disease: a review. Int Psychogeriatr 25:1953–1961. https://doi.org/10.1017/S1041610213001427

    Article  PubMed  Google Scholar 

  21. Ketharanathan T, Hanwella R, Weerasundera R, De Silva VA (2014) Major depressive disorder in Parkinson’s disease: a cross-sectional study from Sri Lanka. BMC Psychiatry 14:278. https://doi.org/10.1186/s12888-014-0278-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fernie BA, Kollmann J, Brown RG (2015) Cognitive behavioural interventions for depression in chronic neurological conditions: a systematic review. J Psychosom Res 78:411–419

    Article  Google Scholar 

  23. Croy I, Symmank A, Schellong J, Hummel C, Gerber J, Joraschky P, Hummel T (2014) Olfaction as a marker for depression in humans. J Affect Disord 160:80–86. https://doi.org/10.1016/j.jad.2013.12.026

    Article  PubMed  Google Scholar 

  24. Nilsson FM, Kessing LV, Sorensen TM, Andersen PK, Bolwig TG (2002) Major depressive disorder in Parkinson’s disease: a register-based study. Acta Psychiatr Scand 106:202–211. https://doi.org/10.1034/j.1600-0447.2002.02229.x

    Article  PubMed  Google Scholar 

  25. Blonder LX, Slevin JT, Kryscio RJ, Martin CA, Andersen AH, Smith CD, Schmitt FA (2013) Dopaminergic modulation of memory and affective processing in Parkinson depression. Psychiatry Res 210:146–149. https://doi.org/10.1016/j.psychres.2013.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ossowska K, Lorenc-koci E (2013) Depression in Parkinson ’ s disease. Pharmacol Rep 65:1545–1557. https://doi.org/10.1016/S1734-1140(13)71516-0

    Article  CAS  PubMed  Google Scholar 

  27. Tuon T, Valvassori SS, Dal Pont GC, Paganini CS, Pozzi BG, Luciano TF, Souza PS, Quevedo J et al (2014) Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson’s disease. Brain Res Bull 108:106–112. https://doi.org/10.1016/j.brainresbull.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  28. Atanasova B, Graux J, El Hage W, Hommet C, Camus V, Belzung C (2008) Olfaction: a potential cognitive marker of psychiatric disorders. Neurosci Biobehav Rev 32:1315–1325

    Article  Google Scholar 

  29. Negoias S, Croy I, Gerber J, Puschmann S, Petrowski K, Joraschky P, Hummel T (2010) Reduced olfactory bulb volume and olfactory sensitivity in patients with acute major depression. Neuroscience 169:415–421. https://doi.org/10.1016/j.neuroscience.2010.05.012

    Article  CAS  PubMed  Google Scholar 

  30. Oral E, Aydin MD, Aydin N, Ozcan H, Hacimuftuoglu A, Sipal S, Demirci E (2013) How olfaction disorders can cause depression? The role of habenular degeneration. Neuroscience 240:63–69. https://doi.org/10.1016/j.neuroscience.2013.02.026

    Article  CAS  PubMed  Google Scholar 

  31. Croy I, Negoias S, Symmank A, Schellong J, Joraschky P, Thomas Hummel (2013) Reduced olfactory bulb volume in adults with a history of childhood maltreatment. Chem Senses 38:679–684 . doi: https://doi.org/10.1093/chemse/bjt037

  32. Yuan TF, Slotnick BM (2014) Roles of olfactory system dysfunction in depression. Prog Neuro-Psychopharmacol Biol Psychiatry 54:26–30

    Article  Google Scholar 

  33. Marxreiter F, Regensburger M, Winkler J (2013) Adult neurogenesis in Parkinson’s disease. Cell Mol Life Sci 70:459–473

    Article  CAS  Google Scholar 

  34. Maturana MJ, Pudell C, Targa ADS, Rodrigues LS, Noseda ACD, Fortes MH, dos Santos P, Da Cunha C et al (2014) REM sleep deprivation reverses neurochemical and other depressive-like alterations induced by olfactory bulbectomy. Mol Neurobiol 51:349–360. https://doi.org/10.1007/s12035-014-8721-x

