Skip to main content

Advertisement

Log in

Erythropoietin Upregulates Brain Hemoglobin Expression and Supports Neuronal Mitochondrial Activity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a neuro-inflammatory and demyelinating disease. Downregulation of neuronal mitochondrial gene expression and activity have been reported in several studies of MS. We have previously shown that hemoglobin-β (Hbb) signals to the nucleus of neurons and upregulates H3K4me3, a histone mark involved in regulating cellular metabolism and differentiation. The present study was undertaken to evaluate the effect of erythropoietin (EPO) on the upregulation of hemoglobin and mitochondrial-associated neuroprotection. We found that administering EPO (5000 IU/kg intraperitoneally) to mice upregulated brain Hbb expression, levels of H3K4me3, expression of mitochondrial complex III, complex V, and mitochondrial respiration. We also found that the neuronal mitochondrial metabolite N-acetylaspartate (NAA), a marker of neuronal mitochondrial activity, was increased with EPO treatment. Further, we measured the effects of EPO on preventing mitochondrial deficits in the cuprizone toxic demyelinating mouse model of MS. We found that EPO prevented cuprizone-mediated decreases in Hbb, complex III, and NAA. Our data suggest that EPO mediated regulation of Hbb supports neuronal energetics and may provide neuroprotection in MS and other neurodegenerative diseases where a dysfunction of mitochondria contributes to disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bjartmar C, Kidd G, Mörk S, Rudick R, Trapp BD (2000) Neurological disability correlates with spinal cord axonal loss and reduced N-acetylaspartate in chronic multiple sclerosis patients. Ann Neurol 48:893–901

    Article  PubMed  CAS  Google Scholar 

  2. De Stefano N, Narayanan S, Francis GS, Arnaoutelis R, Tartaglia MC, Antel JP, Matthews PM, Arnold DL (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 58:65–70

    Article  PubMed  Google Scholar 

  3. England JD, Gamboni F, Levinson SR, Finger TE (1990) Changed distribution of sodium channels along demyelinated axons. Proc Natl Acad Sci U S A 87:6777–6780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Stys PK (2005) General mechanisms of axonal damage and its prevention. J Neurol Sci 233:3–13

    Article  PubMed  CAS  Google Scholar 

  5. Waxman SG (2006) Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 7:932–941

    Article  PubMed  CAS  Google Scholar 

  6. Confavreux C, Vukusic S (2006) Natural history of multiple sclerosis: a unifying concept. Brain 129:606–616

    Article  PubMed  Google Scholar 

  7. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB et al (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489

    Article  PubMed  CAS  Google Scholar 

  8. Pandit A, Vadnal J, Houston S, Freeman E, McDonough J (2009) Impaired regulation of electron transport chain subunit genes by nuclear respiratory factor 2 in multiple sclerosis. J Neurol Sci 279:14–20

    Article  PubMed  CAS  Google Scholar 

  9. Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, Lassmann H, Turnbull DM et al (2011) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 69:481–492

    Article  PubMed  CAS  Google Scholar 

  10. Broadwater L, Pandit A, Azzam S, Clements R, Vadnal J, Sulak M, Yong VW, Freeman EJ et al (2011) Analysis of the mitochondrial proteome in multiple sclerosis cortex. Biochim Biophys Acta 1812:630–641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Witte ME, Nijland PG, Drexhage JA, Gerritsen W, Geerts D, van Het Hof B, Reijerkerk A, de Vries HE et al (2013) Reduced expression of PGC-1partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol 125:231–243

    Article  PubMed  CAS  Google Scholar 

  12. Ge Y, Gonen O, Inglese M, Babb JS, Markowitz CE, Grossman RI (2004) Neuronal cell injury precedes brain atrophy in multiple sclerosis. Neurology 62:624–627

    Article  PubMed  CAS  Google Scholar 

  13. Cader S, Johansen-Berg H, Wylezinska M, Palace J, Behrens TE, Smith S, Matthews PM (2007) Discordant white matter N-acetylasparate and diffusion MRI measures suggest that chronic metabolic dysfunction contributes to axonal pathology in multiple sclerosis. NeuroImage 36:19–27

    Article  PubMed  CAS  Google Scholar 

  14. Xuan Y, Yan G, Wu R, Huang Q, Li X, Xu H (2015) The cuprizone-induced changes in (1)H-MRS metabolites and oxidative parameters in C57BL/6 mouse brain: Effects of quetiapine. Neurochem Int 90:185–192

    Article  PubMed  CAS  Google Scholar 

  15. Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P (2014) Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 47:485–505

    Article  PubMed  CAS  Google Scholar 

  16. Hagemeyer N, Boretius S, Ott C, Von Streitberg A, Welpinghus H, Sperling S et al (2012) Erythropoietin attenuates neurological and histological consequences of toxic demyelination in mice. Mol Med 18:628–635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Masuda S, Okano M, Yamagishi K, Nagao M, Ueda M, Sasaki R (1994) A novel site of erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. J Biol Chem 269:19488–19493

    PubMed  CAS  Google Scholar 

  18. Knabe W, Sirén AL, Ehrenreich H, Kuhn HJ (2005) Expression patterns of erythropoietin and its receptor in the developing spinal cord and dorsal root ganglia. Anat Embryol (Berl) 210:209–219

    Article  CAS  Google Scholar 

  19. Knabe W, Knerlich F, Washausen S, Kietzmann T, Sirén AL, Brunnett G et al (2004) Expression patterns of erythropoietin and its receptor in the developing midbrain. Anat Embryol (Berl) 207:503–512

