Skip to main content

Advertisement

Log in

Olfactory Bulb Excitotoxicity as a Gap-Filling Mechanism Underlying the Link Between Traumatic Brain Injury-Induced Secondary Neuronal Degeneration and Parkinson’s Disease-Like Pathology

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

There is increasing preclinical and clinical data supporting a potential association between Traumatic Brain Injury (TBI) and Parkinson’s disease (PD). It has been suggested that the glutamate-induced excitotoxicity underlying TBI secondary neuronal degeneration (SND) might be associated with further development of PD. Interestingly, an accumulation of extracellular glutamate and olfactory dysfunction are both sharing pathological conditions in TBI and PD. The possible involvement of glutamate excitotoxicity in olfactory dysfunction has been recently described, however, the role of olfactory bulbs (OB) glutamate excitotoxicity as a possible mechanism involved in the association between TBI and PD-related neurodegeneration has not been investigated yet. We examined the number of nigral dopaminergic neurons (TH +), nigral α-synuclein expression, the striatal dopamine transporter (DAT) expression, and motor performance after bilateral OB N-Methyl-D-Aspartate (NMDA)-induced excitotoxic lesions in rodents. Bulbar NMDA administration induced a decrease in the number of correct choices in the discrimination tests one week after lesions (p < 0.01) and a significant decrease in the number of nigral DAergic neurons (p < 0.01) associated with an increase in α-synuclein expression (p < 0.01). No significant striatal changes in DAT expression or motor alterations were observed. Our results show an association between TBI-induced SND and PD-related neurodegeneration suggesting that the OB excitotoxicity occurring in TBI SND may be a filling gap mechanism underlying the link between TBI and PD-like pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Van Bregt DR, Thomas TC, Hinzman JM et al (2012) Substantia nigra vulnerability after a single moderate diffuse brain injury in the rat. Exp Neurol 234:8–19

    Article  PubMed  Google Scholar 

  2. Shimada R, Abe K, Furutani R, Kibayashi K (2014) Changes in dopamine transporter expression in the midbrain following traumatic brain injury: an immunohistochemical and in situ hybridization study in a mouse model. Neurol Res 36:239–246

    Article  CAS  PubMed  Google Scholar 

  3. Acosta SA, Tajiri N De la Pena I, Bastawrous M, Sanberg PR, Kaneko Y, Borlongan CV (2015) Alpha-synuclein as a pathological link between chronic traumatic Brain injury and Parkinson’s disease. J Cell Physiol 230:1024-1032

  4. Taylor KM, Saint-Hilaire MH, Sudarsky L et al (2016) Head injury at early ages is associated with risk of Parkinson’s disease. Parkinsonism Relat Disord 23:57–61

    Article  PubMed  Google Scholar 

  5. Chen YH, Huang EY, Kuo TT, Miller J, Chiang TH, Hoffer BF (2017) Impact of traumatic brain injury on dopaminergic transmission. Cell Transplant 26:1156–1158

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cruz-Haces M, Tang J, Acosta G, Fernandez J, Shi R (2017) Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl Neurodeg 6:20

    Article  Google Scholar 

  7. Delic V, Beck KD, Pang KCH, Citron BA (2020) Biological links between traumatic brain injury and Parkinson’s disease. Acta Neuropathol Comm 8:45

    Article  CAS  Google Scholar 

  8. Bower JH, Maraganore DM, Peterson BJ, McDonnell SK, Ahlskog JE, Rocca WA (2003) Head trauma preceding PD: a case-control study. Neurology 60:1610–1615

    Article  CAS  PubMed  Google Scholar 

  9. Goldman SM, Tanner CM, Oakes D, Bhudhikanok GS, Gupta A, Langston JW (2006) Head injury and Parkinson’s disease risk in twins. Ann Neurol 60:65–72

    Article  PubMed  Google Scholar 

  10. Jafari S, Etminan M, Aminzadeh F, Samii A (2013) A head injury and risk of Parkinson’s disease: a systematic review and meta-analysis. Mov Dis 28:1222–1229

