Skip to main content
Log in

Cilostazol Mediated Nurr1 and Autophagy Enhancement: Neuroprotective Activity in Rat Rotenone PD Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nuclear receptor related 1 (Nurr1) orphan receptor has emerged as a promising contender in ameliorating Parkinson’s disease; thus, finding a suitable activator of Nurr1 receptor is an attracting target for treating PD. Cilostazol, a phosphodiesterase-3 inhibitor, recently showed a favorable neuroprotective activity in multiple devastating central disorders, yet the possible antiparkinsonian activity of the drug has not been fully elucidated. Thus, the aim of this study is to explore the neuroprotective effect of cilostazol in rotenone-induced PD model in rats. Cilostazol successfully upregulated Nurr1 expression in PD rats, which resulted in successful preservation of the dopaminergic neuron functionality and integrity as verified by the marked improvement of motor performance in rotarod and open field tests, as well as the increased striatal tyrosine hydroxylase content. Moreover, cilostazol revealed an anti-inflammatory activity as manifested by hampering the global controller of inflammatory signaling pathway, nuclear factor-kappa B, together with its downstream pro-inflammatory cytokines, namely tumor necrosis factor-alpha and interleukin-1 beta, via Nurr-1 upregulation and glycogen synthase kinase 3 beta GSK-3β inhibition. In turn, the increase in GSK-3β inhibited form suppressed the measured downstream apoptotic biomarkers, viz. cytochrome C and caspase-3. Remarkably, cilostazol enhanced autophagy as depicted by hampering both LC3-II and P62 levels possibly through the prominent rise in sirtuin 1 level. In conclusion, cilostazol could be a promising candidate for PD treatment through modulating Nurr1 expression, as well as SIRT-1/autophagy, and GSK-3β/apoptosis cross-regulation.

In the rat rotenone model of Parkinson’s disease (PD), Nurr1 expression was downregulated, GSK-3β was activated, and autophagic flux was inhibited. Those deleterious effects were associated with deteriorated motor functions, striatal TH content, enhanced inflammatory state, and apoptotic cascade. Cilostazol, a phosphodiesterase-3 inhibitor, exerted a potential protective effect against PD through Nurr1 enhancement, GSK-3β/apoptosis modulation, and SIRT-1/autophagy enhancement. Nurr1 nuclear receptor related 1, TH tyrosine hydroxylase, NF-κB nuclear factor κB, TNFα tumor necrosis factor alpha, ILs interleukins, GSK-3β glycogen synthase kinase 3 beta, SIRT-1 sirtuin 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alexander GE (2004) Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 6(3):259–280

    PubMed  PubMed Central  Google Scholar 

  2. Mullin S (2015) Pathogenic mechanisms of neurodegeneration in Parkinson disease. Neurol Clin 33(1):1–17. https://doi.org/10.1016/j.ncl.2014.09.010

    Article  PubMed  Google Scholar 

  3. Yacoubian TA, Standaert DG (2009) Targets for neuroprotection in Parkinson’s disease. Biochim Biophys Acta 1792(7):676–687. https://doi.org/10.1016/j.bbadis.2008.09.009

    Article  PubMed  CAS  Google Scholar 

  4. Jenner P (2013) Wearing off, dyskinesia, and the use of continuous drug delivery in Parkinson’s disease. Neurol Clin 31(3):17–35. https://doi.org/10.1016/j.ncl.2013.04.010

    Article  Google Scholar 

  5. Kim C, Lee PKJ, Leblanc P (2016) Correlation between orphan nuclear receptor Nurr1 expression and amyloid deposition in 5XFAD mice, an animal model of Alzheimer’s disease. J Neurochem 132(2):254–262. https://doi.org/10.1111/jnc.12935

    Article  CAS  Google Scholar 

  6. Smith GA, Rocha EM, Rooney T, Barneoud P, McLean JR, Beagan J, Osborn T, Coimbra M et al (2015) A Nurr1 agonist causes neuroprotection in a Parkinson’s disease lesion model primed with the toll-like receptor 3 dsRNA inflammatory stimulant poly(I:C). PLoS One 10(3):e0121072. https://doi.org/10.1371/journal.pone.0121072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Saijo K, Winner B, Carson CT et al (2009) A Nurr1/CoREST transexpression pathway attenuates neurotoxic inflammation in activated microglia and astrocytes. Cell 137:47–59. https://doi.org/10.1016/j.cell.2009.01.038.A

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yuan YH, Sun JD, Wu MM et al (2013) Rotenone could activate microglia through NFkB associated pathway. Neurochem Res 38(8):1553–1560. https://doi.org/10.1007/s11064-013-1055-7

