Skip to main content
Log in

Expression patterns of erythropoietin and its receptor in the developing spinal cord and dorsal root ganglia

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Recombinant human erythropoietin (EPO) is neuroprotective in animal models of adult spinal cord injury, and reduces apoptosis in adult dorsal root ganglia after spinal nerve crush. The present work demonstrates that spinal cord and dorsal root ganglia share dynamic expression patterns of EPO and its receptor (EPOR) during development. C57Bl mice from embryonic days (E) 8 (E8) to E19 were studied. In spinal cord and dorsal root ganglia, EPOR expression in all precursor cells preceded the expression of EPO in subsets of neurons. On E11, EPO-immunoreactive spinal motoneurons and ganglionic sensory neurons resided adjacent to EPOR-expressing radial glial cells and satellite cells, respectively. From E12 onwards, EPOR-immunoreactivity decreased in radial glial cells and, transiently, in satellite cells. Simultaneously, large-scale apoptosis of motoneurons and sensory neurons started, and subsets of neurons were labelled by antibodies against EPOR. Viable neurons expressed EPO and EPOR. Up to E12.5, apoptotic cells were EPOR-immunopositive, but variably EPO-immunonegative or EPO-immunopositive. Thereafter, EPO-immunonegative and EPOR-immunopositive apoptotic cells predominated. Our findings suggest that EPO-mediated neuron-glial and, later, neuron–neuronal interactions promote the differentiation and/or the survival of subsets of neurons and glial cells in central as well as in peripheral parts of the embryonic nervous system. Correspondingly, expression of phospho-Akt-1/protein-kinase B extensively overlapped expression sites of EPO and EPOR, but was absent from apoptotic cells. Identified other sites of EPO and/or EPOR expression include radial glial cells that transform to astrocytes, cells of the floor plate and notochord as well as neural crest-derived boundary cap cells at motor exit points and cells of the primary sympathetic chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BLBP:

Brain lipid-binding protein

EPO:

Erythropoietin

EPOR:

EPO receptor

GLAST:

Astrocyte-specific glutamate transporter

p-Akt:

Phospho-Akt-1/protein-kinase B (PKB, Ser-473)

RHuEPO:

Recombinant human EPO

TBS:

Tris-buffered saline

TBST:

TBS/Tween

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling

References

  • Arakawa Y, Sendtner M, Thoenen H (1990) Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: Comparison with other neurotrophic factors and cytokines. J Neurosci 10:3507–3515

    PubMed  CAS  Google Scholar 

  • Bauer C (1995) Erythropoietin—from gene structure to therapeutic applications. J Perinat Med 23:77–81

    Article  PubMed  CAS  Google Scholar 

  • Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave K-A, Birchmeier C, Wegner M (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15:66–78

    Article  PubMed  CAS  Google Scholar 

  • Campana WM, Myers RR (2001) Erythropoietin and erythropoietin receptors in the peripheral nervous system: changes after nerve injury. FASEB J 15:1804–1806

    PubMed  CAS  Google Scholar 

  • Campana WM, Myers RR (2003) Exogenous erythropoietin protects against dorsal root ganglion apoptosis and pain following peripheral nerve injury. Eur J Neurosci 18:1497–1506

    Article  PubMed  Google Scholar 

  • Celik M, Gökmen N, Erbayraktar S, Akhisaroglu M, Konakc S, Ulukus C, Genc S, Genc K, Sagiroglu E, Cerami A, Brines M (2002) Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci USA 99:2258–2263

    Article  PubMed  CAS  Google Scholar 

  • Chanas-Sacre G, Rogister B, Moonen G, Leprince P (2000) Radial glia phenotype: origin, regulation, and transdifferentiation. J Neurosci Res 61:357–363

    Article  PubMed  CAS  Google Scholar 

  • deLapeyrière O, Henderson CE (1997) Motoneuron differentiation, survival and synaptogenesis. Curr Opin Genet Dev 7:642–650

    Article  PubMed  Google Scholar 

  • Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signalling system in the developing mammalian CNS. Neuron 12:895–908

    Article  PubMed  CAS  Google Scholar 

  • Frade JM, Barde Y-A (1999) Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development 126:683–690

    PubMed  CAS  Google Scholar 

  • Garcès A, Haase G, Airaksinen MS, Livet J, Filippi P, deLapeyrière O (2000) GFRα1 is required for development of distinct subpopulations of motoneuron. J Neurosci 20:4992–5000

    PubMed  Google Scholar 

  • Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, Di Giulio AM, Vardar E, Cerami A, Brines M (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci USA 99:9450–9455

    Article  PubMed  CAS  Google Scholar 

  • Jelkmann W (1994) Biology of erythropoietin. Clin Invest 72:S3–S10

    CAS  Google Scholar 

  • Juul SE, Anderson DK, Li Y, Christensen RD (1998) Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res 43:40–49