    Article  Google Scholar 

  11. Gardner RC, Burke JF, Nettiksimmons J et al (2015) Traumatic brain injury in later life increases risk for Parkinson disease. Ann Neurol 77:987–995

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gardner RC, Al B, Barnes DE, Li Y, Boscardin J, Yaffe K (2018) Mild TBI and risk of Parkinson disease: A chronic effect of neurotrauma consortium study. Neurology 90:e1771–e1779

    Article  PubMed  PubMed Central  Google Scholar 

  13. Spillantini MG, Schmidt ML, Lee VM, Tojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  14. Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson’s disease. Nat Rev Neurosci 18:435–450

    Article  CAS  PubMed  Google Scholar 

  15. Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397:2284–2303

    Article  CAS  PubMed  Google Scholar 

  16. Jenkins PO, De Simoni S, Bourke NJ et al (2018) Dopaminergic abnormalities following traumatic brain injury. Brain 141:797–810

    Article  PubMed  Google Scholar 

  17. Jenkins PO, Roussakis AA, De Simoni S, Bourke N, Fleminger J, Cole J, Piccini P, Sharp D (2020) Distinct dopaminergic abnormalities in traumatic brain injury and Parkinson’s disease. J Neurol Neurosurg Psychiatry 91:631–637

    Article  PubMed  Google Scholar 

  18. Womack KB, Dubiel R, Callender L et al (2020) 123I-Iofluopane single-photon emission computed tomography as an imaging biomarker of pre-synaptic dopaminergic system after moderate-to-severe traumatic brain injury. J Neurotrauma 37:2113–2119

    Article  PubMed  Google Scholar 

  19. Donnemiller E, Brenneis C, Wissel J et al (2000) Impaired dopaminergic neurotransmission in patients with traumatic brain injury: a SPECT study using 123I–β-CIT and 123I-IBZM. Eur J Nucl Med 27:1410–1414

    Article  CAS  PubMed  Google Scholar 

  20. Haugen J, Müller ML, Kotagal V et al (2016) Prevalence of impaired odor identification in Parkinson disease with imaging evidence of nigrostriatal denervation. J Neural Transm 123:421–424

    Article  CAS  PubMed  Google Scholar 

  21. Marin C, Vilas D, Langdon C, Alobid I, López-Chacón M, Haehner A, Hummel T, Mullol J (2018) Olfactory dysfunction in neurodegeneration diseases. Curr Allergy Asthma Rep 18:42

    Article  PubMed  Google Scholar 

  22. Schofield PW, Moore TM, Gardner A (2014) Traumatic brain injury and olfaction: a systematic review. Front Neurol 5:5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Marin C, Langdon C, Alobid I, Mullol J (2020) Olfactory dysfunction in traumatic brain injury: role of neurogenesis. Curr Allergy Asthma Rep 20:55

    Article  PubMed  Google Scholar 

  24. Bae YH, Joo H, Bae J et al (2018) Brain injury induces HIF-1-alpha-dependent transcriptional activation of LRRK2 that exacerbates brain damage. Cell Death Dis 9:1125

    Article  PubMed  PubMed Central  Google Scholar 

  25. Selvakumar GP, Ahmed ME, Iyer SS et al (2020) Absence of glia maturation factor protects from axonal injury and motor behavioral impairments after traumatic brain injury. Exp Neurobiol 29:230–248

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marin C, Laxe S, Langdon C, Berenguer J, Lehrer E, Mariño-Sánchez F, Alobid I, Bernabeu M, Mullol J (2017) Olfactory function in an excitotoxic model for secondary neuronal degeneration: Role of dopaminergic interneurons. Neuroscience 364:28–44

    Article  CAS  PubMed  Google Scholar 

  27. Marin C, Laxe S, Langdon C, Alobid I, Berenguer J, Fuentes M, Bernabeu M, Mullol J (2019) Olfactory training prevents olfactory dysfunction induced by bulbar excitotoxic lesions: role of neurogenesis and dopaminergic interneurons. Mol Neurobiol 56:8063–8075