    Article  PubMed  CAS  Google Scholar 

  9. Blaudin de Thé FX, Rekaik H, Prochiantz A, et al (2016) Neuroprotective transcription factors in animal models of Parkinson disease. Neural Plast 2016:6097107. https://doi.org/10.1155/2016/6097107

  10. Chiara F, Rasola A (2013) GSK-3 and mitochondria in cancer cells. Front Oncol 3:16. https://doi.org/10.3389/fonc.2013.00016

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li DAWEI, Liu ZHIQ, Chen WEI et al (2014) Association of glycogen synthase kinase-3β with Parkinson’s disease (review). Mol Med Rep 9(6):2043–2050. https://doi.org/10.3892/mmr.2014.2080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. King TAJD, Clodfelder-miller B, Barksdale KA, Bijur GN (2008) Unregulated mitochondrial GSK3β activity results in NADH:ubiquinone oxidoreductase deficiency. Neurotox Res 14(4):367–382. https://doi.org/10.1007/BF03033861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ghavami S, Shojaei S, Yeganeh B et al (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49. https://doi.org/10.1016/j.pneurobio.2013.10.004

    Article  PubMed  CAS  Google Scholar 

  14. Janda E, Lascala A, Carresi C et al (2015) Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2 : implications for neuroprotection. Autophagy 11:1063–1080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hou Y-S, Guan J-J, Xu H-D, Wu F, Sheng R, Qin ZH (2015) Sestrin2 protects dopaminergic cells against rotenone toxicity through AMPK-dependent autophagy activation. Mol Cell Biol 35(16):2740–2751. https://doi.org/10.1128/MCB.00285-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ou X, Lee MR (2014) SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells 32(5):1183–1194. https://doi.org/10.1002/stem.1641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhang A, Wang H, Qin X et al (2012) Genetic analysis of SIRT1 gene promoter in sporadic Parkinson’s disease. Biochem Biophys Res Commun 422(4):693–696. https://doi.org/10.1016/j.bbrc.2012.05.059

    Article  PubMed  CAS  Google Scholar 

  18. Yang H, Zhang W, Pan H et al (2012) SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity. PLoS One 7(9):e46364. https://doi.org/10.1371/journal.pone.0046364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Donmez G, Outeiro TF (2013) SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 5(3):344–352. https://doi.org/10.1002/emmm.201302451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 19(3):163–174. https://doi.org/10.1159/000328516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Choi JM, Shin HK, Kim KY, Lee JH, Hong KW (2002) Neuroprotective effect of cilostazol against focal cerebral ischemia via antiapoptotic action in rats. J Pharmacol Exp Ther 300(3):787–793. https://doi.org/10.1124/jpet.300.3.787

    Article  PubMed  CAS  Google Scholar 

  22. Hase Y, Okamoto Y, Fujita Y et al (2012) Cilostazol, a phosphodiesterase inhibitor, prevents no-re fl ow and hemorrhage in mice with focal cerebral ischemia. Exp Neurol 233(1):523–533. https://doi.org/10.1016/j.expneurol.2011.11.038

    Article  PubMed  CAS  Google Scholar 

  23. Hiramatsu M, Takiguchi O, Nishiyama A, Mori H (2010) Cilostazol prevents amyloid β peptide(25-35)-induced memory impairment and oxidative stress in mice. Br J Pharmacol 161(8):1899–1912. https://doi.org/10.1111/j.1476-5381.2010.01014.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Park SY, Lee HR, Lee WS et al (2016) Cilostazol modulates autophagic degradation of β-amyloid peptide via SIRT1-coupled LKB1/AMPK α signaling in neuronal. PLoS One 11:e0160620. https://doi.org/10.1371/journal.pone.0160620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Abdelkader NF, Safar MM, Salem HA (2016) Ursodeoxycholic acid ameliorates apoptotic cascade in the rotenone model of Parkinson’s disease: modulation of mitochondrial perturbations. Mol Neurobiol 53(2):810–817. https://doi.org/10.1007/s12035-014-9043-8

    Article  PubMed  CAS  Google Scholar 

  26. Kandil EA, Abdelkader NF, El-Sayeh BM, Saleh S (2016) Imipramine and amitriptyline ameliorate the rotenone model of Parkinson’s disease in rats. Neuroscience 332:26–37. https://doi.org/10.1016/j.neuroscience.2016.06.040

    Article  PubMed  CAS  Google Scholar 

  27. Honda F, Imai H, Ishikawa M, Kubota C (2006) Cilostazol attenuates gray and white matter damage in a rodent model of focal cerebral ischemia. Stroke 37(1):223–229. https://doi.org/10.1161/01.STR.0000196977.76702.6d

