Skip to main content

Advertisement

Log in

Association Between Tumor Necrosis Factor-α and Diabetic Peripheral Neuropathy in Patients with Type 2 Diabetes: a Meta-Analysis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-α (TNF-α) is a cell signaling protein involved in systemic inflammation, and is also an important cytokine in the acute phase reaction. Several studies suggested a possible association between TNF-α and diabetic peripheral neuropathy (DPN) in type 2 diabetic patients, but no accurate conclusion was available. A systematic review and meta-analysis of observational studies was performed to comprehensively assess the association between serum TNF-α levels and DPN in type 2 diabetic patients. We searched Pubmed, Web of Science, Embase, and China Biology Medicine (CMB) databases for eligible studies. Study-specific data were combined using meta-analysis. Fourteen studies were finally included into the meta-analysis, which involved a total of 2650 participants. Meta-analysis showed that there were obviously increased serum TNF-α levels in DPN patients compared with type 2 diabetic patients without DPN (standard mean difference [SMD] = 1.203, 95 % CI 0.795–1.611, P < 0.001). There were also obviously increased levels of serum TNF-α in diabetic patients with DPN when compared with healthy controls (SMD = 2.364, 95 % CI 1.333–3.394, P < 0.001). In addition, there were increased serum TNF-α levels in painful DPN patients compared with painless DPN patients (SMD = 0.964, 95 % CI 0.237–1.690, P = 0.009). High level of serum TNF-α was significantly associated with increased risk of DPN in patients with type 2 diabetes (odds ratio [OR] = 2.594, 95 % CI 1.182–5.500, P = 0.017). Increased serum levels of TNF-α was not associated with increased risk of painful DPN in patients with type 2 diabetes (OR = 2.486, 95 % CI 0.672–9.193, P = 0.172). Sensitivity analysis showed that there was no obvious change in the pooled estimates when omitting single study by turns. Type 2 diabetic patients with peripheral neuropathy have obviously increased serum TNF-α levels than type 2 diabetic patients without peripheral neuropathy and healthy controls, and high level of serum TNF-α may be associated with increased risk of peripheral neuropathy independently. Further prospective cohort studies are needed to assess the association between TNF-α and DPN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL (2012) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11(6):521–534. doi:10.1016/S1474-4422(12)70065-0

    Article  PubMed  PubMed Central  Google Scholar 

  2. Maser RE, Steenkiste AR, Dorman JS, Nielsen VK, Bass EB, Manjoo Q, Drash AL, Becker DJ et al (1989) Epidemiological correlates of diabetic neuropathy. Report from Pittsburgh epidemiology of diabetes complications study. Diabetes 38(11):1456–1461

    Article  CAS  PubMed  Google Scholar 

  3. Smith SC, Lamping DL, Maclaine GD (2012) Measuring health-related quality of life in diabetic peripheral neuropathy: a systematic review. Diabetes Res Clin Pract 96(3):261–270. doi:10.1016/j.diabres.2011.11.013

    Article  CAS  PubMed  Google Scholar 

  4. Van Acker K, Bouhassira D, De Bacquer D, Weiss S, Matthys K, Raemen H, Mathieu C, Colin IM (2009) Prevalence and impact on quality of life of peripheral neuropathy with or without neuropathic pain in type 1 and type 2 diabetic patients attending hospital outpatients clinics. Diabetes Metab 35(3):206–213. doi:10.1016/j.diabet.2008.11.004

    Article  PubMed  Google Scholar 

  5. Tesfaye S, Selvarajah D (2012) Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev 28(Suppl 1):8–14. doi:10.1002/dmrr.2239

    Article  PubMed  Google Scholar 

  6. Kriegler M, Perez C, DeFay K, Albert I, Lu SD (1988) A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53(1):45–53

    Article  CAS  PubMed  Google Scholar 

  7. Hotamisligil GS, Spiegelman BM (1994) Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43(11):1271–1278

    Article  CAS  PubMed  Google Scholar 

  8. Gomez Garcia A, Rivera Rodriguez M, Gomez Alonso C, Rodriguez Ochoa DY, Alvarez Aguilar C (2015) Myeloperoxidase is associated with insulin resistance and inflammation in overweight subjects with first-degree relatives with type 2 diabetes mellitus. Diabetes Metab 39(1):59–65. doi:10.4093/dmj.2015.39.1.59