    Article  CAS  PubMed  Google Scholar 

  28. Marin C, Langdon C, Alobid I, Fuentes M, Bonastre M, Mullol J (2019) Recovery of olfactory function after excitotoxic lesion of the olfactory bulbs is associated with increases in bulbar SIRT1 and SIRT4 expressions. Mol Neurobiol 56:5643–5653

    Article  CAS  PubMed  Google Scholar 

  29. Ladak AA, Enam SA, Ibrahim M (2019) A review of the molecular mechanisms of traumatic brain injury. World Neurosurg 131:126–132

    Article  PubMed  Google Scholar 

  30. Jarrahi A, Brain M, Ahluwalia M et al (2020) Revisiting traumatic brain injury: from molecular mechanisms to therapeutic interventions. Biomedicines 8:389

    Article  CAS  PubMed Central  Google Scholar 

  31. Thapa K, Khan H, Singh TG, Kaur A (2021) Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets. J Mol Neurosci 71:1725–1742

    Article  CAS  PubMed  Google Scholar 

  32. Acosta G, Race N, Herr S, Fernandez J, Tang J, Rogers E, Shi R (2019) Acrolein-mediated alpha-synuclein pathology involvement in the early post-injury pathogenesis of mild blast-induced parkinsonian neurodegeneration. Mol Cell Neurosci 98:140–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ng SY, Lee AYW (2019) Traumatic brain injuries: Pathophysiology and potential therapeutic targets. Front Cell Neurosci 13:528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bertogliat MJ, Morris-Blanco KC, Vemuganti R (2020) Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem Int 133:104642

    Article  CAS  PubMed  Google Scholar 

  35. Faden AI, Dememdiuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800

    Article  CAS  PubMed  Google Scholar 

  36. Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur Pharmacol 698:6–18

    Article  CAS  Google Scholar 

  37. Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C (2010) Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg 113:564–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abramov AY, Duchen MR (2008) Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochim Biophys Acta 1777:953–964

    Article  CAS  PubMed  Google Scholar 

  39. Faden AI, O’Leary DM, Fan L, Bao W, Mullins PG, Movsesyan VA (2001) Selective blockade of the mGLuR1 receptor reduces traumatic neuronal injury in vitro and improves outcome after brain trauma. Exp Neurol 167:435–444

    Article  CAS  PubMed  Google Scholar 

  40. Rao VL, Dogan A, Todd KG, Bowen KK, Dempsey RJ (2001) Neuroprotection by memantine, a non-competitive NMDA receptor antagonist after traumatic brain injury in rats. Brain Res 911:96–100

    Article  CAS  PubMed  Google Scholar 

  41. Iovino L, Tremblay ME, Civiero L (2020) Glutamate induced excitotoxicity in Parkinson’s disease: The role of glial cells. J Pharmacol Sci 144:151–164

    Article  CAS  PubMed  Google Scholar 

  42. Wang J, Wang F, Mai D, Qu S (2020) Molecular mechanisms of glutamate toxicity in Parkinson’s disease. Front Neurosci 14:585584

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wu X, Meng X, Tan F, Jiao Z, Zhang X, Tong H, He X, Luo X, Xu P, Qu S (2019) Regulatory mechanisms of miR-543-3p `n GLT-1 in a mouse model of Parkinson’s disease. ACS Chem Neurosci 10:1791–1800

    Article  CAS  PubMed  Google Scholar 

  44. Pajarillo E, Rizor A, Lee J, Aschner M, Lee W (2019) The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacology 161:107559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Meng X, Jiao Z, Liu Y, Zhang X, Qu S (2019) Generation of a novel model of Parkinson’s disease via targeted knockdown of glutamate transporter GLT-1 in the substantia nigra. ACS Chem Neurosci 11:406–411

    Article  Google Scholar 

  46. Hinzman JM, Wilson JA, Mazeo AT, Bullock MR, Hartings JA (2016) Excitotoxicity and metabolic crisis are associated with spreading depolarizations in severe traumatic brain injury patients. J Neurotrauma 33:1775–1783