    Article  PubMed  CAS  Google Scholar 

  28. Cummins RA, Walsh RN (1976) The open-field. Psychol Bull 83(3):482–504. https://doi.org/10.1037/0033-2909.83.3.482

    Article  PubMed  Google Scholar 

  29. Jones BJ, Roberts DJ (1968) The quantitative measurement of motor inco-ordination in naive mice using an accelerating rotarod. J Pharm Pharmacol 20(4):302–304. https://doi.org/10.1111/j.2042-7158.1968.tb09743.x

    Article  PubMed  CAS  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 408(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  31. Decressac M, Volakakis N, Björklund A, Perlmann T (2013) NURR1 in Parkinson disease—from pathogenesis to therapeutic potential. Nat Rev Neurol 9(11):629–636. https://doi.org/10.1038/nrneurol.2013.209

    Article  PubMed  CAS  Google Scholar 

  32. Kadkhodaei B, Ito T, Joodmardi E et al (2009) Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci 29(50):15923–15932. https://doi.org/10.1523/JNEUROSCI.3910-09.2009

    Article  PubMed  CAS  Google Scholar 

  33. Zetterstrm RH, Solomin L, Jansson L et al (2016) Dopamine neuron agenesis in Nurr1-deficient mice. Am Assoc Adv Sci 276:248–250

    Google Scholar 

  34. Kim C, Han B, Moon J et al (2015) Nuclear receptor Nurr1 agonists enhance its dual functions and improve behavioral deficits in an animal model of Parkinson’s disease. Proc Natl Acad Sci U S A 112(28):6–11. https://doi.org/10.1073/pnas.1509742112

    Article  CAS  Google Scholar 

  35. Zhang L, Cen L, Qu S, Wei L, Mo M, Feng J, Sun C, Xiao Y et al (2016) Enhancing beta-catenin activity via GSK3beta inhibition protects PC12 cells against rotenone toxicity through Nurr1 induction. PLoS One 11(4):e0152931. https://doi.org/10.1371/journal.pone.0152931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zennaro M, Amar L, Skah S et al (2014) WNT/β-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum Mol Genet 23(4):889–905. https://doi.org/10.1093/hmg/ddt484

    Article  PubMed  CAS  Google Scholar 

  37. Episcopo FL, Tirolo C, Caniglia S et al (2014) Targeting Wnt signaling at the neuroimmune interface for dopaminergic neuroprotection/repair in Parkinson’s disease. J Mol Cell Biol 6:13–26. https://doi.org/10.1093/jmcb/mjt053.Targeting

    Article  PubMed  PubMed Central  Google Scholar 

  38. Petit-Paitel A, Brau F, Cazareth J, Chabry J (2009) Involvment of cytosolic and mitochondrial GSK-3β in mitochondrial dysfunction and neuronal cell death of MPTP/MPP+-treated neurons. PLoS One 4(5):e5491. https://doi.org/10.1371/journal.pone.0005491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chen YY, Chen G, Fan Z et al (2008) GSK3β and endoplasmic reticulum stress mediate rotenone-induced death of SK-N-MC neuroblastoma cells. Biochem Pharmacol 76(1):128–138. https://doi.org/10.1016/j.bcp.2008.04.010

    Article  PubMed  CAS  Google Scholar 

  40. Berthonneche C, Sulpice T, Tanguy S et al (2005) AT1 receptor blockade prevents cardiac dysfunction after myocardial infarction in rats. Cardiovasc Drugs Ther 19(4):251–259. https://doi.org/10.1007/s10557-005-3695-6

    Article  PubMed  CAS  Google Scholar 

  41. Abdel-Raheem IT, Omran GA, Katary MA (2015) Irbesartan, an angiotensin II receptor antagonist, with selective PPAR-gamma-modulating activity improves function and structure of chemotherapy-damaged ovaries in rats. Fundam Clin Pharmacol 29(3):286–298. https://doi.org/10.1111/fcp.12119

    Article  PubMed  CAS  Google Scholar 

  42. Beurel E (2014) Regulation of inflammation and T cells by glycogen synthase kinase-3: Links to mood disorders. Neuroimmunomodulation 21(2-3):140–144. https://doi.org/10.1159/000356550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ngok-Ngam P, Watcharasit P, Thiantanawat A, Satayavivad J (2013) Pharmacological inhibition of GSK3 attenuates DNA damage-induced apoptosis via reduction of p53 mitochondrial translocation and Bax oligomerization in neuroblastoma SH-SY5Y cells. Cell Mol Biol Lett 18(1):58–74. https://doi.org/10.2478/s11658-012-0039-y

    Article  PubMed  CAS  Google Scholar 

  44. Linseman DA (2004) Glycogen synthase kinase-3 phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24(44):9993–10002. https://doi.org/10.1523/JNEUROSCI.2057-04.2004

