Skip to main content

Advertisement

Log in

Expression patterns of erythropoietin and its receptor in the developing midbrain

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The expression patterns of erythropoietin (EPO) and its receptor (EPOR) were investigated in the midbrain and in adjacent parts of the synencephalon and hindbrain of embryonic C57Bl mice. On embryonic (E) day 8 (E8), virtually all neuroepithelial cells expressed EPOR. After neural tube closure, subsets of these cells downregulated EPOR. In contrast, radial glial cells were EPOR-immunolabeled from E11 onwards. Simultaneously, subpopulations of early developing neurons upregulated EPO and expressed HIF-1, known to transcriptionally activate EPO. Three-dimensional reconstructions revealed subpopulations of EPO-expressing neurons: (1) in the trigeminal mesencephalic nucleus (TMN), (2) at the rostral transition of the midbrain and synencephalon, (3) in the basal plate of the midbrain, (4) in the trigeminal motor nucleus, and (5) in the trigeminal principal sensory nucleus. In the rostral midbrain and synencephalon, EPO-immunoreactive neurons were attached to EPOR-expressing radial glial cells. The identity of radial glial cells was proven by their immunoreactivity for antibodies against astrocyte-specific glutamate transporter, brain lipid-binding protein, and nestin. From E12.5 onwards EPOR was downregulated in radial glial cells. Viable neurons of the TMN continued to express EPO and upregulated EPOR. Our findings provide new evidence that components of the EPO system are present in distinct locations of the embryonic brain and, by interactions between neurons and radial glial cells as well as among clustered TMN neurons, may contribute to its morphogenesis. Whether the observed expression patterns of EPO and EPOR may reflect EPO-mediated trophic and/or antiapoptotic effects on neurons is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BLBP :

Brain lipid-binding protein

EPO :

Erythropoietin

EPOR :

EPO receptor

GLAST :

Astrocyte-specific glutamate transporter

HIF-1 :

Hypoxia-inducible factor 1

TBS :

Tris-buffered saline

TBST :

TBS/Tween

TMN :

Trigeminal mesencephalic nucleus

TUNEL :

Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling

References

  • Alley KE (1973) Quantitative analysis of the synaptogenic period in the trigeminal mesencephalic nucleus. Anat Rec 177:49–59

    CAS  PubMed  Google Scholar 

  • Alley KE (1974) Morphogenesis of the trigeminal mesencephalic nucleus in the hamster: cytogenesis and neurone death. J Embryol Exp Morph 31:99–121

    CAS  PubMed  Google Scholar 

  • Anadón R, Molist P, Rodríguez-Moldes I, López JM, Quintela I, Cervino MC, Barja P, González A (2000) Distribution of choline acetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula). J Comp Neurol 420:139–170

    Article  PubMed  Google Scholar 

  • Bauer C (1995) Erythropoietin—from gene structure to therapeutic applications. J Perinat Med 23:77–81

    CAS  PubMed  Google Scholar 

  • Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, Petit E (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19:643–651

    CAS  PubMed  Google Scholar 

  • Boissonnat JD (1988) Shape reconstruction from planar cross sections. Comput Vision Graph Image Proc 44:1-29

    Google Scholar 

  • Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, Itri LM, Cerami A (2000) Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 97:10526–10531

    Article  CAS  PubMed  Google Scholar 

  • Brunnett G, Vanco M, Haller C, Washausen S, Kuhn H-J, Knabe W (2003) Visualization of cross sectional data for morphogenetic studies. In: Dittrich K, König W, Oberweis A, Rannenberg K, Wahlster W (eds) Proceedings GI workshop “Visualisierung in der Bioinformatik”, lecture notes in informatics, vol 34. Köllen, Bonn, pp 354–359

  • Buemi M, Cavallaro E, Floccari F, Sturiale A, Aloisi C, Trimarchi M, Grasso G, Corica F, Frisina N (2002) Erythropoietin and the brain: from neurodevelopment to neuroprotection. Clin Sci (Lond) 103:275–282

    Google Scholar 

  • Campbell K, Götz M (2002) Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci 25:235–238

    Article  CAS  PubMed  Google Scholar 

  • Cerami A, Brines ML, Ghezzi P, Cerami CJ (2001) Effects of epoetin alfa on the central nervous system. Semin Oncol 28:66–70

    Article  CAS  PubMed  Google Scholar 

  • Chanas-Sacre G, Rogister B, Moonen G, Leprince P (2000) Radial glia phenotype: origin, regulation, and transdifferentiation. J Neurosci Res 61:357–363

    Article  CAS  PubMed  Google Scholar 

  • Chen EY, Fujinaga M, Giaccia AJ (1999) Hypoxic microenvironment within an embryo induces apoptosis and is essential for proper morphological development.Teratology 60:215–225

