Skip to main content

Advertisement

Log in

Gastrin-Releasing Peptide Receptor Knockdown Induces Senescence in Glioblastoma Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor, characterized by excessive cell proliferation, resistance to apoptosis, and invasiveness. Due to resistance to currently available treatment options, the prognosis for patients with GBM is very dismal. The activation of gastrin-releasing peptide receptors (GRPR) stimulates GBM cell proliferation, whereas GRPR antagonists induce antiproliferative effects in in vitro and in vivo experimental models of GBM. However, the role of GRPR in regulating other aspects of GBM cell function related to tumor progression remains poorly understood, and previous studies have not used RNA interference techniques as tools to examine GRPR function in GBM. Here, we found that stable GRPR knockdown by a lentiviral vector using a short hairpin interfering RNA sequence in human A172 GBM cells resulted in increased cell size and altered cell cycle dynamics consistent with cell senescence. These changes were accompanied by increases in the content of p53, p21, and p16, activation of epidermal growth factor receptors (EGFR), and a reduction in p38 content. These results increase our understanding of GRPR regulation of GBM cells and further support that GRPR may be a relevant therapeutic target in GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  CAS  PubMed  Google Scholar 

  2. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333

    Article  CAS  PubMed  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  4. Jensen RT, Battey JF, Spindel ER, Benya RV (2008) International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 60:1–42

    Article  CAS  PubMed  Google Scholar 

  5. Halmos G, Wittliff JL, Schally AV (1995) Characterization of bombesin/gastrin-releasing peptide receptors in human breast cancer and their relationship to steroid receptor expression. Cancer Res 55:280–287

    CAS  PubMed  Google Scholar 

  6. Carroll RE, Matkowskyj KA, Chakrabarti S, McDonald TJ, Benya RV (1999) Aberrant expression of gastrin-releasing peptide and its receptor by well-differentiated colon cancers in humans. Am J Physiol 276(3 Pt 1):G655–G665

    CAS  PubMed  Google Scholar 

  7. Markwalder R, Reubi JC (1999) Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 59:1152–1159

    CAS  PubMed  Google Scholar 

  8. Sun B, Halmos G, Schally AV, Wang X, Martinez M (2000) Presence of receptors for bombesin/gastrin-releasing peptide and mRNA for three receptor subtypes in human prostate cancers. Prostate 42:295–303

    Article  CAS  PubMed  Google Scholar 

  9. Cornelio DB, Roesler R, Schwartsmann G (2007) Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol 18:1457–1466

    Article  CAS  PubMed  Google Scholar 

  10. Cornelio DB, Meurer L, Roesler R, Schwartsmann G (2007) Gastrin-releasing peptide receptor expression in cervical cancer. Oncology 73:340–345

    Article  PubMed  Google Scholar 

  11. Flores DG, Meurer L, Uberti AF, Macedo BR, Lenz G, Brunetto AL, Schwartsmann G, Roesler R (2010) Gastrin-releasing peptide receptor content in human glioma and normal brain. Brain Res Bull 82:95–98

    Article  CAS  PubMed  Google Scholar 

  12. Mattei J, Achcar RD, Cano CH, Macedo BR, Meurer L, Batlle BS, Groshong SD, Kulczynski JM et al (2014) Gastrin-releasing peptide receptor expression in lung cancer. Arch Pathol Lab Med 138:98–104

    Article  CAS  PubMed  Google Scholar 

  13. Moody TW, Mahmoud S, Staley J, Naldini L, Cirillo D, South V, Felder S, Kris R (1989) Human glioblastoma cell lines have neuropeptide receptors for bombesin/gastrin-releasing peptide. J Mol Neurosci 1:235–242

    CAS  PubMed  Google Scholar 

  14. Staley J, Coy DH, Jensen RT, Moody TW (1993) Solubilization and purification of bombesin/gastrin releasing peptide receptors from human cell lines. J Mol Neurosci 4:29–40

    Article  CAS  PubMed  Google Scholar 

  15. Pinski J, Schally AV, Halmos G, Szepeshazi K, Groot K (1994) Somatostatin analogues and bombesin/gastrin-releasing peptide antagonist RC-3095 inhibit the growth of human glioblastomas in vitro and in vivo. Cancer Res 54:5895–5901

    CAS  PubMed  Google Scholar 

  16. Sharif TR, Luo W, Sharif M (1997) Functional expression of bombesin receptor in most adult and pediatric human glioblastoma cell lines; role in mitogenesis and in stimulating the mitogen-activated protein kinase pathway. Mol Cell Endocrinol 130:119–130

    Article  CAS  PubMed  Google Scholar 

  17. de Farias CB, Lima RC, Lima LO, Flores DG, Meurer L, Brunetto AL, Schwartsmann G, Roesler R (2008) Stimulation of proliferation of U138-MG glioblastoma cells by gastrin-releasing peptide in combination with agents that enhance cAMP signaling. Oncology 75:27–31