    Article  Google Scholar 

  9. Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxidative Med Cell Longev 2015:610813. doi:10.1155/2015/610813

    Article  Google Scholar 

  10. Wells G, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P (2014) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Health Research Institute Web site

  11. Herder C, Bongaerts BW, Rathmann W, Heier M, Kowall B, Koenig W, Thorand B, Roden M et al (2013) Association of subclinical inflammation with polyneuropathy in the older population: KORA F4 study. Diabetes Care 36(11):3663–3670. doi:10.2337/dc13-0382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Herder C, Bongaerts BW, Rathmann W, Heier M, Kowall B, Koenig W, Thorand B, Roden M et al (2015) Differential association between biomarkers of subclinical inflammation and painful polyneuropathy: results from the KORA F4 study. Diabetes Care 38(1):91–96. doi:10.2337/dc14-1403

    Article  CAS  PubMed  Google Scholar 

  13. Zhu T, Meng Q, Ji J, Lou X, Zhang L (2015) Toll-like receptor 4 and tumor necrosis factor-alpha as diagnostic biomarkers for diabetic peripheral neuropathy. Neurosci Lett 585:28–32. doi:10.1016/j.neulet.2014.11.020

    Article  CAS  PubMed  Google Scholar 

  14. Wg C (1954) The combination of estimates from different experiments. Biometrics 10:101–129

    Article  Google Scholar 

  15. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. doi:10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  16. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  17. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    CAS  PubMed  Google Scholar 

  18. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang L, Lu YL, Wang GX (2006) The correlation study of TNF-α, IL-6, in diabetic neuropathy and observation study PGE4 treatment. Clinical Education of General Practice 4(1):32–34

    Google Scholar 

  20. Pfeiffer A, Janott J, Mohlig M, Ristow M, Rochlitz H, Busch K, Schatz H, Schifferdecker E (1997) Circulating tumor necrosis factor alpha is elevated in male but not in female patients with type II diabetes mellitus. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et metabolisme 29(3):111–114. doi:10.1055/s-2007-979001

    Article  CAS  PubMed  Google Scholar 

  21. Shi XH, Zhou LH, Li YM (2012) Association of cytokines with diabetic peripheral neuropathy in type 2 diabetes mellitus. Journal of Neuroscience and Mental Health 12(1):27–29

    Google Scholar 

  22. Wang CM, Liu Y, Sun LJ (2006) Effect of serum levels of ET, TNF and NO in type 2 diabetic peripheral neuropathy. Chin J Gerontol 26:604–606

    CAS  Google Scholar 

  23. Purwata TE (2011) High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy. Journal of pain research 4:169–175. doi:10.2147/JPR.S21751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou WY, Li N, Wang H, Yan XD (2001) Measurement of anti-GS-ab in diabetic polyneuropathy patients and the observation of its influence. Journal of Chinese Clinical Medicine 2(7):1–4

    Google Scholar 

  25. Wu QQ, Zhou SX, Li C, Liu XX, Li YY, Liang JQ (2012) Relation of homocysteine and infIammatory reaction with diabetic perineuropathy. Clin J Geriatr Heart Brain Vessel Dis 14(8):847–849

    CAS  Google Scholar 

  26. Yu LN, Yang XS, Hua Z, Xie W (2009) Serum levels of pro-inflammatory cytokines in diabetic patients with peripheral neuropathic pain and the correlation among them. Natl Med J China 89(7):469–471

    CAS  Google Scholar 

  27. Hussain G, Rizvi SA, Singhal S, Zubair M, Ahmad J (2013) Serum levels of TNF-alpha in peripheral neuropathy patients and its correlation with nerve conduction velocity in type 2 diabetes mellitus. Diabetes & metabolic syndrome 7(4):238–242. doi:10.1016/j.dsx.2013.02.005