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dorsett CR, McGuire JL, DePasquale EA, Gardner AE, Floyd CL, McCullusmith RE (2017) Glutamate neurotransmission in rodent models of traumatic brain injury. J Neurotrauma 34:263–272

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lethbridge R, Hou Q, Harley CW, Yuan Q (2012) Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat. PLoS One 7:e35024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tatti R, Bhaukaurally K, Gschwend O, Seal RP, Edwards RH, Rodriguez I, Carleton A (2014) A population of glomerular glutamatergic neurons controls sensory information transfer in the mouse olfactory bulb. Nat Commun 5:3791

    Article  CAS  PubMed  Google Scholar 

  50. Lee JH, Wei L, Deveau TC, Gu X, Yu SP (2016) Expression of the NMDA receptor subunit GluN3A (NR3A) in the olfactory system and its regulatory role on olfaction in the adult Mouse. Brain Struct Funct 221:3259–3273

    Article  CAS  PubMed  Google Scholar 

  51. Litim N, Morissette M, Di Paolo T (2017) Metabotropic glutamate receptors as therapeutic targets in Parkinson’s disease: An update from the last 5 years of research. Neuropharmacology 115:166–179

    Article  CAS  PubMed  Google Scholar 

  52. Ardiles Y, de la Puente R, Toledo R, Isgor C, Guthrie K (2007) Response of olfactory axons to loss of synaptic targets in the adult mouse. Exp Neurol 207:275–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu H, Guthrie KM (2011) Neuronal replacement in the injured olfactory bulb. Exp Neurol 228:270–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mandairon N, Peace S, Karnow A, Kim J, Ennis M, Linster C (2008) Noradrenergic modulation in the olfactory bulb influences spontaneous and reward-motivated discrimination, but not the formation of habituation memory. Eur J Neurosci 27:1210–1219

    Article  PubMed  Google Scholar 

  55. Escanilla O, Yuhas C, Marzan D, Linster C (2009) Dopaminergic modulation of olfactory bulb processing affects odor discrimination learning in rats. Behav Neurosci 123:828–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Escanilla O, Arrellanos A, Karnow A, Ennis M, Linster C (2010) Noradrenergic modulation of behavioral odor detection and discrimination thresholds in the olfactory bulb. Eur J Neurosci 32:458–468

    Article  PubMed  Google Scholar 

  57. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  58. Mandairon N, Sacquet J, Garcia S, Ravel N, Jourdan F, Didier A (2006) Neurogenic correlates of an olfactory discrimination task in the adult olfactory bulb. Eur J Neurosci 24:3578–3588

    Article  PubMed  Google Scholar 

  59. Brushdfield AM, Luu T, Callahan B, Giblert PE (2008) A comparison of discrimination and reversal learning for olfactory and visual stimuli in aged rats. Behav Neurosci 122:54–62

    Article  Google Scholar 

  60. Pan YW, Kuo CT, Storm DR, Xia Z (2012) Inducible and targeted deletion of the ERK5 MAP kinase in adult neurogenic regions impairs adult neurogenesis in the olfactory bulb and several forms of olfactory behaviour. PLoS One 7:e49622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zou J, Pan YW, Wang Z, Chang SY, Wang W, Wang X, Tournier C, Storm DR, Xia Z (2012) Targeted deletion of ERK5 MAP kinase in the developing nervous system impairs development of GABAergic interneurons in the main olfactory bulb and behavioural discrimination between structurally similar odorants. J Neurosci 32:4118–4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang W, Lu S, Li T, Pan YW, Zou J, Abel GM, Xu L, Storm DR, Xia Z (2015) Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function. J Neurosci 35:7833–7849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pavlis M, Feretti C, Levy A, Gupta N, Linster C (2006) L-Dopa improves odor discrimination learning in rats. Physiol Behav 87:109–113

    Article  CAS  PubMed  Google Scholar 

  64. Marin C, Bonastre M, Mengod G, Cortés R, Giralt A, Obeso JA, Schapira AH (2014) Early-L-Dopa, but not pramipexole, restores basal ganglia activity in partially 6-OHDA-lesioned rats. Neurobiol Dis 64:36–47