    Article  CAS  PubMed  Google Scholar 

  • Covell DA, Noden DM (1989) Embryonic development of the chick primary trigeminal sensory-motor complex. J Comp Neurol 286:488–503

    PubMed  Google Scholar 

  • Dame C, Juul SE, Christensen RD (2001) The biology of erythropoietin in the central nervous system and its neurotrophic and neuroprotective potential. Biol Neonate 79:228–235

    Article  CAS  PubMed  Google Scholar 

  • Davies AM, Thoenen H, Barde YA (1986) Different factors from the central nervous system and periphery regulate the survival of sensory neurones. Nature 319:497–499

    CAS  PubMed  Google Scholar 

  • Easter SS, Ross LS, Frankfurter A (1993) Initial tract formation in the mouse brain. J Neurosci 13:285–299

    PubMed  Google Scholar 

  • Easter SS, Burrill J, Marcus RC, Ross LS, Taylor JSH, Wilson SW (1994) Initial tract formation in the vertebrate brain. Progr Brain Res 102:79–93

    Google Scholar 

  • Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M, Rustenbeck H-H, Breiter N, Jacob S, Knerlich F, Bohn M, Poser W, Rüther E, Kochen M, Gefeller O, Gleiter C, Wessel TC, De Ryck M, Itri L, Prange H, Cerami A, Brines M, Sirén A-L (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8:495–505

    Article  CAS  Google Scholar 

  • Fan G, Copray S, Huang EJ, Jones K, Yan Q, Walro J, Jaenisch R, Kucera J (2000) Formation of a full complement of cranial proprioceptors requires multiple neurotrophins. Dev Dyn 218:359–370

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12:895–908

    CAS  PubMed  Google Scholar 

  • Hartfuss E, Galli R, Heins N, Götz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30

    Google Scholar 

  • Hinrichsen CFL, Larramendi LMH (1969) Features of trigeminal mesencephalic nucleus structure and organization. I. Light microscopy. Am J Anat 126:497–506

    CAS  PubMed  Google Scholar 

  • Hiscock J, Straznicky C (1986) The formation of axonal projections of the mesencephalic trigeminal neurones in chick embryos. J Embryol Exp Morph 93:281–290

    CAS  PubMed  Google Scholar 

  • Hunter E, Begbie J, Mason I, Graham A (2001) Early development of the mesencephalic trigeminal nucleus. Dev Dyn 222:484–493

    Article  CAS  PubMed  Google Scholar 

  • Jelkmann W (1994) Biology of erythropoietin. Clin Investig 72:S3–S10

    CAS  PubMed  Google Scholar 

  • Juul SE, Anderson DK, Li Y, Christensen RD (1998) Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res 43:40–49

    CAS  PubMed  Google Scholar 

  • Juul SE, Yachnis AT, Rojiani AM, Christensen RD (1999) Immunohistochemical localization of erythropoietin and its receptor in the developing human brain. Pediatr Dev Pathol 2:148–158

    Article  CAS  PubMed  Google Scholar 

  • Kietzmann T, Roth U, Jungermann K (1999) Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood 94:4177–4185

    CAS  PubMed  Google Scholar 

  • Kietzmann T, Knabe W, Schmidt-Kastner R (2001) Hypoxia and hypoxia-inducible factor modulated gene expression in brain: involvement in neuroprotection and cell death. Eur Arch Psychiatry Clin Neurosci 251:170–178

    Article  CAS  PubMed  Google Scholar 

  • Knabe W, Süss M, Kuhn H-J (2000) The patterns of cell death and of macrophages in the developing forebrain of the tree shrew Tupaia belangeri. Anat Embryol 201:157–168

    CAS  PubMed  Google Scholar 

  • Knabe W, Washausen S, Brunnett G, Kuhn H-J (2002) Use of “reference series” to realign histological serial sections for three-dimensional reconstructions of the positions of cellular events in the developing brain. J Neurosci Methods 121:169–180

    Article  PubMed  Google Scholar 

  • Kuratani S, Tanaka S, Ishikawa Y, Zukeran C (1988) Early development of the hypoglossal nerve in the chick embryo as observed by the whole-mount nerve staining method. Am J Anat 182:155–168

    CAS  PubMed  Google Scholar 

  • Lee YM, Jeong C-H, Koo S-Y, Son MJ, Song HS, Bae S-K, Raleigh JA, Chung H-Y, Yoo M-A, Kim K-W (2001) Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev Dyn 220:175–186

    CAS  Google Scholar 

  • Li Y, Juul SE, Morris-Wiman JA, Calhoun DA, Christensen RD (1996) Erythropoietin receptors are expressed in the central nervous system of mid-trimester human fetuses. Pediatr Res 40:376–380