    Article  Google Scholar 

  28. Song QF, An XN, Wang ZJ (2013) The association between free fatty acid, TNF-α, IL-6 and diabetic neuropathy. Hebei Medical Journal 35(12):1787

    CAS  Google Scholar 

  29. Liu L, Yan XJ, Ye YY, Jiang FX (2012) Research on serum TNF- α, L-6, MIF levels and the endothelium dilation of dorsal pedal artery in patients with painful diabetic neuropathy. J Trop Med 12(11):1331–1334

    Google Scholar 

  30. Wei R (2013) Inflammatory factor expression and implication in the capillary complicaion of diabetes mellitus. Hebei Medical University

  31. Boulton AJ, Malik RA, Arezzo JC, Sosenko JM (2004) Diabetic somatic neuropathies. Diabetes Care 27(6):1458–1486

    Article  PubMed  Google Scholar 

  32. Vincent AM, Edwards JL, McLean LL, Hong Y, Cerri F, Lopez I, Quattrini A, Feldman EL (2010) Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol 120(4):477–489. doi:10.1007/s00401-010-0697-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harding HP, Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51(Suppl 3):S455–S461

    Article  CAS  PubMed  Google Scholar 

  34. Urabe H, Terashima T, Lin F, Kojima H, Chan L (2015) Bone marrow-derived TNF-alpha causes diabetic neuropathy in mice. Diabetologia 58(2):402–410. doi:10.1007/s00125-014-3440-4

    Article  CAS  PubMed  Google Scholar 

  35. Skundric DS, Lisak RP (2003) Role of neuropoietic cytokines in development and progression of diabetic polyneuropathy: from glucose metabolism to neurodegeneration. Exp Diabesity Res 4(4):303–312. doi:10.1155/EDR.2003.303

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shi X, Chen Y, Nadeem L, Xu G (2013) Beneficial effect of TNF-alpha inhibition on diabetic peripheral neuropathy. J Neuroinflammation 10:69. doi:10.1186/1742-2094-10-69

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamakawa I, Kojima H, Terashima T, Katagi M, Oi J, Urabe H, Sanada M, Kawai H et al (2011) Inactivation of TNF-alpha ameliorates diabetic neuropathy in mice. Am J Physiol Endocrinol Metab 301(5):E844–E852. doi:10.1152/ajpendo.00029.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dogrul A, Gul H, Yesilyurt O, Ulas UH, Yildiz O (2011) Systemic and spinal administration of etanercept, a tumor necrosis factor alpha inhibitor, blocks tactile allodynia in diabetic mice. Acta Diabetol 48(2):135–142. doi:10.1007/s00592-010-0237-x

    Article  CAS  Google Scholar 

  39. Chopra K, Tiwari V, Arora V, Kuhad A (2010) Sesamol suppresses neuro-inflammatory cascade in experimental model of diabetic neuropathy. J Pain 11(10):950–957. doi:10.1016/j.jpain.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  40. Liu WJ, Jin HY, Park JH, Baek HS, Park TS (2010) Effect of rimonabant, the cannabinoid CB1 receptor antagonist, on peripheral nerve in streptozotocin-induced diabetic rat. Eur J Pharmacol 637(1–3):70–76. doi:10.1016/j.ejphar.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  41. Yagihashi S, Yamagishi S, Wada R (2007) Pathology and pathogenetic mechanisms of diabetic neuropathy: correlation with clinical signs and symptoms. Diabetes Res Clin Pract 77(Suppl 1):S184–S189. doi:10.1016/j.diabres.2007.01.054

    Article  CAS  PubMed  Google Scholar 

  42. Cheng HT, Dauch JR, Oh SS, Hayes JM, Hong Y, Feldman EL (2010) p38 mediates mechanical allodynia in a mouse model of type 2 diabetes. Mol Pain 6:28. doi:10.1186/1744-8069-6-28