    Article  CAS  PubMed  Google Scholar 

  18. Flores DG, de Farias CB, Leites J, de Oliveira MS, Lima RC, Tamajusuku AS, Di Leone LP, Meurer L et al (2008) Gastrin-releasing peptide receptors regulate proliferation of C6 glioma cells through a phosphatidylinositol 3-kinase-dependent mechanism. Curr Neurovasc Res 5:99–105

    Article  CAS  PubMed  Google Scholar 

  19. de Oliveira MS, Cechim G, Braganhol E, Santos DG, Meurer L, de Castro CG Jr, Brunetto AL, Schwartsmann G et al (2009) Anti-proliferative effect of the gastrin-release peptide receptor antagonist RC-3095 plus temozolomide in experimental glioblastoma models. J Neurooncol 93:191–201

    Article  PubMed  Google Scholar 

  20. Flores DG, Ledur PF, Abujamra AL, Brunetto AL, Schwartsmann G, Lenz G, Roesler R (2009) Cancer stem cells and the biology of brain tumors. Curr Stem Cell Res Ther 4:306–313

    Article  CAS  PubMed  Google Scholar 

  21. Kiaris H, Schally AV, Sun B, Armatis P, Groot K (1999) Inhibition of growth of human malignant glioblastoma in nude mice by antagonists of bombesin/gastrin-releasing peptide. Oncogene 18:7168–7173

    Article  CAS  PubMed  Google Scholar 

  22. Qiao J, Kang J, Ishola TA, Rychahou PG, Evers BM, Chung DH (2008) Gastrin-releasing peptide receptor silencing suppresses the tumorigenesis and metastatic potential of neuroblastoma. Proc Natl Acad Sci U S A 105:12891–12896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Filippi-Chiela EC, Oliveira MM, Jurkovski B, Callegari-Jacques SM, da Silva VD, Lenz G (2012) Nuclear morphometric analysis (NMA): screening of senescence, apoptosis and nuclear irregularities. PLoS ONE 7, e42522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51:1417–1423

    Article  CAS  PubMed  Google Scholar 

  25. Sato Y, Kurose A, Ogawa A, Ogasawara K, Traganos F, Darzynkiewicz Z, Sawai T (2009) Diversity of DNA damage response of astrocytes and glioblastoma cell lines with various p53 status to treatment with etoposide and temozolomide. Cancer Biol Ther 8:452–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ciesielski MJ, Fenstermaker RA (2000) Oncogenic epidermal growth factor receptor mutants with tandem duplication: gene structure and effects on receptor function. Oncogene 19(6):810–820

    Article  CAS  PubMed  Google Scholar 

  27. Campisi J (2011) Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev 21:107–112

    Article  CAS  PubMed  Google Scholar 

  28. Ohtani N, Takahashi A, Mann DJ, Hara E (2012) Cellular senescence: a double-edged sword in the fight against cancer. Exp Dermatol 21(Suppl 1):1–4

    Article  CAS  PubMed  Google Scholar 

  29. Hirose Y, Berger MS, Pieper RO (2001) p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. Cancer Res 61:1957–1963

    CAS  PubMed  Google Scholar 

  30. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Courtois-Cox S, Jones SL, Cichowski K (2008) Many roads lead to oncogene-induced senescence. Oncogene 27(20):2801–2809

    Article  CAS  PubMed  Google Scholar 

  32. Garbers C, Kuck F, Aparicio-Siegmund S, Konzak K, Kessenbrock M, Sommerfeld A, Häussinger D, Lang PA et al (2013) Cellular senescence or EGFR signaling induces interleukin 6 (IL-6) receptor expression controlled by mammalian target of rapamycin (mTOR). Cell Cycle 12:3421–3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu Y, Li N, Xiang R, Sun P (2014) Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence. Trends Biochem Sci 39:268–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Coppola D, Balducci L, Chen DT, Loboda A, Nebozhyn M, Staller A, Fulp WJ, Dalton W et al (2014) Senescence-associated-gene signature identifies genes linked to age, prognosis, and progression of human gliomas. J Geriatr Oncol 5:389–399

    Article  PubMed  Google Scholar 

  35. Kulju KS, Lehman JM (1995) Increased p53 protein associated with aging in human diploid fibroblasts. Exp Cell Res 217:336–345

    Article  CAS  PubMed  Google Scholar 

  36. Campisi J, di d’Adda Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Council for Scientific and Technological Development (CNPq; grant numbers 484185/2012-8 and 303276/2013-4 to R. R), the National Institute for Translational Medicine (INCT-TM), the Children’s Cancer Institute (ICI), the South American Office for Anticancer Drug Development, and the HCPA institutional research fund (FIPE/HCPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Roesler.

Additional information

Pâmela Rossi Menegotto and Patrícia Luciana da Costa Lopez contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menegotto, P.R., da Costa Lopez, P.L., Souza, B.K. et al. Gastrin-Releasing Peptide Receptor Knockdown Induces Senescence in Glioblastoma Cells. Mol Neurobiol 54, 888–894 (2017). https://doi.org/10.1007/s12035-016-9696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9696-6

Keywords

Navigation