    Article  CAS  PubMed  Google Scholar 

  35. Raynaud A, Meunier N, Acquistapace A, Bombail V (2015) Chronic variable stress exposure in male Wistar rats affects the first step of olfactory detection. Behav Brain Res 291:36–45. https://doi.org/10.1016/j.bbr.2015.05.013

    Article  PubMed  Google Scholar 

  36. Lim JH, Davis GE, Wang Z, Li V, Wu Y, Rue TC, Storm DR (2009) Zicam-induced damage to mouse and human nasal tissue. PLoS One 4:e7647. https://doi.org/10.1371/journal.pone.0007647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chioca LR, Antunes VDC, Ferro MM, Losso EM, Andreatini R (2013) Anosmia does not impair the anxiolytic-like effect of lavender essential oil inhalation in mice. Life Sci 92:971–975. https://doi.org/10.1016/j.lfs.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  38. Lima MMS, Reksidler AB, Zanata SM, Machado HB, Tufik S, Vital MABF (2006) Different parkinsonism models produce a time-dependent induction of COX-2 in the substantia nigra of rats. Brain Res 1101:117–125. https://doi.org/10.1016/j.brainres.2006.05.016

  39. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. English 209. https://doi.org/10.1017/CBO9781107415324.004

  40. Soffié M, Lamberty Y (1988) Scopolamine effects on juvenile conspecific recognition in rats: Possible interaction with olfactory sensitivity. Behav Process 17:181–190. https://doi.org/10.1016/0376-6357(88)90001-0

    Article  Google Scholar 

  41. Prediger RDS, Batista LC, Takahashi RN (2005) Caffeine reverses age-related deficits in olfactory discrimination and social recognition memory in rats. Involvement of adenosine A1 and A2A receptors. Neurobiol Aging 26:957–964. https://doi.org/10.1016/j.neurobiolaging.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  42. Prediger RDS, Fernandes D, Takahashi RN (2005) Blockade of adenosine A2A receptors reverses short-term social memory impairments in spontaneously hypertensive rats. Behav Brain Res 159:197–205. https://doi.org/10.1016/j.bbr.2004.10.017

    Article  CAS  PubMed  Google Scholar 

  43. Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 121:66–72. https://doi.org/10.1007/BF02245592

    Article  CAS  PubMed  Google Scholar 

  44. Cryan JF, Page ME, Lucki I (2002) Noradrenergic lesions differentially alter the antidepressant-like effects of reboxetine in a modified forced swim test. Eur J Pharmacol 436:197–205. https://doi.org/10.1016/S0014-2999(01)01628-4

    Article  CAS  PubMed  Google Scholar 

  45. Broadhurst P.L. (1960) Experiments in psychogenetics. In: Paul R and K (ed) experiments in personality. Einsenk H.J., London, pp 52–71

  46. Papp M, Willner P, Muscat R (1991) An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology 104:255–259. https://doi.org/10.1007/BF02244188

    Article  CAS  PubMed  Google Scholar 

  47. Wang SH, Zhang ZJ, Guo YJ, Zhou H, Teng GJ, Chen BA (2009) Anhedonia and activity deficits in rats: impact of post-stroke depression. J Psychopharmacol 23:295–304. https://doi.org/10.1177/0269881108089814

    Article  CAS  PubMed  Google Scholar 

  48. Santiago RM, Barbiero J, Gradowski RW, Bochen S, Lima MMS, Da Cunha C, Andreatini R, Vital MABF (2014) Induction of depressive-like behavior by intranigral 6-OHDA is directly correlated with deficits in striatal dopamine and hippocampal serotonin. Behav Brain Res 259:70–77. https://doi.org/10.1016/j.bbr.2013.10.035

    Article  CAS  PubMed  Google Scholar 

  49. Slattery DA, Markou A, Cryan JF (2007) Evaluation of reward processes in an animal model of depression. Psychopharmacology 190:555–568. https://doi.org/10.1007/s00213-006-0630-x