    PubMed  PubMed Central  Google Scholar 

  43. Kandhare AD, Raygude KS, Ghosh P, Ghule AE, Bodhankar SL (2012) Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy. Fitoterapia 83(4):650–659. doi:10.1016/j.fitote.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Zhang Y, Liu DB, Liu HY, Hou WG, Dong YS (2013) Curcumin attenuates diabetic neuropathic pain by downregulating TNF-alpha in a rat model. Int J Med Sci 10(4):377–381. doi:10.7150/ijms.5224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duksal T, Tiftikcioglu BI, Bilgin S, Kose S, Zorlu Y (2015) Role of inflammation in sensory neuropathy in prediabetes or diabetes. Acta Neurol Scand. doi:10.1111/ane.12474

    PubMed  Google Scholar 

  46. Calle MC, Fernandez ML (2012) Inflammation and type 2 diabetes. Diabetes Metab 38(3):183–191. doi:10.1016/j.diabet.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  47. Ozsoy HZ, Sivasubramanian N, Wieder ED, Pedersen S, Mann DL (2008) Oxidative stress promotes ligand-independent and enhanced ligand-dependent tumor necrosis factor receptor signaling. J Biol Chem 283(34):23419–23428. doi:10.1074/jbc.M802967200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramirez Alvarado MM, Sanchez Roitz C (2012) Tumor necrosis factor-alpha, insulin resistance, the lipoprotein metabolism and obesity in humans. Nutr Hosp 27(6):1751–1757. doi:10.3305/nh.2012.27.6.6004

    PubMed  Google Scholar 

  49. Guha M, Bai W, Nadler JL, Natarajan R (2000) Molecular mechanisms of tumor necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways. J Biol Chem 275(23):17728–17739

    Article  CAS  PubMed  Google Scholar 

  50. Yang J, Park Y, Zhang H, Gao X, Wilson E, Zimmer W, Abbott L, Zhang C (2009) Role of MCP-1 in tumor necrosis factor-alpha-induced endothelial dysfunction in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 297(4):H1208–H1216. doi:10.1152/ajpheart.00396.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kilo S, Berghoff M, Hilz M, Freeman R (2000) Neural and endothelial control of the microcirculation in diabetic peripheral neuropathy. Neurology 54(6):1246–1252

    Article  CAS  PubMed  Google Scholar 

  52. Srinivasan S, Stevens M, Wiley JW (2000) Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes 49(11):1932–1938

    Article  CAS  PubMed  Google Scholar 

  53. Cameron NE, Cotter MA (2008) Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Curr Drug Targets 9(1):60–67

    Article  CAS  PubMed  Google Scholar 

  54. Magnuson DK, Maier RV, Pohlman TH (1989) Protein kinase C: a potential pathway of endothelial cell activation by endotoxin, tumor necrosis factor, and interleukin-1. Surgery 106(2):216–222, discussion 222–213

    CAS  PubMed  Google Scholar 

  55. Igarashi M, Wakasaki H, Takahara N, Ishii H, Jiang ZY, Yamauchi T, Kuboki K, Meier M et al (1999) Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Invest 103(2):185–195. doi:10.1172/JCI3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang X, Bao W, Liu J, Ouyang YY, Wang D, Rong S, Xiao X, Shan ZL et al (2013) Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 36(1):166–175. doi:10.2337/dc12-0702

    Article  CAS  PubMed  Google Scholar 

  57. Ruan Y, Xie XJ, Ma JH (2012) Determination and clinical significance of significance of serum IL-6 and 8-iso-PGF2α in patients with diabetic peripheral neuropathy. Progress in Modern Biomedicine 12(16):3138–3140

    CAS  Google Scholar 

  58. Zhou HY, Yu LP, Xie XM, Li RD (2008) Relationship between serum leptin, interleukin-6, C-reactive protein and peripheral neuropathy disease in patients with type 2 diabetes. Clinical Medicine of China 24(2):117–119

    CAS  Google Scholar 

  59. Magrinelli F, Briani C, Romano M, Ruggero S, Toffanin E, Triolo G, Peter GC, Praitano M et al (2015) The association between serum cytokines and damage to large and small nerve fibers in diabetic peripheral neuropathy. Journal of diabetes research 2015:547834. doi:10.1155/2015/547834