    CAS  PubMed  Google Scholar 

  • Liu Z-Y, Chin K, Noguchi CT (1994) Tissue specific expression of human erythropoietin receptor in transgenic mice. Dev Biol 166:159–169

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Shen K, Liu Z, Noguchi CT (1997) Regulated human erythropoietin receptor expression in mouse brain. J Biol Chem 272:32395–32400

    Article  CAS  PubMed  Google Scholar 

  • Minet E, Michel G, Remacle J, Michiels C (2000) Role of HIF-1 as a transcription factor involved in embryonic development, cancer progression and apoptosis (Review). Int J Mol Med 5:253–259

    CAS  PubMed  Google Scholar 

  • Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76:105–116

    Article  CAS  PubMed  Google Scholar 

  • Narayanan CH, Narayanan Y (1978) Determination of the embryonic origin of the mesencephalic nucleus of the trigeminal nerve in birds. J Embryol Exp Morphol 43:85–105

    CAS  PubMed  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–84

    CAS  PubMed  Google Scholar 

  • Rogers LA, Cowan WM (1973) The development of the mesencephalic nucleus of the trigeminal nerve in the chick. J Comp Neurol 147:291–320

    CAS  PubMed  Google Scholar 

  • Romeis B (1989) Mikroskopische Technik. Böck P (ed). 17th edn. Urban, Baltimore, pp 697

  • Ryan HE, Lo J, Johnson RS (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17:3005–3015

    CAS  PubMed  Google Scholar 

  • Sakanaka M, Wen T-C, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA 95:4635–4640

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual. 3rd edn. Cold Spring Press, Oxford, pp 2100

    Google Scholar 

  • Sanchez V, Ferrán JL, Pereyra-Alfonso S, Scicolone G, Rapacioli M, Flores V (2002) Developmental changes in the spatial pattern of mesencephalic trigeminal nucleus (Mes5) neuron populations in the developing chick optic tectum. J Comp Neurol 448:337–348

    Article  PubMed  Google Scholar 

  • Shingo T, Sorokan ST, Shimazaki T, Weiss S (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 21:9733–9743

    CAS  PubMed  Google Scholar 

  • Sirén A-L, Ehrenreich H (2001) Erythropoietin—a novel concept for neuroprotection. Eur Arch Psychiatry Clin Neurosci 251:179–184

    Article  PubMed  Google Scholar 

  • Sirén A-L, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A, Mennini T, Heumann R, Cerami A, Ehrenreich H, Ghezzi P (2001A) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 98:4044–4049

    PubMed  Google Scholar 

  • Sirén A-L, Knerlich F, Poser W, Gleiter CH, Brück W, Ehrenreich H (2001B) Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol 101:271–276

    PubMed  Google Scholar 

  • Stainier DYR, Gilbert W (1991) Neuronal differentiation and maturation in the mouse trigeminal sensory system, in vivo and in vitro. J Comp Neurol 311:300–312

    CAS  PubMed  Google Scholar 

  • Süss M, Washausen S, Kuhn H-J, Knabe W (2002) High resolution scanning and three-dimensional reconstruction of cellular events in large objects during brain development. J Neurosci Methods 113:147–158

    Article  PubMed  Google Scholar 

  • Wen T-C, Sadamoto Y, Tanaka J, Zhu P-X, Nakata K, Ma Y-J, Hata R, Sakanaka M (2002) Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by up-regulating Bcl-xL expression. J Neurosci Res 67:795–803

    Article  CAS  PubMed  Google Scholar 

  • Yasuda Y, Nagao M, Okano M, Masuda S, Sasaki R, Konishi H, Tanimura T (1993) Localization of erythropoietin and erythropoietin-receptor in postimplantation mouse embryos. Dev Growth Differ 35:711–722

    CAS  Google Scholar 

  • Yu X, Shacka JJ, Eells JB, Suarez-Quian C, Przygodzki RM, Beleslin-Cokic B, Lin C-S, Nikodem VM, Hempstead B, Flanders KC, Costantini F, Noguchi CT (2002) Erythropoietin receptor signalling is required for normal brain development. Development 129:505–516

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (KN 525/1-1, KN 525/1-2 to W. K. and H.-J. K., BR 1185/4-1 to G. B., Sonderforschungsbereich 402-A1 and Graduiertenkolleg 335 to T. K.), and by the Max Planck Society (H. E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ehrenreich.

Additional information

W. Knabe and F. Knerlich contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knabe, W., Knerlich, F., Washausen, S. et al. Expression patterns of erythropoietin and its receptor in the developing midbrain. Anat Embryol 207, 503–512 (2004). https://doi.org/10.1007/s00429-003-0365-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-003-0365-y

Keywords

Navigation