    Article  CAS  PubMed  Google Scholar 

  50. Martynhak BJ, Kanazawa LKS, do NGM, Andreatini R (2015) Social interaction with rat exposed to constant light during lactation prevents depressive-like behavior induced by constant light in adulthood. Neurosci Lett 588:7–11. https://doi.org/10.1016/j.neulet.2014.12.042

    Article  CAS  PubMed  Google Scholar 

  51. Höglinger GU, Alvarez-Fischer D, Arias-Carrión O, Djufri M, Windolph A, Keber U, Borta A, Ries V et al (2015) A new dopaminergic nigro-olfactory projection. Acta Neuropathol 130:333–348. https://doi.org/10.1007/s00401-015-1451-y

    Article  CAS  PubMed  Google Scholar 

  52. Huisman E, Uylings HBM, Hoogland PV (2008) Gender-related changes in increase of dopaminergic neurons in the olfactory bulb of Parkinson’s disease patients. Mov Disord 23:1407–1413. https://doi.org/10.1002/mds.22009

    Article  PubMed  Google Scholar 

  53. Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735. https://doi.org/10.1038/nn1265

    Article  CAS  PubMed  Google Scholar 

  54. Tieu K (2011) A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb Perspect Med 1: . doi: https://doi.org/10.1101/cshperspect.a009316

  55. Salazar I, Barrios AW, SáNchez-Quinteiro P (2016) Revisiting the vomeronasal system from an integrated perspective. Anat Rec 299:1488–1491

    Article  Google Scholar 

  56. Savic I, Hedén-Blomqvist E, Berglund H (2009) Pheromone signal transduction in humans: what can be learned from olfactory loss. Hum Brain Mapp 30:3057–3065. https://doi.org/10.1002/hbm.20727

    Article  PubMed  Google Scholar 

  57. Trotier D (2011) Vomeronasal organ and human pheromones. Eur Ann Otorhinolaryngol Head Neck Dis 128:184–190. https://doi.org/10.1016/j.anorl.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  58. Keverne EB (2005) Odor here, odor there: chemosensation and reproductive function. Nat Neurosci 8:1637–1638

    Article  CAS  Google Scholar 

  59. Shepherd GM (2006) Behaviour: smells brains and hormones. Nature 439:149–151

    Article  CAS  Google Scholar 

  60. Kirik D, Rosenblad C, Björklund A (1998) Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol 152:259–277. https://doi.org/10.1006/exnr.1998.6848

    Article  CAS  PubMed  Google Scholar 

  61. Penttinen a M, Suleymanova I, Albert K, Anttila J, Voutilainen MH, Airavaara M (2016) Characterization of a new low-dose 6-hydroxydopamine model of Parkinson’s disease in rat. J Neurosci Res 328:318–328. https://doi.org/10.1002/jnr.23708

    Article  CAS  Google Scholar 

  62. Fricke IB, Viel T, Worlitzer MM, Collmann FM, Vrachimis A, Faust A, Wachsmuth L, Faber C et al (2016) 6-hydroxydopamine-induced Parkinson’s disease-like degeneration generates acute microgliosis and astrogliosis in the nigrostriatal system but no bioluminescence imaging-detectable alteration in adult neurogenesis. Eur J Neurosci 43:1352–1365. https://doi.org/10.1111/ejn.13232

    Article  PubMed  Google Scholar 

  63. Matheus FC, Rial D, Real JI, Lemos C, Ben J, Guaita GO, Pita IR, Sequeira AC et al (2016) Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats. Behav Brain Res 301:43–54. https://doi.org/10.1016/j.bbr.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  64. Hetzler BE, Swain Wautlet B (1985) Ketamine-induced locomotion in rats in an open-field. Pharmacol Biochem Behav 22:653–655. https://doi.org/10.1016/0091-3057(85)90291-6

    Article  CAS  PubMed  Google Scholar 

  65. Wilson C, Kercher M, Quinn B, Murphy A, Fiegel C, McLaurin A (2007) Effects of age and sex on ketamine-induced hyperactivity in rats. Physiol Behav 91:202–207. https://doi.org/10.1016/j.physbeh.2007.02.010