    Article  PubMed Central  Google Scholar 

  60. Zhou J, Zhou S (2014) Inflammation: therapeutic targets for diabetic neuropathy. Mol Neurobiol 49(1):536–546. doi:10.1007/s12035-013-8537-0

    Article  CAS  Google Scholar 

  61. Akira S, Taga T, Kishimoto T (1993) Interleukin-6 in biology and medicine. Adv Immunol 54:1–78

    Article  CAS  Google Scholar 

  62. Lieb DC, Parson HK, Mamikunian G, Vinik AI (2012) Cardiac autonomic imbalance in newly diagnosed and established diabetes is associated with markers of adipose tissue inflammation. Exp Diabetes Res 2012:878760. doi:10.1155/2012/878760

    Article  Google Scholar 

  63. Lee CC, Adler AI, Sandhu MS, Sharp SJ, Forouhi NG, Erqou S, Luben R, Bingham S et al (2009) Association of C-reactive protein with type 2 diabetes: prospective analysis and meta-analysis. Diabetologia 52(6):1040–1047. doi:10.1007/s00125-009-1338-3

    Article  CAS  Google Scholar 

  64. Dehghan A, Kardys I, de Maat MP, Uitterlinden AG, Sijbrands EJ, Bootsma AH, Stijnen T, Hofman A et al (2007) Genetic variation, C-reactive protein levels, and incidence of diabetes. Diabetes 56(3):872–878. doi:10.2337/db06-0922

    Article  CAS  Google Scholar 

  65. Papanas N, Katsiki N, Papatheodorou K, Demetriou M, Papazoglou D, Gioka T, Maltezos E (2011) Peripheral neuropathy is associated with increased serum levels of uric acid in type 2 diabetes mellitus. Angiology 62(4):291–295. doi:10.1177/0003319710394164

    Article  CAS  Google Scholar 

  66. Doupis J, Lyons TE, Wu S, Gnardellis C, Dinh T, Veves A (2009) Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J Clin Endocrinol Metab 94(6):2157–2163. doi:10.1210/jc.2008-2385

    Article  CAS  PubMed Central  Google Scholar 

  67. Pickup JC (2004) Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27(3):813–823

    Article  Google Scholar 

  68. Festa A, D'Agostino R Jr, Howard G, Mykkanen L, Tracy RP, Haffner SM (2000) Chronic subclinical inflammation as part of the insulin resistance syndrome: the insulin resistance atherosclerosis study (IRAS). Circulation 102(1):42–47

    Article  CAS  Google Scholar 

  69. Lanza GA, Pitocco D, Navarese EP, Sestito A, Sgueglia GA, Manto A, Infusino F, Musella T et al (2007) Association between cardiac autonomic dysfunction and inflammation in type 1 diabetic patients: effect of beta-blockade. Eur Heart J 28(7):814–820. doi:10.1093/eurheartj/ehm018

    Article  CAS  Google Scholar 

  70. Dinarello CA, Cannon JG, Wolff SM, Bernheim HA, Beutler B, Cerami A, Figari IS, Palladino MA Jr et al (1986) Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med 163(6):1433–1450

    Article  CAS  Google Scholar 

  71. Helle M, Brakenhoff JP, De Groot ER, Aarden LA (1988) Interleukin 6 is involved in interleukin 1-induced activities. Eur J Immunol 18(6):957–959. doi:10.1002/eji.1830180619

    Article  CAS  Google Scholar 

  72. Skundric DS, Dai R, James J, Lisak RP (2002) Activation of IL-1 signaling pathway in Schwann cells during diabetic neuropathy. Ann N Y Acad Sci 958:393–398

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the data provided by the authors of included studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Gang Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, ZP., Wang, YG., Li, CQ. et al. Association Between Tumor Necrosis Factor-α and Diabetic Peripheral Neuropathy in Patients with Type 2 Diabetes: a Meta-Analysis. Mol Neurobiol 54, 983–996 (2017). https://doi.org/10.1007/s12035-016-9702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9702-z

Keywords

Navigation