    Article  CAS  Google Scholar 

  20. Juul SE, Anderson DK, Li Y, Christensen RD (1998) Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res 43:40–49

    Article  PubMed  CAS  Google Scholar 

  21. Hassouna I, Ott C, Wüstefeld L, Offen N, Neher RA, Mitkovski M, Winkler D, Sperling S et al (2016) Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus. Mol Psychiatry 21:1752–1767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sargin D, Friedrichs H, El-Kordi A, Ehrenreich H (2010) Erythropoietin as neuroprotective and neuroregenerative treatment strategy: comprehensive overview of 12 years of preclinical and clinical research. Best Pract Res Clin Anaesthesiol 24:573–594

    Article  PubMed  CAS  Google Scholar 

  23. Siren AL, Fasshauer T, Bartels C, Ehrenreich H (2009) Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system. Neurotherapeutics 6:108–127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kumral A, Ozer E, Yilmaz O, Akhisaroglu M, Gokmen N, Duman N, Ulukus C, Genc S et al (2003) Neuroprotective effect of erythropoietin on hypoxic-ischemic brain injury in neonatal rats. Biol Neonate 83:224–228

    Article  PubMed  CAS  Google Scholar 

  25. Chattopadhyay A, Choudhury TD, Bandyopadhyay D, Datta AG (2000) Protective effect of erythropoietin on the oxidative damage of erythrocyte membrane by hydroxyl radical. Biochem Pharmacol 59:419–425

    Article  PubMed  CAS  Google Scholar 

  26. Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, Petit E (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19:643–651

    Article  PubMed  CAS  Google Scholar 

  27. Schelshorn DW, Schneider A, Kuschinsky W, Weber D, Krüger C, Dittgen T, Bürgers HF, Sabouri F et al (2009) Expression of hemoglobin in rodent neurons. J Cereb Blood Flow Metab 29:585–595

    Article  PubMed  CAS  Google Scholar 

  28. Brown N, Alkhayer K, Clements R, Singhal N, Gregory R, Azzam S, Li S, Freeman E et al (2016) Neuronal hemoglobin expression and its relevance to multiple sclerosis neuropathology. J Mol Neurosci 59:1–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Schnaitman C, Greenawalt JW (1968) Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol 38:158–175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li S, Clements R, Sulak M, Gregory R, Freeman E, McDonough J (2013) Decreased NAA in gray matter is correlated with decreased availability of acetate in white matter in postmortem multiple sclerosis cortex. Neurochem Res 38:2385–2396

    Article  PubMed  CAS  Google Scholar 

  31. Schmued L, Bowyer J, Cozart M, Heard D, Binienda Z, Paule M (2008) Introducing Black-Gold II, a highly soluble gold phosphate complex with several unique advantages for the histochemical localization of myelin. Brain Res 1229:210–217

    Article  PubMed  CAS  Google Scholar 

  32. Cervellini I, Ghezzi P, Mengozzi M (2013) Therapeutic efficacy of erythropoietin in experimental autoimmune encephalomyelitis in mice, a model of multiple sclerosis. Methods Mol Biol 982:163–173

    Article  PubMed  CAS  Google Scholar 

  33. Singhal NK, Li S, Arning E, Alkhayer K, Clements R, Sarcyk Z, Dassanayake RS, Brasch NE et al (2015) Changes in methionine metabolism and histone H3 trimethylation are linked to mitochondrial defects in multiple sclerosis. J Neurosci 35:15170–15186

    Article  PubMed  CAS  Google Scholar 

  34. Sättler MB, Merkler D, Maier K, Stadelmann C, Ehrenreich H, Bähr M et al (2004) Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ 11(Suppl 2):S181–S192

    Article  PubMed  CAS  Google Scholar 

  35. Digicaylioglu M, Lipton SA (2001) Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 412:641–647

    Article  PubMed  CAS  Google Scholar 

  36. Horng LY, Hsu PL, Chen LW, Tseng WZ, Hsu KT, Wu CL, Wu RT (2015) Activating mitochondrial function and haemoglobin expression with EH-201, an inducer of erythropoietin in neuronal cells, reverses memory impairment. Br J Pharmacol 172:4741–4756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Biagioli M, Pinto M, Cesselli D, Zaninello M, Lazarevic D, Roncaglia P et al (2009) Unexpected expression of α- and β-globin in mesencephalic dopaminergic neurons and glial cells. Proc Natl Acad Sci U S A 106:15454–15459

    Article  PubMed  PubMed Central  Google Scholar 

  38. Clark JB (1998) N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20:271–276

    Article  PubMed  CAS  Google Scholar 

  39. Signoretti S, Marmarou A, Tavazzi B, Lazzarino G, Beaumont A, Vagnozzi R (2001) N-Acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. J Neurotrauma 18:977–991

    Article  PubMed  CAS  Google Scholar 

  40. Richter F, Meurers BH, Zhu C, Medvedeva VP, Chesselet MF (2009) Neurons express hemoglobin alpha- and beta-chains in rat and human brains. J Comp Neurol 515:538–547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ferrer I, Gómez A, Carmona M, Huesa G, Porta S, Riera-Codina M et al (2011) Neuronal hemoglobin is reduced in Alzheimer’s disease, argyrophilic grain disease, Parkinson’s disease, and dementia with Lewy bodies. J Alzheimers Dis 23:537–550

    Article  PubMed  CAS  Google Scholar 

  42. Freed J, Chakrabarti L (2016) Defining a role for hemoglobin in Parkinson’s disease. NPJ Parkinsons Dis 2:16021

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the College of Arts and Sciences at Kent State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. K. Singhal or J. McDonough.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, N.K., Alkhayer, K., Shelestak, J. et al. Erythropoietin Upregulates Brain Hemoglobin Expression and Supports Neuronal Mitochondrial Activity. Mol Neurobiol 55, 8051–8058 (2018). https://doi.org/10.1007/s12035-018-0971-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0971-6

Keywords

Navigation