    Article  PubMed  CAS  Google Scholar 

  45. King TD, Bijur GN, Jope RS (2001) Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3 b and attenuated by lithium. Brain Res 919(1):106–114. https://doi.org/10.1016/S0006-8993(01)03005-0

    Article  PubMed  CAS  Google Scholar 

  46. Wang Z, Havasi A, Gall J et al (2010) GSK3β promotes apoptosis after renal ischemic injury. J Am Soc Nephrol 21(2):284–294. https://doi.org/10.1681/ASN.2009080828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lee JH, Park SY, Shin HK, Kim CD, Lee WS, Hong KW (2008) Protective effects of cilostazol against transient focal cerebral ischemia and chronic cerebral hypoperfusion injury. CNS Neurosci Ther 14(2):143–152. https://doi.org/10.1111/j.1527-3458.2008.00042.x

    Article  PubMed  CAS  Google Scholar 

  48. Tian CJ, Kim YJ, Kim SW, Lim HJ, Kim YS, Choung YH (2013) A combination of cilostazol and Ginkgo biloba extract protects against cisplatin-induced Cochleo-vestibular dysfunction by inhibiting the mitochondrial apoptotic and ERK pathways. Cell Death Dis 4(2):e509. https://doi.org/10.1038/cddis.2013.33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hayashi H, Sudo T (2009) Effects of the cAMP-elevating agents cilostamide, cilostazol and forskolin on the phosphorylation of Akt and GSK-3 β in platelets. J Thromb Haemost 102:327–335. https://doi.org/10.1160/TH08-12-0781

    Article  CAS  Google Scholar 

  50. Li M, Wang X, Meintzer MKAY et al (2000) Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3β. Mol Cell Biol 20:9356–9363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Xilouri M, Brekk OR, Stefanis L (2016) Autophagy and alpha-synuclein: relevance to Parkinson’s disease and related synucleopathies. Mov Disord 31(2):178–192. https://doi.org/10.1002/mds.26477

    Article  PubMed  CAS  Google Scholar 

  52. Pan T, Rawal P, Wu Y, Xie W, Jankovic J, Le W (2009) Rapamycin protects against rotenone-induced apoptosis through autophagy Induction. Neuroscience 164(2):541–551. https://doi.org/10.1016/j.neuroscience.2009.08.014

    Article  PubMed  CAS  Google Scholar 

  53. Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221(2):117–124. https://doi.org/10.1002/path.2694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):4–7. https://doi.org/10.4161/auto.4600

    Article  Google Scholar 

  55. Mader BJ, Pivtoraiko VN, Flippo HM, Klocke BJ, Roth KA, Mangieri LR, Shacka JJ (2012) Rotenone inhibits autophagic flux prior to inducing cell death. ACS Chem Neurosci 3(12):1063–1072. https://doi.org/10.1021/cn300145z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lee IH, Cao L, Mostoslavsky R et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105:3374–3379

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hariharan N, Maejima Y, Nakae J et al (2010) Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 107(12):1470–1482. https://doi.org/10.1161/CIRCRESAHA.110.227371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lee HR, Shin HK, Park SY, Kim HY, Bae SS, Lee WS, Rhim BY, Hong KW et al (2015) Cilostazol upregulates autophagy via SIRT1 activation : reducing amyloid-β peptide and APP-CTF β levels in neuronal cells. PLoS One 10(8):1–14. https://doi.org/10.1371/journal.pone.0134486

    Article  CAS  Google Scholar 

  59. Park S, Ahmad F, Philp A et al (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433. https://doi.org/10.1016/j.cell.2012.01.017.Park

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gerhart-hines Z, Jr JED, Blättler SM et al (2012) The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD+. Mol Cell 44:851–863. https://doi.org/10.1016/j.molcel.2011.12.005.The

    Article  Google Scholar 

  61. Wang Z, Zhang L, Liang Y, Zhang C, Xu Z, Zhang L, Fuji R, Mu W et al (2015) Cyclic AMP mimics the anti-ageing effects of calorie restriction by. Nat Publ Gr 5(1):1–10. https://doi.org/10.1038/srep12012

    Article  Google Scholar 

  62. Parr C, Carzaniga R, Gentleman SM et al (2012) Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein. Mol Cell Biol 32(21):4410–4418. https://doi.org/10.1128/MCB.00930-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa M. Safar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedya, S.A., Safar, M.M. & Bahgat, A.K. Cilostazol Mediated Nurr1 and Autophagy Enhancement: Neuroprotective Activity in Rat Rotenone PD Model. Mol Neurobiol 55, 7579–7587 (2018). https://doi.org/10.1007/s12035-018-0923-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0923-1

Keywords

Navigation