    Article  CAS  PubMed  Google Scholar 

  66. Radford KD, Park TY, Lee BH, Moran S, Osborne LA, Choi KH (2017) Dose-response characteristics of intravenous ketamine on dissociative stereotypy, locomotion, sensorimotor gating, and nociception in male Sprague-Dawley rats. Pharmacol Biochem Behav 153:130–140. https://doi.org/10.1016/j.pbb.2016.12.014

    Article  CAS  PubMed  Google Scholar 

  67. Tadaiesky MT, Dombrowski PA, Figueiredo CP, Cargnin-Ferreira E, Da Cunha C, Takahashi RN (2008) Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson’s disease. Neuroscience 156:830–840. https://doi.org/10.1016/j.neuroscience.2008.08.035

    Article  CAS  PubMed  Google Scholar 

  68. Chiu WH, Depboylu C, Hermanns G, Maurer L, Windolph A, Oertel WH, Ries V, Höglinger GU (2015) Long-term treatment with l-DOPA or pramipexole affects adult neurogenesis and corresponding non-motor behavior in a mouse model of Parkinson’s disease. Neuropharmacology 95:367–376. https://doi.org/10.1016/j.neuropharm.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  69. Santiago RM, Barbieiro J, Lima MMS, Dombrowski PA, Andreatini R, Vital MABF (2010) Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Prog Neuro-Psychopharmacol Biol Psychiatry 34:1104–1114. https://doi.org/10.1016/j.pnpbp.2010.06.004

    Article  CAS  Google Scholar 

  70. Furlanetti LL, Coenen VA, Döbrössy MD (2016) Ventral tegmental area dopaminergic lesion-induced depressive phenotype in the rat is reversed by deep brain stimulation of the medial forebrain bundle. Behav Brain Res 299:132–140. https://doi.org/10.1016/j.bbr.2015.11.036

    Article  CAS  PubMed  Google Scholar 

  71. Santiago RM, Tonin FS, Barbiero J, Zaminelli T, Boschen SL, Andreatini R, Da Cunha C, Lima MMS et al (2015) The nonsteroidal antiinflammatory drug piroxicam reverses the onset of depressive-like behavior in 6-OHDA animal model of Parkinson’s disease. Neuroscience 300:246–253. https://doi.org/10.1016/j.neuroscience.2015.05.030

    Article  CAS  PubMed  Google Scholar 

  72. Zhang QJ, Du CX, Tan HH, Zhang L, Li LB, Zhang J, Niu XL, Liu J (2015) Activation and blockade of serotonin7receptors in the prelimbic cortex regulate depressive-like behaviors in a 6-hydroxydopamine-induced Parkinson’s disease rat model. Neuroscience 311:45–55. https://doi.org/10.1016/j.neuroscience.2015.10.016

    Article  CAS  PubMed  Google Scholar 

  73. Price JL, Drevets WC (2012) Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci 16:61–71

    Article  Google Scholar 

  74. Czéh B, Fuchs E, Wiborg O, Simon M (2016) Animal models of major depression and their clinical implications. Prog Neuro-Psychopharmacol Biol Psychiatry 64:293–310. https://doi.org/10.1016/j.pnpbp.2015.04.004

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere gratitude to Fabio Roberto Caetano from Physiology Department of UFPR for the technical assistance.

Funding

This paper was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Araucária (Programa de Apoio a Núcleos de Excelência—PRONEX), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (research grant 431279/2016-0) Brazil. MMSL is recipient of CNPq fellowship (research grant 305986/2016-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo M. S. Lima.

Ethics declarations

All the experiments were carried out in accordance with the guidelines of the Committee for the Care and Use of Laboratory Animals, United States National Institutes of Health. In addition, the protocol complies with the recommendations of Federal University of Paraná and was approved by the institutional ethics committee (approval ID no. 910).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilkiw, J.L., Kmita, L.C., Targa, A.D.S. et al. Dopaminergic Lesion in the Olfactory Bulb Restores Olfaction and Induces Depressive-Like Behaviors in a 6-OHDA Model of Parkinson’s Disease. Mol Neurobiol 56, 1082–1095 (2019). https://doi.org/10.1007/s12035-018-1134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1134-5

Keywords

Navigation