    Article  CAS  PubMed  Google Scholar 

  65. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  CAS  PubMed  Google Scholar 

  66. Khanlou N, Moore DJ, Chana G, Cherner M, Lazzaretto D, Dawes S, Grant I, Masliah E, Everall IP (2009) Increased frequency of α-synuclein in the substantia nigra in HIV infection. J Neurovirol 15:131–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Impellizzeri D, Campolo M, Bruschetta G, Crupi R, Cordaro M, Paterniti I, Cuzzocrea S, Esposito E (2016) Traumatic Brain injury leads to development of Parkinson’s disease related pathology in mice. Front Neurosci 10:458

    Article  PubMed  PubMed Central  Google Scholar 

  68. Höglingler GU, Alvarez-Fischer D, Arias-Carrion O et al (2015) A new dopaminergic nigro-olfactory projection. Acta Neuropathol 130:333–348

    Article  Google Scholar 

  69. Aydin MD, Kanat A, Hacimuftuoglu A, Ozmen S, Ahiskalioglu A, Kocak MN (2021) A new experimental evidence that olfactory bulb lesion may be a causative factor for substantia nigra degeneration; preliminary study. Int J Neurosci 131:220–227

    Article  PubMed  Google Scholar 

  70. Lan YL, Li S, Lou JC, Ma XC, Zhang B (2019) The potential roles of dopamine in traumatic brain injury: a preclinical and clinical update. Am J Transl Res 11:2616–2631

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Uryu K, Giasson BI, Longhi L et al (2003) Age-dependent synuclein pathology following traumatic brain injury in mice. Exp Neurol 184:214–224

    Article  CAS  PubMed  Google Scholar 

  72. Hutson CB, Mortazavi LCR, F, Giza CC, Hovda D, Chesselet MF, (2011) Traumatic brain injury in adult rats causes progressive nigrostriatal dopaminergic cell loss and enhanced vulnerability to the pesticide paraquat. J Neurotrauma 28:1783–1801

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wagner AK, Sokoloski JE, Ren D et al (2005) Controlled cortical impact injury affects dopaminergic transmission in the rat striatum. J Neurochem 95:457–465

    Article  CAS  PubMed  Google Scholar 

  74. Hicks R, Soares H, Smith D, Mcintosh T (1996) Temporal and spatial characterization of neuronal injury following lateral fluid-percussion brain injury in the rat. Acta Neuropathol 91:236–246

    Article  CAS  PubMed  Google Scholar 

  75. Mallah K, Quanico J, Raffo-Romero A, Cardo T, Aboulouard S, Devos D, Kobeissy F, Zibara K, Salzet M, Fournier I (2019) Mapping spatiotemporal microproteomics landscape in experimental model of traumatic brain injury unveils a link to Parkinson’s disease. Mol Cell Prot 18:1669–1682

    Article  CAS  Google Scholar 

  76. Rudow G, O’Brien R, Savonenko AV, Resnick SM, Zonderman AB, Letnikova I, Marsh K, Dawson TM, Crain BJ, West MJ, Troncoso J (2008) Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol 115:461–470

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cheng HC, Ulane CM, Burke RE (2010) Clinical progression in Parkinson’s disease and the neurobiology of axons. Ann Neurol 67:715–725

    Article  PubMed  PubMed Central  Google Scholar 

  78. Marsden CD (1990) Parkinson’s disease. Lancet 335:948–952

    Article  CAS  PubMed  Google Scholar 

  79. Ross GW, Petrovitch H, Abbot RD, Nelson J, Markesbery W, Davis D, Hardman J, Launer L, Masaki K, Tanner CM, White LR (2004) Parkinsonian signs and substantia nigra neuron density in descendents elders without PD. Ann Neurol 56:532–539

    Article  PubMed  Google Scholar 

  80. Braak H, Del Tredici K, Rüb U, de Vos RAI, Steur ENHJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Dis 24:197–211