    Article  PubMed  CAS  Google Scholar 

  • Juul SE, Yachnis AT, Rojiani AM, Christensen RD (1999) Immunohistochemical localization of erythropoietin and its receptor in the developing human brain. Pediatr Dev Pathol 2:148–158

    Article  PubMed  CAS  Google Scholar 

  • Knabe W, Washausen S, Brunnett G, Kuhn H-J (2002) Use of “reference series” to realign histological serial sections for three-dimensional reconstructions of the positions of cellular events in the developing brain. J Neurosci Methods 121:169–180

    Article  PubMed  Google Scholar 

  • Knabe W, Knerlich F, Washausen S, Kietzmann T, Sirén A-L, Brunnett G, Kuhn H-J, Ehrenreich H (2004) Expression patterns of erythropoietin and its receptor in the developing midbrain. Anat Embryol 207:503–512

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Takahashi M, Matsushita N, Miyazaki J, Koike M, Yaginuma H, Osumi N, Kaibuchi K, Kobayashi K (2004) Survival of developing motor neurons mediated by Rho GTPase signalling pathway through Rho-kinase. J Neurosci 24:3480–3488

    Article  PubMed  CAS  Google Scholar 

  • Krieglstein K, Richter S, Farkas L, Schuster N, Dünker N, Oppenheim RW, Unsicker K (2000) Reduction of endogenous transforming growth factors β prevents ontogenetic neuron death. Nat Neurosci 3:1085–1090

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Juul SE, Morris-Wiman JA, Calhoun DA, Christensen RD (1996) Erythropoietin receptors are expressed in the central nervous system of mid-trimester human fetuses. Pediatr Res 40:376–380

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim RW, Houenou LJ, Parsadanian AS, Prevette D, Snider WD, Shen L (2000). Glial cell line-derived neurotrophic factor and developing mammalian motoneurons: regulation of programmed cell death among motoneuron subtypes. J Neurosci 20:5001–5011

    PubMed  CAS  Google Scholar 

  • Oppenheim RW, Wiese S, Prevette D, Armanini M, Wang S, Houenou LJ, Holtmann B, Götz R, Pennica D, Sendtner M (2001) Cardiotrophin-1, a muscle-derived cytokine, is required for the survival of subpopulations of developing motoneurons. J Neurosci 21:1283–1291

    PubMed  CAS  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–84

    Article  PubMed  CAS  Google Scholar 

  • Raoul C, Henderson CE, Pettmann B (1999) Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J Cell Biol 147:1049–1061

    Article  PubMed  CAS  Google Scholar 

  • Romeis B (1989) Mikroskopische Technik. Urban und Schwarzenberg, Munich, p 697

    Google Scholar 

  • Sendtner M, Pei G, Beck M, Schweizer U, Wiese S (2000) Developmental motoneuron cell death and neurotrophic factors. Cell Tissue Res 301:71–84

    Article  PubMed  CAS  Google Scholar 

  • Shibata T, Yamada K, Watanabe M, Ikenaka K, Wada K, Tanaka K, Inoue Y (1997) Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci 17:9212–9219

    PubMed  CAS  Google Scholar 

  • Sirén A-L, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A, Mennini T, Heumann R, Cerami A, Ehrenreich H, Ghezzi P (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 98:4044–4049

    Article  PubMed  Google Scholar 

  • Vermeren M, Maro GS, Bron R, McGonnell IM, Charnay P, Topilko P, Cohen J (2003) Integrity of developing spinal motor columns is regulated by neural crest derivatives at motor exit points. Neuron 37:403–415

    Article  PubMed  CAS  Google Scholar 

  • Wakamatsu Y (2004) Understanding glial differentiation in vertebrate nervous system development. Tohoku J Exp Med 203:233–240

    Article  PubMed  CAS  Google Scholar 

  • Wakamatsu Y, Maynard TM, Weston JA (2000) Fate determination of neural crest cells by NOTCH-mediated lateral inhibition and asymmetrical cell division during gangliogenesis. Development 127:2811–2821

    PubMed  CAS  Google Scholar 

  • Washausen S, Obermayer B, Brunnett G, Kuhn H-J, Knabe W (2005) Apoptosis and proliferation in developing, mature, and regressing epibranchial placodes. Dev Biol 278:86–102

    Article  PubMed  CAS  Google Scholar 

  • White FA, Keller-Peck CR, Knudson CM, Korsmeyer SJ, Snider WD (1998) Widespread elimination of naturally occurring neuronal death in BAX-deficient mice. J Neurosci 18:1428–1439

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Henderson CE (1999) Patterns of programmed cell death in populations of developing spinal motoneurons in chicken, mouse, and rat. Dev Biol 214:60–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (KN 525/1-1, KN 525/1-2) and, in part, by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Knabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knabe, W., Sirén, AL., Ehrenreich, H. et al. Expression patterns of erythropoietin and its receptor in the developing spinal cord and dorsal root ganglia. Anat Embryol 210, 209–219 (2005). https://doi.org/10.1007/s00429-005-0019-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-005-0019-3

Keywords

Navigation