    Google Scholar 

  81. Uryu K, Chen XH, Martinez D et al (2007) Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in brains. Exp Neurol 208:185–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Newell KL, Boyer P, Gomez-Tortosa E, Hobbs W, Hedley-Whyte ET, Vonsattel JP, Hyman BT (1999) Alpha-synuclein immunoreactivity is present in axonal swellings in neuroaxonal dystrophy and acute traumatic brain injury. J Neuropathol Exp Neurol 58:1263–1268

    Article  CAS  PubMed  Google Scholar 

  83. Wong J, Hazrati LN (2013) Parkinson’s disease, parkinsonism, and traumatic brain injury. Crit Rev Clin Lab Sci 50:103–106

    Article  PubMed  Google Scholar 

  84. Mondello S, Buki A, Italiano D, Jeromin A (2013) Alpha-synuclein in CSF of patients with severe traumatic brain injury. Neurology 80:1662–1668

    Article  CAS  PubMed  Google Scholar 

  85. Sheng L, Stewart T, Yang D et al (2020) Erythrocytic α-synuclein acontained in microvesicles regulates astrocytic glutamate homeostasis: a new perspective on Parkinson’s disease pathogenesis. Acta Neuropathol Comm 8:102

    Article  CAS  Google Scholar 

  86. Langdon C, Lehrer E, Berenguer J, Laxe S, Alobid I, Ll Q, Mariño-Sánchez F, Bernabeu M, Marin C, Mullol J (2018) Olfactory training in post-traumatic smell impairment: mild improvement in threshold performances: results from a randomized controlled trial. J Neurotrauma 35:2641–2652

    Article  PubMed  Google Scholar 

  87. Vilas D, Tolosa E, Quintana M, Pont-Sunyer C, Santos M, Casellas A, Valldeoriola F, Compta Y, Martí MJ, Mullol J (2020) Olfaction in LRRK2 linked Parkinson’s disease: is it different from idiopathic Parkinson’s disease. J Parkinsons Dis 10:951–958

    Article  CAS  PubMed  Google Scholar 

  88. Langdon C, Alobid I, Ll Q, Valero A, Picado C, Marin C, Mullol J (2019) Self-perception of olfactory dysfunction is associated with history of traumatic brain injury: post-hoc analysis from the OLFACT survey. Rhinology 57:460–468

    Article  CAS  PubMed  Google Scholar 

  89. Ciofalo A, De Vincentii M, Iannella G, Zambetti G, Giacomelli P, Altissimi G, Greco A, Fuscini M, Pasquariello B, Magliulo G (2018) Mild traumatic brain injury: evaluation of olfactory dysfunction and clinical-neurological characteristics. Brain Inj 32:550–556

    Article  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by a research grant (110610) from Fundació La Marató TV3 and a grant from the Spanish Ministerio de Ciencia, Innovación y Universidades (PI19/00806).

Author information

Authors and Affiliations

Authors

Contributions

CM designed the project, performed the behavioral experiments, supervised the experiments, analyzed the data and wrote the manuscript; MF performed the laboratory experiments and technical assistance; IA, VT, MJR-L. performed partial data analysis and revised the manuscript; JM designed the project, supervised the experiments, performed partial data analysis, and revised the manuscript.

Corresponding authors

Correspondence to Concepció Marin or Joaquim Mullol.

Ethics declarations

Conflict of interest

All authors have no financial or proprietary interests in any material discussed in this article.

Ethical approval

All experiments were carried out following the European (2010/63/UE) and Spanish (RD 53/2013) regulation for the care and use of laboratory animals and approved by the local Government (Generalitat de Catalunya, #372/17, #373/17). The Ethics Committee from the Hospital Clinic de Barcelona approved this study.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, C., Fuentes, M., Alobid, I. et al. Olfactory Bulb Excitotoxicity as a Gap-Filling Mechanism Underlying the Link Between Traumatic Brain Injury-Induced Secondary Neuronal Degeneration and Parkinson’s Disease-Like Pathology. Neurochem Res 47, 1025–1036 (2022). https://doi.org/10.1007/s11064-021-03503-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03503-x

Keywords

Navigation